Skip to main content
Log in

Linagliptin: An Update of Its Use in Patients with Type 2 Diabetes Mellitus

  • Adis Drug Evaluation
  • Published:
Drugs Aims and scope Submit manuscript

Abstract

Linagliptin (Trajenta®, Tradjenta®) is a dipeptidyl peptidase (DPP)-4 inhibitor approved for the treatment of adults with type 2 diabetes mellitus in several countries. A fixed-dose combination of linagliptin/metformin (Jentadueto®) is also available. This article reviews the pharmacology, therapeutic efficacy and tolerability of linagliptin in the management of type 2 diabetes, with the aim of updating its place in therapy based on recently published data. In randomized, controlled trials, oral linagliptin 5 mg once daily (or 2.5 mg twice daily when combined with metformin) improved glycaemic control when used alone or in combination with other antidiabetic agents, including metformin, a sulfonylurea, thiazolidinedione or insulin. Improvements in glycaemic control were also shown in patients with renal impairment, including severe impairment, and the elderly (aged ≥70 years). Linagliptin is the first DPP-4 inhibitor to be eliminated primarily via a nonrenal route, enabling its use without dosage adjustment in patients with any degree of renal impairment. Linagliptin is generally well tolerated and, as with other DPP-4 inhibitors, it is associated with a low risk of hypoglycaemia and has no effect on bodyweight. Some data indicate that linagliptin may have beneficial effects on cardiovascular and renal safety profiles in patients with type 2 diabetes, but more data are needed. Meanwhile, the low risk of hypoglycaemia and the nonrenal route of elimination may provide important advantages for some patient groups, including elderly or renally impaired patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Danaei G, Finucane MM, Gitanjali MS, et al. National, regional, and global trends in fasting plasma glucose and diabetes prevalence since 1980: systematic analysis of health examination surveys and epidemiological studies with 370 country-years and 2.7 million participants. Lancet. 2011;378:31–40.

    CAS  PubMed  Google Scholar 

  2. World Health Organization. Diabetes: fact sheet. 2013. http://www.who.int/mediacentre/factsheets/fs312/en/. Accessed 19 Jun 2014.

  3. Deacon CF, Holst JJ. Dipeptidyl peptidase-4 inhibitors for the treatment of type 2 diabetes: comparison, efficacy and safety. Expert Opin Pharmacother. 2013;14(15):2047–58.

    CAS  PubMed  Google Scholar 

  4. Drucker DJ. The role of gut hormones in glucose homeostasis. J Clin Invest. 2007;117(1):24–32.

    CAS  PubMed  PubMed Central  Google Scholar 

  5. European Medicines Agency. Trajenta film-coated tablets: summary of product characteristics. 2014. http://www.ema.europa.eu/ema/index.jsp?curl=pages/medicines/human/medicines/002110/human_med_001482.jsp&mid=WC0b01ac058001d124. Accessed 3 Sep 2014.

  6. Boehringer Ingelheim International GmbH. Tradjenta® (linagliptin) tablets: US prescribing information. 2014. https://www.tradjenta.com/. Accessed 3 Sep 2014.

  7. Deeks ED. Linagliptin: a review of its use in the management of type 2 diabetes mellitus. Drugs. 2012;72(13):1793–824.

    CAS  PubMed  Google Scholar 

  8. Scott LJ. Linagliptin in type 2 diabetes mellitus. Drugs. 2011;71(5):611–24.

    CAS  PubMed  Google Scholar 

  9. Eckhardt M, Langkopf E, Mark M, et al. 8-(3-(R)-aminopiperidin-1-yl)-7-but-2-ynyl-3-methyl-1-(4-methyl-quinazolin-2-ylme thyl)-3,7-dihydropurine-2,6-dione (BI 1356), a highly potent, selective, long-acting, and orally bioavailable DPP-4 inhibitor for the treatment of type 2 diabetes. J Med Chem. 2007;50(26):6450–3.

    CAS  PubMed  Google Scholar 

  10. Thomas L, Eckhardt M, Langkopf E, et al. (R)-8-(3-amino-piperidin-1-yl)-7-but-2-ynyl-3-methyl-1-(4-methyl-quinazolin-2-ylm ethyl)-3,7-dihydro-purine-2,6-dione (BI 1356), a novel xanthine-based dipeptidyl peptidase 4 inhibitor, has a superior potency and longer duration of action compared with other dipeptidyl peptidase-4 inhibitors. J Pharmacol Exp Ther. 2008;325(1):175–82.

    CAS  PubMed  Google Scholar 

  11. Schnapp G, Klein T, Mark M, et al. Comparative enzyme kinetic analysis of the launched DPP-4 inhibitors [abstract no. A-1986]. In: 74th Scientific Session of the American Diabetes Association; 13–17 Jun 2014; San Francisco (CA).

  12. Rauch T, Graefe-Mody U, Deacon CF, et al. Linagliptin increases incretin levels, lowers glucagon, and improves glycemic control in type 2 diabetes mellitus. Diabetes Ther. 2012;3(1):10.

    PubMed  PubMed Central  Google Scholar 

  13. Shah P, Ardestani A, Dharmadhikari G, et al. The DPP-4 inhibitor linagliptin restores β-cell function and survival in human isolated islets through GLP-1 stabilization. J Clin Endocrinol Metab. 2013;98:E1163–72.

    CAS  PubMed  Google Scholar 

  14. Heise T, Larbig M, Patel S, et al. The dipeptidyl peptidase-4 inhibitor linagliptin lowers postprandial glucose and improves measures of β-cell function in type 2 diabetes. Diabetes Obes Metab. 2014;16:1036–9.

    CAS  PubMed  Google Scholar 

  15. Forst T, Anastassiadis E, Diessel S, et al. Effect of linagliptin compared to glimepiride on postprandial glucose metabolism, islet cell function, and vascular function parameters in patients with type 2 diabetes mellitus on ongoing metformin treatment. Diabetes Metab Res Rev. 2014. doi:10.1002/dmrr.2525.

    CAS  PubMed  Google Scholar 

  16. Hocher B, Reichetzeder C, Alter ML. Renal and cardiac effects of DPP4 inhibitors: from preclinical development to clinical research. Kidney Blood Press Res. 2012;36(1):65–84.

    CAS  PubMed  Google Scholar 

  17. Heise T, Graefe-Mody EU, Huttner S, et al. Pharmacokinetics, pharmacodynamics and tolerability of multiple oral doses of linagliptin, a dipeptidyl peptidase-4 inhibitor in male type 2 diabetes patients. Diabetes Obes Metab. 2009;11(8):786–94.

    CAS  PubMed  Google Scholar 

  18. Friedrich C, Jungnik A, Retlich S, et al. Bioequivalence of linagliptin 5 mg once daily and 2.5 mg twice daily: pharmacokinetics and pharmacodynamics in an open-label crossover trial. Drug Res. 2014;64:269–75.

    CAS  Google Scholar 

  19. European Medicines Agency. Jentadueto® film-coated tablets: summary of product characteristics. 2014. http://www.ema.europa.eu/ema/index.jsp?curl=pages/medicines/human/medicines/002279/human_med_001574.jsp&mid=WC0b01ac058001d124. Accessed 3 Sep 2014.

  20. Fuchs H, Tillement JP, Urien S, et al. Concentration-dependent plasma protein binding of the novel dipeptidyl peptidase 4 inhibitor BI 1356 due to saturable binding to its target in plasma of mice, rats and humans. J Pharm Pharmacol. 2009;61(1):55–62.

    CAS  PubMed  Google Scholar 

  21. Blech S, Ludwig-Schwellinger E, Gräfe-Mody EU, et al. The metabolism and disposition of the oral dipeptidyl peptidase-4 inhibitor, linagliptin, in humans. Drug Metab Dispos. 2010;38(4):667–78.

    CAS  PubMed  Google Scholar 

  22. Forst T, Uhlig-Laske B, Ring A, et al. The oral DPP-4 inhibitor linagliptin significantly lowers HbA1c after 4 weeks of treatment in patients with type 2 diabetes mellitus. Diabetes Obes Metab. 2011;13(6):542–50.

    CAS  PubMed  Google Scholar 

  23. Graefe-Mody U, Friedrich C, Port A, et al. Effect of renal impairment on the pharmacokinetics of the dipeptidyl peptidase-4 inhibitor linagliptin. Diabetes Obes Metab. 2011;13(10):939–46.

    CAS  PubMed  Google Scholar 

  24. Friedrich C, Emser A, Woerle H-J, et al. Renal impairment has no clinically relevant effect on the long-term exposure of linagliptin in patients with type 2 diabetes. Am J Ther. 2013;20(6):618–21.

    PubMed  Google Scholar 

  25. Inagaki N, Sheu WH, Owens D, et al. Efficacy and tolerability of linagliptin, a dipeptidyl peptidase (DPP)-4 inhibitor, in people with type 2 diabetes mellitus (T2DM) and liver disease: a pooled analysis of 17 randomized placebo-controlled double-blind studies [abstract no. 192]. In: International Conference on Diabetes and Metabolism; 6–9 Nov 2013; Seoul.

  26. Tadayasu Y, Sarashina A, Tsuda Y, et al. Population pharmacokinetic/pharmacodynamic analysis of the DPP-4 inhibitor linagliptin in Japanese patients with type 2 diabetes mellitus. J Pharm Pharm Sci. 2013;16(5):708–21.

    PubMed  Google Scholar 

  27. Friedrich C, Glund S, Lionetti D, et al. Pharmacokinetic and pharmacodynamic evaluation of linagliptin in African American patients with type 2 diabetes mellitus. Br J Clin Pharmacol. 2013;76(3):445–54.

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Barnett AH, Patel S, Harper R, et al. Linagliptin monotherapy in type 2 diabetes patients for whom metformin is inappropriate: an 18-week randomized, double-blind, placebo-controlled phase III trial with a 34-week active-controlled extension. Diabetes Obes Metab. 2012;14:1145–54.

    CAS  PubMed  Google Scholar 

  29. Del Prato S, Barnett AH, Huisman H, et al. Effect of linagliptin monotherapy on glycaemic control and markers of β-cell function in patients with inadequately controlled type 2 diabetes: a randomized controlled trial. Diabetes Obes Metab. 2011;13:258–67.

    PubMed  Google Scholar 

  30. Kawamori R, Inagaki N, Araki E, et al. Linagliptin monotherapy provides superior glycaemic control versus placebo or voglibose with comparable safety in Japanese patients with type 2 diabetes: a randomized, placebo and active comparator-controlled, double-blind study. Diabetes Obes Metab. 2012;14:348–57.

    CAS  PubMed  Google Scholar 

  31. Forst T, Uhlig-Laske B, Ring A, et al. Linagliptin (BI 1356), a potent and selective DPP-4 inhibitor, is safe and efficacious in combination with metformin in patients with inadequately controlled type 2 diabetes. Diabet Med. 2010;27(12):1409–19.

    CAS  PubMed  Google Scholar 

  32. Gallwitz B, Rosenstock J, Rauch T, et al. 2-year efficacy and safety of linagliptin compared with glimepiride in patients with type 2 diabetes inadequately controlled on metformin: a randomised, double-blind, non-inferiority trial. Lancet. 2012;380(9840):475–83.

    CAS  PubMed  Google Scholar 

  33. Haak T, Meinicke T, Jones R, et al. Initial combination of linagliptin and metformin improves glycaemic control in type 2 diabetes: a randomized, double-blind, placebo-controlled study. Diabetes Obes Metab. 2012;14(6):565–74.

    CAS  PubMed  Google Scholar 

  34. Ross SA, Rafeiro E, Meinicke T. Efficacy and safety of linagliptin 2.5 mg twice daily versus 5 mg once daily in patients with type 2 diabetes inadequately controlled on metformin: a randomised, double-blind, placebo-controlled trial. Curr Med Res Opin. 2012;28(9):1465–74.

    CAS  PubMed  Google Scholar 

  35. Taskinen MR, Rosenstock J, Tamminen I, et al. Safety and efficacy of linagliptin as add-on therapy to metformin in patients with type 2 diabetes: a randomized, double-blind, placebo-controlled study. Diabetes Obes Metab. 2011;13(1):65–74.

    CAS  PubMed  Google Scholar 

  36. Gomis R, Espadero RM, Jones R, et al. Efficacy and safety of initial combination therapy with linagliptin and pioglitazone in patients with inadequately controlled type 2 diabetes: a randomized, double-blind, placebo-controlled study. Diabetes Obes Metab. 2011;13(7):653–61.

    CAS  PubMed  Google Scholar 

  37. Lewin AJ, Arvay L, Liu D, et al. Efficacy and tolerability of linagliptin added to a sulfonylurea regimen in patients with inadequately controlled type 2 diabetes mellitus: an 18-week, multicenter, randomized, double-blind, placebo-controlled trial. Clin Ther. 2012;34(9):1909.e15–1919.e15.

    Google Scholar 

  38. Owens DR, Swallow R, Dugi KA, et al. Efficacy and safety of linagliptin in persons with type 2 diabetes inadequately controlled by a combination of metformin and sulphonylurea: a 24-week randomized study.[Erratum appears in Diabet Med. 2012 Jan; 29(1):158]. Diabet Med. 2011;28(11):1352–61.

    CAS  PubMed  Google Scholar 

  39. Yki-Jarvinen H, Rosenstock J, Duran-Garcia S, et al. Effects of adding linagliptin to basal insulin regimen for inadequately controlled type 2 diabetes: a ≥52-week randomized, double-blind study. Diabetes Care. 2013;36(12):3875–81.

    CAS  PubMed  PubMed Central  Google Scholar 

  40. McGill JB, Sloan L, Newman J, et al. Long-term efficacy and safety of linagliptin in patients with type 2 diabetes and severe renal impairment: a 1-year, randomized, double-blind, placebo-controlled study. Diabetes Care. 2013;36(2):237–44.

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Groop PH, Laakso M, Rosenstock J, et al. Linagliptin versus placebo followed by glimepiride in type 2 diabetes patients with moderate to severe renal impairment [abstract no. 914]. Diabetologia. 2013;56(Suppl 1):S364–5.

    Google Scholar 

  42. Barnett AH, Huisman H, Jones R, et al. Linagliptin for patients aged 70 years or older with type 2 diabetes inadequately controlled with common antidiabetes treatments: a randomised, double-blind, placebo-controlled trial. Lancet. 2013;382(9902):1413–23.

    CAS  PubMed  Google Scholar 

  43. Chen Y, Ning G, Wang C, et al. Efficacy and safety of linagliptin monotherapy in Asian patients with inadequately controlled type 2 diabetes mellitus: a 24-week, randomized, phase III clinical trial [abstract no. 1159-P]. Diabetes. 2013;62:A302.

    Google Scholar 

  44. Wang W, Yang J, Yang G. Efficacy and safety of linagliptin in Asian patients with type 2 diabetes mellitus inadequately controlled on metformin: a 24-week, randomized, phase III clinical trial [abstract no. 1177-P]. Diabetes. 2013;62:A307.

    Google Scholar 

  45. Thrasher J, Daniels K, Patel S, et al. Efficacy and safety of linagliptin in Black/African American patients with type 2 diabetes: a 6-month, randomized, double-blind, placebo-controlled study. Endocr Pract. 2014;20:412–20.

    PubMed  Google Scholar 

  46. Bajaj M, Gilman R, Patel S, et al. Linagliptin improved glycaemic control without weight gain or hypoglycaemia in patients with type 2 diabetes inadequately controlled by a combination of metformin and pioglitazone: a 24-week randomized, double-blind study. Diabet Med. 2014. doi:10.1111/dme.12495.

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Ross S, Caballero A, Del Prato S, et al. A randomised controlled trial of linagliptin monotherapy versus initial combination with linagliptin and metformin in newly diagnosed type 2 diabetes patients [abstract no. P-1104]. In: International Diabetes Federation 22nd World Diabetes Congress; 2–6 Dec 2013; Melbourne.

  48. Araki E, Kawamori R, Inagaki N, et al. Long-term safety of linagliptin monotherapy in Japanese patients with type 2 diabetes. Diabetes Obes Metab. 2013;15(4):364–71.

    CAS  PubMed  Google Scholar 

  49. Haak T, Meinicke T, Jones R, et al. Initial combination of linagliptin and metformin in patients with type 2 diabetes: efficacy and safety in a randomised, double-blind 1-year extension study. Int J Clin Pract. 2013;67(12):1283–93.

    CAS  PubMed  PubMed Central  Google Scholar 

  50. McGill JB, Barnett AH, Lewin AJ, et al. Linagliptin added to sulphonylurea in uncontrolled type 2 diabetes patients with moderate-to-severe renal impairment. Diab Vasc Dis Res. 2014;11(1):34–40.

    CAS  PubMed  Google Scholar 

  51. Groop PH, Del Prato S, Taskinen MR, et al. Linagliptin treatment in subjects with type 2 diabetes with and without mild-to-moderate renal impairment. Diabetes Obes Metab. 2014;16:560–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  52. McGill JB, Yki-Jarvinen H, Duran-Garcia S, et al. Efficacy and safety of linagliptin as add-on to basal insulin in patients with type 2 diabetes and renal impairment [abstract no. A-2349]. In: 74th Scientific Session of the American Diabetes Association; 13–17 Jun 2014; San Francisco (CA).

  53. Groop PH, Cooper ME, Perkovic V, et al. Linagliptin lowers albuminuria on top of recommended standard treatment in patients with type 2 diabetes and renal dysfunction. Diabetes Care. 2013;36(11):3460–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Schernthaner G, Barnett AH, Patel S, et al. Safety and efficacy of the dipeptidyl peptidase-4 inhibitor linagliptin in elderly patients with type 2 diabetes: a comprehensive analysis of data from 1331 individuals aged  ≥ 65 years. Diabetes Obes Metab. 2014. doi:10.1111/dom.12321.

    CAS  PubMed  Google Scholar 

  55. Woerle HJ, Neubacher D, Patel S, et al. Safety and efficacy of linagliptin plus basal insulin combination therapy in a vulnerable population of elderly patients (age ≥70 years) with type 2 diabetes [abstract no. 848]. Diabetologia. 2012;55(Suppl 1):S350.

    Google Scholar 

  56. Inagaki N, Watada H, Murai M, et al. Linagliptin provides effective, well-tolerated add-on therapy to pre-existing oral antidiabetic therapy over 1 year in Japanese patients with type 2 diabetes. Diabetes Obes Metab. 2013;15(9):833–43.

    CAS  PubMed  Google Scholar 

  57. Zeng Z, Yang J-K, Tong N, et al. Efficacy and safety of linagliptin added to metformin and sulphonylurea in Chinese patients with type 2 diabetes: a sub-analysis of data from a randomised clinical trial. Curr Med Res Opin. 2013;29(8):921–9.

    CAS  PubMed  Google Scholar 

  58. Davidson JA, Lajara R, Aguilar RB, et al. Efficacy and safety of linagliptin in Hispanic/Latino patients with type 2 diabetes mellitus: a pooled analysis from six randomized placebo-controlled phase 3 trials. BMJ Open Diabet Res Care. 2014. doi:10.1136/bmjdrc-2014-000020.

    Google Scholar 

  59. Haak T. Initial combination with linagliptin and metformin in newly diagnosed type 2 diabetes and severe hyperglycaemia. Adv Ther. 2012;29:1005–15.

    CAS  PubMed  Google Scholar 

  60. Del Prato S, Taskinen M-R, Owens DR, et al. Efficacy and safety of linagliptin in subjects with type 2 diabetes mellitus and poor glycemic control: pooled analysis of data from three placebo-controlled phase III trials. J Diabetes Complicat. 2013;27(3):274–9.

    PubMed  Google Scholar 

  61. von Eynatten M, Gong Y, Emser A, et al. Efficacy and safety of linagliptin in type 2 diabetes subjects at high risk for renal and cardiovascular disease: a pooled analysis of six phase III clinical trials. Cardiovasc Diabetol. 2013;12:60. doi:10.1186/1475-2840-12-60.

    Google Scholar 

  62. Lehrke M, Marx N, Patel S, et al. Safety and tolerability of linagliptin in patients with type 2 diabetes: a comprehensive pooled analysis of 22 placebo-controlled studies. Clin Ther. 2014;36:1130–46.

    CAS  PubMed  Google Scholar 

  63. Gomis R, Owens DR, Taskinen MR, et al. Long-term safety and efficacy of linagliptin as monotherapy or in combination with other oral glucose-lowering agents in 2121 subjects with type 2 diabetes: up to 2 years exposure in 24-week phase III trials followed by a 78-week open-label extension. Int J Clin Pract. 2012;66(8):731–40.

    CAS  PubMed  Google Scholar 

  64. Yoon K-H, Mohan V, Crowe S, et al. Long-term safety and efficacy of the dipeptidyl peptidase (DPP)-4 inhibitor linagliptin in Asian patients with type 2 diabetes mellitus (T2DM): a subgroup analysis of a large 2-year study [abstract no. 173]. In: International Conference on Diabetes and Metabolism; 6–9 Nov 2014; Seoul.

  65. Gallwitz B, Rosenstock J, Emser A, et al. Linagliptin is more effective than glimepiride at achieving a composite outcome of target HbA1c <7 % with no hypoglycaemia and no weight gain over 2 years. Int J Clin Pract. 2013;67(4):317–21.

    CAS  PubMed  Google Scholar 

  66. Gallwitz B, Rosenstock J, Patel S, et al. Regardless of the degree of glycemic control, linagliptin (LINA) has lower hypoglycemia risk than all doses of glimepiride (GLIM) at all time points over a 2-year trial [abstract no. 68-LB]. In: 73rd Annual Scientific Sessions of the American Diabetes Association; 21–25 Jun 2013; Chicago (IL).

  67. Gallwitz B, Rosenstock J, Rauch T, et al. Efficacy and safety of linagliptin and glimepiride in elderly T2DM patients insufficiently controlled with metformin. [abstract no. PD-0696]. In: International Diabetes Federation 22nd World Diabetes Congress; 2–6 Dec 2013; Melbourne.

  68. Inzucchi SE, Nauck M, von Eynatten M. Lower risk of hypoglycemia in elderly type 2 diabetes patients when linagliptin is added to basal insulin: an exploratory analysis [abstract no. 2-LB]. Diabetes. 2013;62(Suppl 1):LB1.

    Google Scholar 

  69. Johansen OE, Neubacher D, von Eynatten M, et al. Cardiovascular safety with linagliptin in patients with type 2 diabetes mellitus: a pre-specified, prospective, and adjudicated meta-analysis of a phase 3 programme. Cardiovasc Diabetol. 2012;11:3. doi:10.1186/1475-2840-11-3.

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Johansen OE, Neubacher D, Seck T, et al. Cardiovascular (CV) safety of linagliptin in patients with type 2 diabetes (T2D): a pooled comprehensive analysis of prospectively adjudicated CV events in phase 3 studies [abstract no. 376-OR]. Diabetes. 2013;62:A96.

    Google Scholar 

  71. Marx N, Rosenstock J, Kahn S, et al. Baseline characteristics of participants enrolled in the cardiovascular outcome study of linagliptin versus glimepiride in early type 2 diabetes (Carolina) [abstract no. 2358-PO]. Diabetes. 2013;62:A602.

    Google Scholar 

  72. Zinman B, Ahren B, Neubacher D, et al. Efficacy and cardiovascular (CV) safety of linagliptin as add-on to insulin in type 2 diabetes (T2D): a pooled comprehensive post-hoc analysis [abstract no. A-2306]. In: 74th Scientific Session of the American Diabetes Association; 13–17 Jun 2014; San Francisco (CA).

  73. von Eynatten M, Cooper M, Perkovic V, et al. Renal safety and outcomes with linagliptin: meta-analysis of individual data from 5466 patients with type 2 diabetes [abstract no. 913]. In: 49th Annual Meeting of the European Association for the Study of Diabetes; 23–27 Sep 2013; Barcelona.

  74. Patel DS, Schernthaner G, Barnett AH, et al. Renal safety of linagliptin in elderly patients with type 2 diabetes: analysis of pooled patient data from 7 phase 3 clinical trials [abstract no. 926]. In: 49th Annual Meeting of the European Association for the Study of Diabetes; 23–27 Sep 2013; Barcelona.

  75. Boehringer Ingelheim International GmbH. Jentadueto® (linagliptin and metformin hydrochloride) tablets: US prescribing information. 2014. https://www.jentadueto.com/. Accessed 3 Sep 2014.

  76. Inzucchi SE, Bergenstal RM, Buse JB, et al. Management of hyperglycaemia in type 2 diabetes: a patient-centered approach. Position statement of the American Diabetes Association (ADA) and the European Association for the Study of Diabetes (EASD). Diabetologia. 2012;55(6):1577–96.

    CAS  PubMed  Google Scholar 

  77. American Diabetes Association. Standards of medical care in diabetes: 2013. Diabetes Care. 2013;35(Suppl 1):S11–63.

    Google Scholar 

  78. Craddy P, Palin HJ, Johnson KI. Comparative effectiveness of dipeptidylpeptidase-4 inhibitors in type 2 diabetes: a systematic review and mixed treatment comparison. Diabetes Ther. 2014;5(1):1–41. doi:10.1007/s13300-014-0061-3.

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Deacon CF, Holst JJ. Dipeptidyl peptidase-4 inhibitors for the treatment of type 2 diabetes: comparison, efficacy and safety. Expert Opin Pharmacother. 2013;15:2047–58.

    Google Scholar 

  80. Molitch ME, DeFronzo RA, Franz MJ, et al. American Diabetes Association. Nephrop Diabetes. 2004;27(Suppl. 1):S79–83.

    Google Scholar 

  81. Alter ML, Ott IM, von Websky K, et al. DPP-4 inhibition on top of angiotensin receptor blockade offers a new therapeutic approach for diabetic nephropathy. Kidney Blood Press Res. 2012;36:119–30.

    CAS  PubMed  Google Scholar 

  82. Liu WJ, Xie SH, Liu YN, et al. Dipeptidyl peptidase IV inhibitor attenuates kidney injury in streptozotocin-induced diabetic rats. J Pharmacol Exp Ther. 2012;340:248–55.

    CAS  PubMed  Google Scholar 

  83. Cerosola G, Cottone S, Mule G. The progressive pathway of microalbuminuria: from early marker of renal damage to strong cardiovascular risk predictor. J Hypertens. 2010;28:2357–69.

    Google Scholar 

  84. Monami M, Ahren B, Dicembrini I, et al. Dipeptidyl peptidase-4 inhibitors and cardiovascular risk: a meta-analysis of randomized clinical trials. Diabetes Obes Metab. 2013;15:112–20.

    CAS  PubMed  Google Scholar 

  85. Agarwal S, Parashar A, Menon V. Meta-analysis of the cardiovascular outcomes with dipeptidyl peptidase 4 inhibitors: validation of the current FDA mandate [abstract no. 1144-125]. J Am Coll Cardiol. 2014;63(12 Suppl):A1335.

    Google Scholar 

  86. Scirica BM, Bhatt DL, Braunwald E, et al. Saxagliptin and cardiovascular outcomes in patients with type 2 diabetes mellitus. N Engl J Med. 2013;369:1317–26.

    CAS  PubMed  Google Scholar 

  87. Goossen K, Graber S. Longer term safety of dipeptidyl peptidase-4 inhibitors in patients with type 2 diabetes mellitus: systematic review and meta-analysis. Diabetes Obes Metab. 2012;14:1061–72.

    CAS  PubMed  Google Scholar 

  88. Scheen A. Gliptins (depeptidyl peptidase-4 inhibitors) and risk of acute pancreatitis. Expert Opin Drug Saf. 2013;12:545–57.

    CAS  PubMed  Google Scholar 

  89. Singh S, Chang H-Y, Richards TM, et al. Glucagonlike peptide 1-based therapies and risk of hospitalization for acute pancreatitis in type 2 diabetes mellitus: a population-based matched case-control study. JAMA Intern Med. 2013;173:534–9.

    CAS  PubMed  Google Scholar 

  90. Brodovicz KG, Kou TD, Alexander CM, et al. Impact of diabetes duration and chronic pancreatitis on the association between type 2 diabetes and pancreatic cancer risk. Diabetes Obes Metab. 2012;14:1123–8.

    CAS  PubMed  Google Scholar 

  91. Faillie JL, Azoulay L, Patenaude V, et al. Incretin based drugs and risk of pancreatitis in patients with type 2 diabetes: cohort study. BMJ. 2014;348:g2780. doi:10.1136/bmj.g2780.

    PubMed  PubMed Central  Google Scholar 

  92. Monami M, Dicembrini I, Mannucci E. Dipeptidyl peptidase-4 inhibitors and pancreatic risk: a meta-analysis of randomized clinical trials. Diabetes Obes Metab. 2014;16:48–56.

    CAS  PubMed  Google Scholar 

  93. Egan AG, Blind E, Dunder K, et al. Pancreatic safety of incretin-based drugs: FDA and EMA assessment. N Engl J Med. 2014;370:794–7.

    CAS  PubMed  Google Scholar 

  94. Monami M, Dicembrini I, Antenore A, et al. Dipeptidyl peptidase-4 inhibitors and bone fractures. Diabetes Care. 2011;34:2474–6.

    PubMed  PubMed Central  Google Scholar 

  95. Sanz C, Vazquez P, Blazquez C, et al. Signaling and biological effects of glucagon-like peptide 1 on the differentiation of mesenchymal stem cells from human bone marrow. Am J Physiol Endocrinol Matab. 2010;298:E634–43.

    CAS  Google Scholar 

  96. Baggio LL, Drucker DJ. Biology of incretins: GLP-1 and GIP. Gastroenterology. 2007;132:2131–57.

    CAS  PubMed  Google Scholar 

  97. Kanasaki K, Shi S, Kanasaki M, et al. Linagliptin-mediated DPP-4 inhibition ameliorates kidney fibrosis in streptozotocin-induced diabetic mice by inhibiting endothelial-to-mesenchymal transition in a therapeutic regimen. Diabetes. 2014;63:2120–31.

    CAS  PubMed  Google Scholar 

  98. Tanaka Y, Kume S, Araki S-I, et al. Renoprotective effect of linagliptin on free fatty acids-bound albumin-induced tubulointerstitial injury in mice [abstract no. A-2348]. In: 74th Scientific Session of the American Diabetes Association; 13–17 Jun 2014; San Francisco (CA).

  99. Nakaoka H, Nishida M, Nakagawa-Toyama Y, et al. Linagliptin improves the prognosis of ischaemic cardiomyopathy in a new murine model of diet-induced myocardial infarction [abstract no. A02361]. In: 74th Scientific Session of the American Diabetes Association; 13–17 Jun 2014; San Francisco (CA).

  100. Ring A, Port A, Graefe-Mody EU, et al. The DPP-4 inhibitor linagliptin does not prolong the QT interval at therapeutic and supratherapeutic doses. Br J Clin Pharmacol. 2011;72(1):39–50.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Disclosure

The preparation of this review was not supported by any external funding. Kate McKeage is a salaried employee of Adis/Springer. During the peer review process, the manufacturer of the agent under review was offered an opportunity to comment on this article. Changes resulting from comments received were made by the author on the basis of scientific and editorial merit.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kate McKeage.

Additional information

The manuscript was reviewed by: D. S. H. Bell, Southside Endocrinology, University of Alabama, Birmingham, AL, USA; G. Dimitriadis, 2nd Department of Internal Medicine, Research Institute and Diabetes Center, Athens University Medical School, ‘Attikon’ University Hospital, Athens, Greece; J. G. Eriksson, Department of General Practice and Primary Healthcare, University of Helsinki, Helsinki, Finland.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

McKeage, K. Linagliptin: An Update of Its Use in Patients with Type 2 Diabetes Mellitus. Drugs 74, 1927–1946 (2014). https://doi.org/10.1007/s40265-014-0308-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40265-014-0308-3

Keywords

Navigation