Skip to main content
Log in

Drug-Induced Ototoxicity: Diagnosis and Monitoring

  • Review Article
  • Published:
Drug Safety Aims and scope Submit manuscript

Abstract

Ototoxicity diagnosis and management has historically been approached using a variety of methods. However, in recent years a consensus on useful and practical approaches has been developed through clinical guidelines of the American Speech Language Hearing Association, the American Academy of Audiology, and multiple clinical trials published in peer-reviewed literature. Some of the guidelines and approaches are used to detect and monitor ototoxicity, while others are used to grade adverse events. Some of the audiologic measures are primary, while others are adjunct measures and may be tailored to the specific needs of the patient or clinical trial. For some types of monitoring, such as drug-induced tinnitus or dizziness, validated paper survey instruments can be both sensitive and easy for fragile patients. This review addresses the characteristics of some of the most common clinical ototoxins and the most common methods for detecting and monitoring ototoxicity in clinical practice and clinical trials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Schacht J, Talaska AE, Rybak LP. Cisplatin and aminoglycoside antibiotics: hearing loss and its prevention. Anat Rec. 2012;295(11):1837–50.

    Article  CAS  Google Scholar 

  2. Forge A, Schacht J. Aminoglycoside antibiotics. Audiol Neurootol. 2000;5(1):3–22.

    Article  CAS  PubMed  Google Scholar 

  3. Garinis AC, Cornell A, Allada G, Fennelly KP, Maggiore RJ, Konrad-Martin D. Ototoxicity monitoring through the eyes of the treating physician: perspectives from pulmonology and medical oncology. Int J Audiol. 2017. https://doi.org/10.1080/14992027.2017.1381769 (Epub 5 Oct 2017).

    Article  PubMed  PubMed Central  Google Scholar 

  4. Clark CH. Toxicity of aminoglycoside antibiotics. Mod Vet Pract. 1977;58(7):594–8.

    CAS  PubMed  Google Scholar 

  5. Xie J, Talaska AE, Schacht J. New developments in aminoglycoside therapy and ototoxicity. Hear Res. 2011;281(1–2):28–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Ahmed RM, Hannigan IP, MacDougall HG, Chan RC, Halmagyi GM. Gentamicin ototoxicity: a 23-year selected case series of 103 patients. Med J Aust. 2012;196(11):701–4.

    Article  PubMed  Google Scholar 

  7. Christensen EF, Reiffenstein JC, Madissoo H. Comparative ototoxicity of amikacin and gentamicin in cats. Antimicrob Agents Chemother. 1977;12(2):178–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Tan KH, Mulheran M, Knox AJ, Smyth AR. Aminoglycoside prescribing and surveillance in cystic fibrosis. Am J Respir Crit Care Med. 2003;167(6):819–23.

    Article  PubMed  Google Scholar 

  9. Kusunoki T, Cureoglu S, Schachern PA, Sampaio A, Fukushima H, Oktay MF, et al. Effects of aminoglycoside administration on cochlear elements in human temporal bones. Auris Nasus Larynx. 2004;31(4):383–8.

    Article  PubMed  Google Scholar 

  10. Hinojosa R, Nelson EG, Lerner SA, Redleaf MI, Schramm DR. Aminoglycoside ototoxicity: a human temporal bone study. Laryngoscope. 2001;111(10):1797–805.

    Article  CAS  PubMed  Google Scholar 

  11. Johnsson LG, Hawkins JE Jr, Kingsley TC, Black FO, Matz GJ. Aminoglycoside-induced cochlear pathology in man. Acta Otolaryngol Suppl (Stockh). 1981;383:1–19.

    CAS  Google Scholar 

  12. Fausti SA, Rappaport BZ, Schechter MA, Frey RH, Ward TT, Brummett RE. Detection of aminoglycoside ototoxicity by high-frequency auditory evaluation: selected case studies. Am J Otolaryngol. 1984;5(3):177–82.

    Article  CAS  PubMed  Google Scholar 

  13. Fausti SA, Henry JA, Schaffer HI, Olson DJ, Frey RH, McDonald WJ. High-frequency audiometric monitoring for early detection of aminoglycoside ototoxicity. J Infect Dis. 1992;165(6):1026–32.

    Article  CAS  PubMed  Google Scholar 

  14. Stebbins WC, Hawkins JE Jr, Johnson LG, Moody DB. Hearing thresholds with outer and inner hair cell loss. Am J Otolaryngol. 1979;1(1):15–27.

    Article  CAS  PubMed  Google Scholar 

  15. Melchionda V, Wyatt H, Capocci S, Garcia Medina R, Solamalai A, Katiri S, et al. Amikacin treatment for multidrug resistant tuberculosis: how much monitoring is required? Eur Respir J. 2013;42(4):1148–50.

    Article  CAS  PubMed  Google Scholar 

  16. Mulheran M, Degg C, Burr S, Morgan DW, Stableforth DE. Occurrence and risk of cochleotoxicity in cystic fibrosis patients receiving repeated high-dose aminoglycoside therapy. Antimicrob Agents Chemother. 2001;45(9):2502–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Hanberger H, Edlund C, Furebring M, Giske G, Melhus A, Nilsson LE, et al. Rational use of aminoglycosides—review and recommendations by the Swedish Reference Group for Antibiotics (SRGA). Scand J Infect Dis. 2013;45(3):161–75.

    Article  CAS  PubMed  Google Scholar 

  18. Edson RS, Terrell CL. The aminoglycosides. Mayo Clin Proc. 1999;74(5):519–28.

    Article  CAS  PubMed  Google Scholar 

  19. Gao J, Zheng P, Fu H. Prevalence of TB/HIV co-infection in countries except China: a systematic review and meta-analysis. PLoS One. 2013;8(5):e64915.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Metcalfe JZ, Porco TC, Westenhouse J, Damesyn M, Facer M, Hill J, et al. Tuberculosis and HIV co-infection, California, USA, 1993–2008. Emerg Infect Dis. 2013;19(3):400–6.

    PubMed  PubMed Central  Google Scholar 

  21. Varghese GM, Janardhanan J, Ralph R, Abraham OC. The twin epidemics of tuberculosis and HIV. Curr Infect Dis Rep. 2013;15(1):77–84.

    Article  PubMed  Google Scholar 

  22. Horgen L, Legrand E, Rastogi N. Postantibiotic effects of rifampin, amikacin, clarithromycin and ethambutol used alone or in various two-, three- and four-drug combinations against Mycobacterium avium. FEMS Immunol Med Microbiol. 1999;23(1):37–44.

    CAS  PubMed  Google Scholar 

  23. Kasperbauer SH, Daley CL. Diagnosis and treatment of infections due to Mycobacterium avium complex. Sem Respir Crit Care Med. 2008;29(5):569–76.

    Article  Google Scholar 

  24. Sim YS, Park HY, Jeon K, Suh GY, Kwon OJ, Koh WJ. Standardized combination antibiotic treatment of Mycobacterium avium complex lung disease. Yonsei Med J. 2010;51(6):888–94.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Yagi K, Ishii M, Namkoong H, Asami T, Iketani O, Asakura T, et al. The efficacy, safety, and feasibility of inhaled amikacin for the treatment of difficult-to-treat non-tuberculous mycobacterial lung diseases. BMC Infect Dis. 2017;17(1):558.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Sagwa EL, Souverein PC, Ribeiro I, Leufkens HG, Mantel-Teeuwisse AK. Differences in VigiBase(R) reporting of aminoglycoside and capreomycin-suspected ototoxicity during tuberculosis treatment. Pharmacoepidemiol Drug Saf. 2017;26(1):1–8.

    Article  CAS  PubMed  Google Scholar 

  27. Sagwa EL, Ruswa N, Mavhunga F, Rennie T, Leufkens HG, Mantel-Teeuwisse AK. Comparing amikacin and kanamycin-induced hearing loss in multidrug-resistant tuberculosis treatment under programmatic conditions in a Namibian retrospective cohort. BMC Pharmacol Toxicol. 2015;16:36.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Sturdy A, Goodman A, Jose RJ, Loyse A, O’Donoghue M, Kon OM, et al. Multidrug-resistant tuberculosis (MDR-TB) treatment in the UK: a study of injectable use and toxicity in practice. J Antimicrob Chemother. 2011;66(8):1815–20.

    Article  CAS  PubMed  Google Scholar 

  29. Konrad-Martin D, James KE, Gordon JS, Reavis KM, Phillips DS, Bratt GW, et al. Evaluation of audiometric threshold shift criteria for ototoxicity monitoring. J Am Acad Audiol. 2010;21(5):301–14 (quiz 57).

    Article  PubMed  PubMed Central  Google Scholar 

  30. da Silva AM, Latorre Mdo R, Cristofani LM, Odone Filho V. The prevalence of hearing loss in children and adolescents with cancer. Braz J Otorhinolaryngol. 2007;73(5):608–14.

    Article  PubMed  Google Scholar 

  31. Knight KR, Chen L, Freyer D, Aplenc R, Bancroft M, Bliss B, et al. Group-wide, prospective study of ototoxicity assessment in children receiving cisplatin chemotherapy (ACCL05C1): a report from the children’s oncology group. J Clin Oncol. 2017;35(4):440–5.

    Article  PubMed  Google Scholar 

  32. Li H, Steyger PS. Synergistic ototoxicity due to noise exposure and aminoglycoside antibiotics. Noise Health. 2009;11(42):26–32.

    Article  CAS  PubMed  Google Scholar 

  33. Rybak LP, Brenner MJ. Aminoglycoside-induced oxidative stress: pathways and protection. In: Miller JM, Le Prell CG, Rybak LP, editors. Oxidative stress in applied basic research and clinical practice: free radicals in ENT pathology. New York: Humana Press; 2015. p. 195–216.

    Google Scholar 

  34. Jiang M, Karasawa T, Steyger PS. Aminoglycoside-induced cochleotoxicity: A review. Front Cell Neurosci. 2017;11:308.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Black FO, Pesznecker S, Stallings V. Permanent gentamicin vestibulotoxicity. Otol Neurotol. 2004;25(4):559–69.

    Article  PubMed  Google Scholar 

  36. Esterhai JL Jr, Bednar J, Kimmelman CP. Gentamicin-induced ototoxicity complicating treatment of chronic osteomyelitis. Clin Orthop Relat Res. 1986;209:185–8.

    Google Scholar 

  37. Kokong DD, Bakari A, Ahmad BM. Ototoxicity in Nigeria: why it persists. Ear Nose Throat J. 2014;93(7):256–64.

    PubMed  Google Scholar 

  38. Best EJ, Gazarian M, Cohn R, Wilkinson M, Palasanthiran P. Once-daily gentamicin in infants and children: a prospective cohort study evaluating safety and the role of therapeutic drug monitoring in minimizing toxicity. Pediatr Infect Dis J. 2011;30(10):827–32.

    Article  PubMed  Google Scholar 

  39. Colding H, Andersen EA, Prytz S, Wulffsberg H, Andersen GE. Auditory function after continuous infusion of gentamicin to high-risk newborns. Acta Paediatr Scand. 1989;78(6):840–3.

    Article  CAS  PubMed  Google Scholar 

  40. Echeverria P, Fina D, Norton S, Smith AL. Ototoxicity of gentamicin: clinical experience in a children’s hospital. Chemotherapy. 1978;24(4):267–71.

    Article  CAS  PubMed  Google Scholar 

  41. Moffat DA, Ramsden RT. Profound bilateral sensorineural hearing loss during gentamicin therapy. J Laryngol Otol. 1977;91(6):511–6.

    Article  CAS  PubMed  Google Scholar 

  42. Mulherin D, Fahy J, Grant W, Keogan M, Kavanagh B, FitzGerald M. Aminoglycoside induced ototoxicity in patients with cystic fibrosis. Ir J Med Sci. 1991;160(6):173–5.

    Article  CAS  PubMed  Google Scholar 

  43. Prins JM, Buller HR, Kuijper EJ, Tange RA, Speelman P. Once versus thrice daily gentamicin in patients with serious infections. Lancet. 1993;341(8841):335–9.

    Article  CAS  PubMed  Google Scholar 

  44. Tablan OC, Reyes MP, Rintelmann WF, Lerner AM. Renal and auditory toxicity of high-dose, prolonged therapy with gentamicin and tobramycin in pseudomonas endocarditis. J Infect Dis. 1984;149(2):257–63.

    Article  CAS  PubMed  Google Scholar 

  45. Frymark T, Leech H, Mullen R, Schooling T, Venediktov R, Wang B. Evidence-based systematic review: drug-induced hearing loss—gentamicin. American Speech-Language-Hearing Assocation (ASHA). Rockville, MD: National Center for Evidence-Based Practice in Communication Disorders; 2010. p. 1–20.

  46. Saleh P, Abbasalizadeh S, Rezaeian S, Naghavi-Behzad M, Piri R, Pourfeizi HH. Gentamicin-mediated ototoxicity and nephrotoxicity: a clinical trial study. Niger Med J. 2016;57(6):347–52.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Chen KS, Bach A, Shoup A, Winick NJ. Hearing loss and vestibular dysfunction among children with cancer after receiving aminoglycosides. Pediatr Blood Cancer. 2013;60(11):1772–7.

    Article  CAS  PubMed  Google Scholar 

  48. Lautermann J, McLaren J, Schacht J. Glutathione protection against gentamicin ototoxicity depends on nutritional status. Hear Res. 1995;86(1–2):15–24.

    Article  CAS  PubMed  Google Scholar 

  49. Usami S, Abe S, Shinkawa H, Kimberling WJ. Sensorineural hearing loss caused by mitochondrial DNA mutations: special reference to the A1555G mutation. J Commun Disord. 1998;31(5):423–34 (quiz 34–5).

    Article  CAS  PubMed  Google Scholar 

  50. Zhao H, Li R, Wang Q, Yan Q, Deng JH, Han D, et al. Maternally inherited aminoglycoside-induced and nonsyndromic deafness is associated with the novel C1494T mutation in the mitochondrial 12S rRNA gene in a large Chinese family. Am J Hum Genet. 2004;74(1):139–52.

    Article  CAS  PubMed  Google Scholar 

  51. Bindu LH, Reddy PP. Genetics of aminoglycoside-induced and prelingual non-syndromic mitochondrial hearing impairment: a review. Int J Audiol. 2008;47(11):702–7.

    Article  PubMed  Google Scholar 

  52. Arnold A, Cooke GS, Kon OM, Dedicoat M, Lipman M, Loyse A, et al. The adverse effects and choice of injectable agents in MDR-TB: amikacin or capreomycin. Antimicrob Agents Chemother. 2017;61(9):e02586-16.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Blaser J, Konig C. Once-daily dosing of aminoglycosides. Eur J Clin Microbiol Infect Dis. 1995;14(12):1029–38.

    Article  CAS  PubMed  Google Scholar 

  54. Axdorph U, Laurell G, Bjorkholm M. Monitoring of hearing during treatment of leukaemia with special reference to the use of amikacin. J Intern Med. 1993;233(5):401–7.

    Article  CAS  PubMed  Google Scholar 

  55. Duggal P, Sarkar M. Audiologic monitoring of multi-drug resistant tuberculosis patients on aminoglycoside treatment with long term follow-up. BMC Ear Nose Throat Disord. 2007;7:5.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  56. Ellender CM, Law DB, Thomson RM, Eather GW. Safety of IV amikacin in the treatment of pulmonary non-tuberculous mycobacterial disease. Respirology. 2016;21(2):357–62.

    Article  PubMed  Google Scholar 

  57. Martins LM, Camargos PA, Becker HM, Becker CG, Guimaraes RE. Hearing loss in cystic fibrosis. Int J Pediatr Otorhinolaryngol. 2010;74(5):469–73.

    Article  PubMed  Google Scholar 

  58. Dille MF, Konrad-Martin D, Gallun F, Helt WJ, Gordon JS, Reavis KM, et al. Tinnitus onset rates from chemotherapeutic agents and ototoxic antibiotics: results of a large prospective study. J Am Acad Audiol. 2010;21(6):409–17.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Black RE, Lau WK, Weinstein RJ, Young LS, Hewitt WL. Ototoxicity of amikacin. Antimicrob Agents Chemother. 1976;9(6):956–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Saxena AK, Panhotra BR, Naguib M. Sudden irreversible sensory-neural hearing loss in a patient with diabetes receiving amikacin as an antibiotic-heparin lock. Pharmacotherapy. 2002;22(1):105–8.

    Article  PubMed  Google Scholar 

  61. Modongo C, Pasipanodya JG, Zetola NM, Williams SM, Sirugo G, Gumbo T. Amikacin concentrations predictive of ototoxicity in multidrug-resistant tuberculosis patients. Antimicrob Agents Chemother. 2015;59(10):6337–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Modongo C, Sobota RS, Kesenogile B, Ncube R, Sirugo G, Williams SM, et al. Successful MDR-TB treatment regimens including amikacin are associated with high rates of hearing loss. BMC Infect Dis. 2014;14:542.

    Article  PubMed  PubMed Central  Google Scholar 

  63. de Jager P, van Altena R. Hearing loss and nephrotoxicity in long-term aminoglycoside treatment in patients with tuberculosis. Int J Tuberc Lung Dis. 2002;6(7):622–7.

    PubMed  Google Scholar 

  64. Tokgoz B, Somdas MA, Ucar C, Kocyigit I, Unal A, Sipahioglu MH, et al. Correlation between hearing loss and peritonitis frequency and administration of ototoxic intraperitoneal antibiotics in patients with CAPD. Ren Fail. 2010;32(2):179–84.

    Article  CAS  PubMed  Google Scholar 

  65. Stankowicz MS, Ibrahim J, Brown DL. Once-daily aminoglycoside dosing: AN update on current literature. Am J Health Syst Pharm. 2015;72(16):1357–64.

    Article  CAS  PubMed  Google Scholar 

  66. Tulkens PM. Pharmacokinetic and toxicological evaluation of a once-daily regimen versus conventional schedules of netilmicin and amikacin. J Antimicrob Chemother. 1991;27(Suppl C):49–61.

    Article  PubMed  Google Scholar 

  67. Petersen L, Rogers C. Aminoglycoside-induced hearing deficits—a review of cochlear ototoxicity. S Afr Fam Pract. 2015;57(2):77–82.

    Google Scholar 

  68. Voogt GR, Schoeman HS. Ototoxicity of aminoglycoside drugs in tuberculosis treatment. S Afr J Commun Disord. 1996;43:3–6.

    CAS  PubMed  Google Scholar 

  69. Sharma V, Bhagat S, Verma B, Singh R, Singh S. Audiological evaluation of patients taking kanamycin for multidrug resistant tuberculosis. Iran J Otorhinolaryngol. 2016;28(86):203–8.

    PubMed  PubMed Central  Google Scholar 

  70. Waissbluth S, Peleva E, Daniel SJ. Platinum-induced ototoxicity: a review of prevailing ototoxicity criteria. Eur Arch Otorhinolaryngol. 2017;274(3):1187–96.

    Article  PubMed  Google Scholar 

  71. Anderson JM, Campbell K. Assessment of interventions to prevent drug-induced hearing loss. In: Miller JM, Le Prell CG, Rybak LP, editors. Oxidative stress in applied basic research and clinical practice: free radicals in ENT pathology. New York: Humana Press; 2015. p. 243–69.

    Google Scholar 

  72. Campbell KCM, Fox DJ. Cisplatin-induced hearing loss. In: Le Prell CG, Lobarinas E, Fay RR, Popper AN, editors. Translational research in audiology and the hearing sciences, Springer handbook of auditory research. New York: Springer; 2016. p. 141–64.

    Google Scholar 

  73. Abbas L, Rivolta MN. Aminoglycoside ototoxicity and hair cell ablation in the adult gerbil: a simple model to study hair cell loss and regeneration. Hear Res. 2015;325:12–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Nadol JB Jr, Young YS, Glynn RJ. Survival of spiral ganglion cells in profound sensorineural hearing loss: implications for cochlear implantation. Ann Otol Rhinol Laryngol. 1989;98(6):411–6.

    Article  PubMed  Google Scholar 

  75. Hinojosa R, Lerner SA. Cochlear neural degeneration without hair cell loss in two patients with aminoglycoside ototoxicity. J Infect Dis. 1987;156(3):449–55.

    Article  CAS  PubMed  Google Scholar 

  76. Matz GJ, Wallace TH, Ward PH. The ototoxicity of kanamycin. A comparative histopathological study. Laryngoscope. 1965;75(11):1690–8.

    Article  CAS  PubMed  Google Scholar 

  77. Frost JO, Hawkins JE Jr, Daly JF. Kanamycin. II. Ototoxicity. Am Rev Respir Dis. 1960;82:23–30.

    CAS  PubMed  Google Scholar 

  78. Piel IJ, Perlia CP. Phase II study of cis-dichlorodiammineplatinum(II) (NSC-119875) in combination with cyclophosphamide (NSC-26271) in the treatment of human malignancies. Cancer Chemother Rep. 1975;59(5):995–9.

    CAS  PubMed  Google Scholar 

  79. Moroso MJ, Blair RL. A review of cis-platinum ototoxicity. J Otolaryngol. 1983;12(6):365–9.

    CAS  PubMed  Google Scholar 

  80. Boheim K, Bichler E. Cisplatin-induced ototoxicity: audiometric findings and experimental cochlear pathology. Arch Otorhinolaryngol. 1985;242(1):1–6.

    Article  CAS  PubMed  Google Scholar 

  81. Comis SD, Rhys-Evans PH, Osborne MP, Pickles JO, Jeffries DJ, Pearse HA. Early morphological and chemical changes induced by cisplatin in the guinea pig organ of Corti. J Laryngol Otol. 1986;100(12):1375–83.

    Article  CAS  PubMed  Google Scholar 

  82. Schaefer SD, Post JD, Close LG, Wright CG. Ototoxicity of low- and moderate-dose cisplatin. Cancer. 1985;56(8):1934–9.

    Article  CAS  PubMed  Google Scholar 

  83. Laurell G, Pierre PV. Hearing loss after cisplatin: oxidative stress pathways and potential for protection. In: Miller JM, Le Prell CG, Rybak LP, editors. Oxidative stress in applied basic research and clinical practice: free radicals in ENT pathology. New York: Humana Press; 2015. p. 217–41.

    Google Scholar 

  84. Clemens E, de Vries AC, Pluijm SF, Am Zehnhoff-Dinnesen A, Tissing WJ, Loonen JJ, et al. Determinants of ototoxicity in 451 platinum-treated Dutch survivors of childhood cancer: a DCOG late-effects study. Eur J Cancer. 2016;69:77–85.

    Article  CAS  PubMed  Google Scholar 

  85. Brooks B, Knight K. Ototoxicity monitoring in children treated with platinum chemotherapy. Int J Audiol. 2017. https://doi.org/10.1080/14992027.2017.1355570 (Epub 24 Jul 2017).

    Article  PubMed  Google Scholar 

  86. Clemens E, de Vries AC, Am Zehnhoff-Dinnesen A, Tissing WJ, Loonen JJ, Pluijm SF, et al. Hearing loss after platinum treatment is irreversible in noncranial irradiated childhood cancer survivors. Pediatr Hematol Oncol. 2017;34(2):120–9.

    Article  CAS  PubMed  Google Scholar 

  87. DeBacker JR, Harrison RT, Bielefeld EC. Long-term synergistic interaction of cisplatin- and noise-induced hearing losses. Ear Hear. 2017;38(3):282–91.

    Article  PubMed  Google Scholar 

  88. Gratton MA, Salvi RJ, Kamen BA, Saunders SS. Interaction of cisplatin and noise on the peripheral auditory system. Hear Res. 1990;50(1–2):211–23.

    Article  CAS  PubMed  Google Scholar 

  89. Ohtani I, Okamura H, Kobari M, Yamanobe S, Hoshino T, Yamaguchi M, et al. Potentiation of inner ear damage following electron beam irradiation with CDDP administration. Fukushima J Med Sci. 1990;36(1):1–10.

    CAS  PubMed  Google Scholar 

  90. Geurtsen ML, Kors WA, Moll AC, Smits C. Long-term audiologic follow-up of carboplatin-treated children with retinoblastoma. Ophthalmic Genet. 2017;38(1):74–8.

    Article  CAS  PubMed  Google Scholar 

  91. Batra A, Thakar A, Bakhshi S. Ototoxicity in retinoblastoma survivors treated with carboplatin based chemotherapy: a cross-sectional study of 116 patients. Pediatr Blood Cancer. 2015;62(11):2060.

    Article  PubMed  Google Scholar 

  92. Landier W, Knight K, Wong FL, Lee J, Thomas O, Kim H, et al. Ototoxicity in children with high-risk neuroblastoma: prevalence, risk factors, and concordance of grading scales–a report from the Children’s Oncology Group. J Clin Oncol. 2014;32(6):527–34.

    Article  PubMed  PubMed Central  Google Scholar 

  93. Frisina RD, Wheeler HE, Fossa SD, Kerns SL, Fung C, Sesso HD, et al. Comprehensive audiometric analysis of hearing impairment and tinnitus after cisplatin-based chemotherapy in survivors of adult-onset cancer. J Clin Oncol. 2016;34(23):2712–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Niemensivu R, Saarilahti K, Ylikoski J, Aarnisalo A, Makitie AA. Hearing and tinnitus in head and neck cancer patients after chemoradiotherapy. Eur Arch Otorhinolaryngol. 2016;273(9):2509–14.

    Article  PubMed  Google Scholar 

  95. van As JW, van den Berg H, van Dalen EC. Platinum-induced hearing loss after treatment for childhood cancer. Cochrane Database Syst Rev. 2016;8:Cd010181.

    Google Scholar 

  96. Fausti SA, Frey RH, Henry JA, Olson DJ, Schaffer HI. High-frequency testing techniques and instrumentation for early detection of ototoxicity. J Rehabil Res Dev. 1993;30(3):333–41.

    CAS  PubMed  Google Scholar 

  97. Fausti SA, Henry JA, Schaffer HI, Olson DJ, Frey RH, Bagby GC Jr. High-frequency monitoring for early detection of cisplatin ototoxicity. Arch Otolaryngol Head Neck Surg. 1993;119(6):661–6.

    Article  CAS  PubMed  Google Scholar 

  98. Fausti SA, Larson VD, Noffsinger D, Wilson RH, Phillips DS, Fowler CG. High-frequency audiometric monitoring strategies for early detection of ototoxicity. Ear Hear. 1994;15(3):232–9.

    Article  CAS  PubMed  Google Scholar 

  99. Dalian D, Haiyan J, Yong F, Salvi R, Someya S, Tanokura M. Ototoxic effects of carboplatin in organotypic cultures in chinchillas and rats. J Otol. 2012;7(2):92–101.

    Article  PubMed  Google Scholar 

  100. Ding D, Allman BL, Salvi R. Review: ototoxic characteristics of platinum antitumor drugs. Anat Rec. 2012;295(11):1851–67.

    Article  CAS  Google Scholar 

  101. Taudy M, Syka J, Popelar J, Ulehlova L. Carboplatin and cisplatin ototoxicity in guinea pigs. Audiology. 1992;31(5):293–9.

    Article  CAS  PubMed  Google Scholar 

  102. Saito T, Saito H, Saito K, Wakui S, Manabe Y, Tsuda G. Ototoxicity of carboplatin in guinea pigs. Auris Nasus Larynx. 1989;16(1):13–21.

    Article  CAS  PubMed  Google Scholar 

  103. Sheth S, Mukherjea D, Rybak LP, Ramkumar V. Mechanisms of cisplatin-induced ototoxicity and otoprotection. Front Cell Neurosci. 2017;11:338–50.

    Article  PubMed  PubMed Central  Google Scholar 

  104. Moss PE, Hickman S, Harrison BR. Ototoxicity associated with vinblastine. Ann Pharmacother. 1999;33(4):423–5.

    Article  CAS  PubMed  Google Scholar 

  105. Schweitzer VG. Ototoxicity of chemotherapeutic agents. Otolaryngol Clin North Am. 1993;26(5):759–89.

    CAS  PubMed  Google Scholar 

  106. Kalcioglu MT, Kuku I, Kaya E, Oncel S, Aydogdu I. Bilateral hearing loss during vincristine therapy: a case report. J Chemother. 2003;15(3):290–2.

    Article  CAS  PubMed  Google Scholar 

  107. Aydogdu I, Ozturan O, Kuku I, Kaya E, Sevinc A, Yildiz R. Bilateral transient hearing loss associated with vincristine therapy: case report. J Chemother. 2000;12(6):530–2.

    Article  CAS  PubMed  Google Scholar 

  108. Singh Chauhan R, Saxena RK, Varshey S. The role of ultrahigh-frequency audiometry in the early detection of systemic drug-induced hearing loss. Ear Nose Throat J. 2011;90(5):218–22.

    PubMed  Google Scholar 

  109. Constantinescu RM, Georgescu M, Pascu A, Hristea A, Arama V, Baicus C, et al. Otoacoustic emissions analysers for monitoring aminoglycosides ototoxicity. Rom J Intern Med. 2009;47(3):273–8.

    PubMed  Google Scholar 

  110. Stavroulaki P, Apostolopoulos N, Dinopoulou D, Vossinakis I, Tsakanikos M, Douniadakis D. Otoacoustic emissions–an approach for monitoring aminoglycoside induced ototoxicity in children. Int J Pediatr Otorhinolaryngol. 1999;50(3):177–84.

    Article  CAS  PubMed  Google Scholar 

  111. Konrad-Martin D, Poling GL, Dreisbach LE, Reavis KM, McMillan GP, Lapsley Miller JA, et al. Serial monitoring of otoacoustic emissions in clinical trials. Otol Neurotol. 2016;37:e286–94.

    Article  PubMed  Google Scholar 

  112. Das-Purkayastha PK, Rutka JA. How should awareness of ototoxicity change the way medicine is practiced? Semin Hearing. 2011;32:236–47.

    Article  Google Scholar 

  113. American Academy of Audiology. Position statement and clinical practice guidelines: Ototoxicity monitoring. 2009. http://audiology-web.s3.amazonaws.com/migrated/OtoMonGuidelines.pdf_539974c40999c1.58842217.pdf. Accessed 1 Oct 2017.

  114. American Speech-Language-Hearing Association. Guidelines for the audiologic management of individuals receiving cochleotoxic drug therapy. ASHA. 1994;36(Suppl. 12):11–9.

    Google Scholar 

  115. Fausti SA, Helt WJ, Gordon JS, Reavis KM, Phillips DS, Konrad-Martin DL. Audiologic monitoring for ototoxicity and patient management. In: Campbell KCM, editor. Pharmacology and ototoxicity for audiologists. Clifton Park: Thomson Delmar Learning; 2007.

    Google Scholar 

  116. Rybak LP, Huang X, Campbell KC. Cancer and ototoxicity of chemotherapeutics. In: Campbell KCM, editor. Pharmacology and ototoxicity for audiologists. Clifton Park: Thomson Delmar Learning; 2007. p. 138–62.

    Google Scholar 

  117. Rybak LP, Ramkumar V. Ototoxicity. Kidney International. 2007;72(8):931–5.

    Article  CAS  PubMed  Google Scholar 

  118. Campbell KCM, Durrant J. Audiologic monitoring for ototoxicity. Otolaryngol Clin N Am. 1993;26(5):903–9.

    CAS  Google Scholar 

  119. Campbell KCM. Audiologic monitoring for ototoxicity. In: Roland P, Rutkas J, editors. ototoxicity. Hamilton: BC Decker; 2004. p. 153–60.

    Google Scholar 

  120. Jacobson GP, Newman CW. The development of the Dizziness Handicap Inventory. Arch Otolaryngol Head Neck Surg. 1990;116(4):424–7.

    Article  CAS  PubMed  Google Scholar 

  121. Newman CW, Weinstein BE, Jacobson GP, Hug GA. Test-retest reliability of the hearing handicap inventory for adults. Ear Hear. 1991;12(5):355–7.

    Article  CAS  PubMed  Google Scholar 

  122. Newman CW, Sandridge SA, Jacobson GP. Psychometric adaquacy of the tinnitus handicap inventory (THI) for evaluating treatment outcome. J Am Acad Audiol. 1998;9:153–60.

    CAS  PubMed  Google Scholar 

  123. Dille MF, Ellingson RM, McMillan GP, Konrad-Martin D. ABR obtained from time-efficient train stimuli for cisplatin ototoxicity monitoring. J Am Acad Audiol. 2013;24(9):769–81.

    Article  PubMed  PubMed Central  Google Scholar 

  124. Pouyatos B, Fechter LD. Industrial chemicals affecting the auditory system. In: Campbell KCM, editor. Pharmacology and ototoxicity for audiologists. Clifton Park: Thomson Delmar Learning; 2007. p. 197–215.

    Google Scholar 

  125. Campbell KC, Rybak LP, Meech RP, Hughes L. D-methionine provides excellent protection from cisplatin ototoxicity in the rat. Hear Res. 1996;102(1–2):90–8.

    Article  CAS  PubMed  Google Scholar 

  126. Campbell KC, Martin SM, Meech RP, Hargrove TL, Verhulst SJ, Fox DJ. D-methionine (D-met) significantly reduces kanamycin-induced ototoxicity in pigmented guinea pigs. Int J Audiol. 2016;55(5):273–8.

    Article  PubMed  Google Scholar 

  127. Aksoy S, Firat Y, Alpar R. The Tinnitus Handicap Inventory: a study of validity and reliability. Int Tinnitus J. 2007;13(2):94–8.

    PubMed  Google Scholar 

  128. Baguley DM, Humphriss RL, Hodgson CA. Convergent validity of the tinnitus handicap inventory and the tinnitus questionnaire. J Laryngol Otol. 2000;114(11):840–3.

    Article  CAS  PubMed  Google Scholar 

  129. Baguley D, Norman M. Tinnitus handicap inventory. J Am Acad Audiol. 2001;12(7):379–80.

    CAS  PubMed  Google Scholar 

  130. Baguley DM, Andersson G. Factor analysis of the Tinnitus Handicap Inventory. Am J Audiol. 2003;12(1):31–4.

    Article  CAS  PubMed  Google Scholar 

  131. Bankstahl US, Elkin EP, Gebauer A, Gortelmeyer R. Validation of the THI-12 questionnaire for international use in assessing tinnitus: a multi-centre, prospective, observational study. Int J Audiol. 2012;51(9):671–7.

    Article  PubMed  Google Scholar 

  132. Campbell K, Kutz JW Jr, Shoup A, Wen W, Lynch SY, He E, et al. Evaluation of the ototoxicity potential of once-daily, single-entity hydrocodone in patients with chronic pain: Results of two Phase-3 clinical studies. Pain physician. 2017;20(1):E183–93.

    PubMed  Google Scholar 

  133. Abtahi SH, Hashemi SM, Mahmoodi M, Nilforoush MH. Comparison of melatonin and sertraline therapies on tinnitus: a randomized clinical trial. Int J Prev Med. 2017;8:61.

    Article  PubMed  PubMed Central  Google Scholar 

  134. Polanski JF, Soares AD, de Mendonca Cruz OL. Antioxidant therapy in the elderly with tinnitus. Braz J Otorhinolaryngol. 2016;82(3):269–74.

    Article  PubMed  Google Scholar 

  135. Lee SK, Chung H, Chung JH, Yeo SG, Park MS, Byun JY. Effectiveness of transcutaneous electrical stimulation for chronic tinnitus. Acta Otolaryngol. 2014;134(2):159–67.

    Article  PubMed  Google Scholar 

  136. Meikle MB, Henry JA, Griest SE, Stewart BJ, Abrams HB, McArdle R, et al. The tinnitus functional index: development of a new clinical measure for chronic, intrusive tinnitus. Ear Hear. 2012;33(2):153–76.

    Article  PubMed  Google Scholar 

  137. Beukes EW, Baguley DM, Allen PM, Manchaiah V, Andersson G. Audiologist-guided internet-based cognitive behavior therapy for adults with tinnitus in the United Kingdom: a randomized controlled trial. Ear Hear. 2017. https://doi.org/10.1097/aud.0000000000000505 (Epub 1 Nov 2017).

    Article  Google Scholar 

  138. Henry JA, McMillan G, Dann S, Bennett K, Griest S, Theodoroff S, et al. Tinnitus management: Randomized controlled trial comparing extended-wear hearing aids, conventional hearing aids, and combination instruments. J Am Acad Audiol. 2017;28(6):546–61.

    Article  PubMed  Google Scholar 

  139. Theodoroff SM, McMillan GP, Zaugg TL, Cheslock M, Roberts C, Henry JA. Randomized controlled trial of a novel device for tinnitus sound therapy during sleep. Am J Audiol. 2017;26(4):1–12.

    Article  Google Scholar 

  140. Bauer CA, Berry JL, Brozoski TJ. The effect of tinnitus retraining therapy on chronic tinnitus: a controlled trial. Laryngoscope Investig Otolaryngol. 2017;2(4):166–77.

    Article  PubMed  PubMed Central  Google Scholar 

  141. Campbell KCM, Kelly E, Targovnik N, Hughes LH, Van Saders C, Gottlieb AB, et al. Audiologic monitoring for potential ototoxicity in a phase I clinical trial of a new glycopeptide antibiotic. J Am Acad Audiol. 2003;14:157–68.

    Article  PubMed  Google Scholar 

  142. Carhart R, Jerger J. Preferred method for clinical determination of pure-tone thresholds. J Speech Hear Res. 1959;24:330–45.

    Article  Google Scholar 

  143. Osterhammel D. High frequency audiometry. Clinical aspects. Scand Audiol. 1980;9(4):249–56.

    Article  CAS  PubMed  Google Scholar 

  144. Kujansuu E, Rahko T, Punnonen R, Karma P. Evaluation of the hearing loss associated with cis-platinum treatment by high-frequency audiometry. Gynecol Oncol. 1989;33(3):321–2.

    Article  CAS  PubMed  Google Scholar 

  145. Stelmachowicz PG, Beauchaine KA, Kalberer A, Jesteadt W. Normative thresholds in the 8- to 20-kHz range as a function of age. J Acoust Soc Am. 1989;86(4):1384–91.

    Article  CAS  PubMed  Google Scholar 

  146. Wiley TL, Cruickshanks KJ, Nondahl DM, Tweed TS, Klein R, Klein R, et al. Aging and high-frequency hearing sensitivity. J Speech Lang Hear Res. 1998;41(5):1061–72.

    Article  CAS  PubMed  Google Scholar 

  147. Northern JL, Ratkiewicz B. The quest for high-frequency normative data. Semin Hear. 1985;6(4):331–8.

    Article  Google Scholar 

  148. Fausti SA, Frey RH, Rappaport BZ, Schechter MA. High-frequency audiometry with an earphone transducer. Semin Hear. 1985;6:347–57.

    Article  Google Scholar 

  149. Dreschler WA, vd Hulst RJ, Tange RA, Urbanus NA. The role of high-frequency audiometry in early detection of ototoxicity. Audiology. 1985;24(6):387–95.

    Article  CAS  PubMed  Google Scholar 

  150. Feghali JG, Bernstein RS. A new approach to serial monitoring of ultra-high frequency hearing. Laryngoscope. 1991;101(8):825–9.

    Article  CAS  PubMed  Google Scholar 

  151. Frank T. High-frequency hearing thresholds in young adults using a commercially available audiometer. Ear Hear. 1990;11(6):450–4.

    Article  CAS  PubMed  Google Scholar 

  152. Frank T, Dreisbach LE. Repeatability of high-frequency thresholds. Ear Hear. 1991;12(4):294–5.

    Article  CAS  PubMed  Google Scholar 

  153. Frank T. High frequency (8 to 16 kHz) reference thresholds and intrasubject threshold variability relative to ototoxicity criteria using a sennheiser HAD 200 earphone. Ear Hear. 2001;22(2):161–8.

    Article  CAS  PubMed  Google Scholar 

  154. Plinkert PK, Krober S. Early detection of cisplatin-induced ototoxicity using evoked otoacoustic emissions [in German]. Laryngorhinootologie. 1991;70(9):457–62.

    Article  CAS  PubMed  Google Scholar 

  155. Beck A, Maurer J, Welkoborsky HJ, Mann W. Changes in transitory evoked otoacoustic emissions in chemotherapy with cisplatin and 5FU [in German]. HNO. 1992;40(4):123–7.

    CAS  PubMed  Google Scholar 

  156. Zorowka PG, Schmitt HJ, Gutjahr P. Evoked otoacoustic emissions and pure tone threshold audiometry in patients receiving cisplatinum therapy. Int J Pediatr Otorhinolaryngol. 1993;25(1–3):73–80.

    Article  CAS  PubMed  Google Scholar 

  157. Mulheran M, Degg C. Comparison of distortion product OAE generation between a patient group requiring frequent gentamicin therapy and control subjects. Br J Audiol. 1997;31(1):5–9.

    Article  CAS  PubMed  Google Scholar 

  158. Ress BD, Sridhar KS, Balkany TJ, Waxman GM, Stagner BB, Lonsbury-Martin BL. Effects of cis-platinum chemotherapy on otoacoustic emissions: the development of an objective screening protocol. Third place—Resident Clinical Science Award 1998. Otolaryngol Head Neck Surg. 1999;121(6):693–701.

    Article  CAS  PubMed  Google Scholar 

  159. Lonsbury-Martin BL, Martin GK. Evoked otoacoustic emissions as objective screeners for ototoxicity. Semin Hearing. 2001;22(4):377–91.

    Article  Google Scholar 

  160. Knight KR, Kraemer DF, Neuwelt EA. Ototoxicity in children receiving platinum chemotherapy: underestimating a commonly occurring toxicity that may influence academic and social development. J Clin Oncol. 2005;23(34):8588–96.

    Article  PubMed  Google Scholar 

  161. Knight KR, Kraemer DF, Winter C, Neuwelt EA. Early changes in auditory function as a result of platinum chemotherapy: use of extended high-frequency audiometry and evoked distortion product otoacoustic emissions. J Clin Oncol. 2007;25(10):1190–5.

    Article  CAS  PubMed  Google Scholar 

  162. Dreisbach L, Zettner E, Chang Liu M, Meuel Fernhoff C, MacPhee I, Boothroyd A. High-frequency distortion-product otoacoustic emission repeatability in a patient population. Ear Hear. 2017. https://doi.org/10.1097/aud.0000000000000465 (Epub 1 Jul 2017).

    Article  Google Scholar 

  163. Fausti SA, Henry JA, Helt WJ, Phillips DS, Frey RH, Noffsinger D, et al. An individualized, sensitive frequency range for early detection of ototoxicity. Ear Hear. 1999;20(6):497–505.

    Article  CAS  PubMed  Google Scholar 

  164. Brock PR, Bellman SC, Yeomans EC, Pinkerton CR, Pritchard J. Cisplatin ototoxicity in children: a practical grading system. Med Pediatr Oncol. 1991;19(4):295–300.

    Article  CAS  PubMed  Google Scholar 

  165. Brock P, Pritchard J, Bellman S, Pinkerton CR. Ototoxicity of high-dose cis-platinum in children. Med Pediatr Oncol. 1988;16(5):368–9.

    Article  CAS  PubMed  Google Scholar 

  166. Chang KW, Chinosornvatana N. Practical grading system for evaluating cisplatin ototoxicity in children. J Clin Oncol. 2010;28(10):1788–95.

    Article  CAS  PubMed  Google Scholar 

  167. Crundwell G, Gomersall P, Baguley DM. Ototoxicity (cochleotoxicity) classifications: a review. Int J Audiol. 2016;55(2):65–74.

    Article  PubMed  Google Scholar 

  168. Newman CW, Weinstein BE, Jacobson GP, Hug GA. The Hearing Handicap Inventory for adults: psychometric adequacy and audiometric correlates. Ear Hear. 1990;11(6):430–3.

    Article  CAS  PubMed  Google Scholar 

  169. Ventry IM, Weinstein BE. The hearing handicap inventory for the elderly: a new tool. Ear Hear. 1982;3(3):128–34.

    Article  CAS  PubMed  Google Scholar 

  170. Hall DA, Haider H, Szczepek AJ, Lau P, Rabau S, Jones-Diette J, et al. Systematic review of outcome domains and instruments used in clinical trials of tinnitus treatments in adults. Trials. 2016;17(1):270.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

No sources of funding were used to assist in the preparation of this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kathleen C. M. Campbell.

Ethics declarations

Conflicts of interest

Kathleen Campbell is a Distinguished Scholar and Professor at Southern Illinois University School of Medicine, Springfield, IL, USA. In that capacity, she has had grants from multiple funding sources, including the National Institutes of Health and the US Department of Defense, for her research on ototoxicity and noise-induced hearing loss. In addition, she serves as a grant reviewer for those agencies. She also has served as, and continues to serve as, an ototoxicity/audiology consultant for various Pharmaceutical Companies. She is a shareholder in AudiaCare and is the inventor on patents for D-methionine as an otoprotective agent. She receives royalties for her textbook Pharmacology and Ototoxicity for Audiologists, and occasionally receives honoraria for her lectures at professional associations. Colleen Le Prell is the Emily and Phil Schepps Distinguished Professor of Hearing Science at the University of Texas, Dallas, TX, USA, where she also serves as Head of the AuD program. She has had grants from multiple funding sources, including the National Institutes of Health and the US Department of Defense, for her research on noise-induced hearing loss. She has served as an ad hoc grant reviewer for those agencies, and is currently serving on the Safety and Occupational Health study section for the National Institute of Occupational Safety and Health. She has also supervised industry contracts, supported by pharmaceutical companies, including Sound Pharmaceuticals, Edison Pharmaceuticals, and Hearing Health Science, and is an inventor on patents owned by the University of Michigan and University of Florida. She receives royalties for her book Noise-Induced Hearing Loss: Scientific Advances and occasionally receives honoraria for her lectures at professional associations. Both authors have no other potential conflicts of interest that are directly relevant to the content of this article.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Campbell, K.C.M., Le Prell, C.G. Drug-Induced Ototoxicity: Diagnosis and Monitoring. Drug Saf 41, 451–464 (2018). https://doi.org/10.1007/s40264-017-0629-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40264-017-0629-8

Navigation