Skip to main content
Log in

Drug–Drug Interactions, Effectiveness, and Safety of Hormonal Contraceptives in Women Living with HIV

  • Review Article
  • Published:
Drug Safety Aims and scope Submit manuscript

Abstract

Family planning options, including hormonal contraceptives, are essential for improving reproductive health among the more than 17 million women living with HIV worldwide. For these women, prevention of unintended pregnancy decreases maternal and child mortality, as well as reduces the risk of perinatal HIV transmission. Similarly, treatment of HIV with antiretroviral therapy (ART) is essential for reducing morbidity and mortality among HIV-positive individuals, as well as preventing HIV transmission between sexual partners or from mother to child. Importantly, despite the benefits of hormonal contraceptives, barriers to effective family planning methods exist for HIV-positive women. Specifically, drug–drug interactions can occur between some antiretroviral medications and some hormonal contraceptives, which may influence both contraceptive efficacy and tolerability. In addition, safety concerns have been raised about the impact of hormonal contraceptives on HIV disease progression, tolerability, and the risk of female-to-male HIV transmission. This review article summarizes the potential for drug–drug interactions, tolerability, and contraceptive effectiveness when hormonal contraceptives are combined with ART. In addition, the evidence surrounding the influence of hormonal contraceptives on HIV transmission and HIV disease progression in women living with HIV are summarized.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Walensky RP, Paltiel AD, Losina E, Mercincavage LM, Schackman BR, Sax PE, et al. The survival benefits of AIDS treatment in the United States. J Infect Dis. 2006;194(1):11–9. doi:10.1086/505147.

    Article  PubMed  Google Scholar 

  2. Panel on Antiretroviral Guidelines for Adults and Adolescents. Guidelines for the use of antiretroviral agents in HIV-1-infected adults and adolescents. Department of Health and Human Services. http://aidsinfo.nih.gov/ContentFiles/AdultandAdolescentGL.pdf. Accessed 22 Jul 2016.

  3. World Health Organization. Guideline on when to start antiretroviral therapy and on pre-exposure prophylaxis for HIV. Geneva: World Health Organization; 2015.

    Google Scholar 

  4. Panel on Treatment of HIV-Infected Pregnant Women and Prevention of Perinatal Transmission. Recommendations for use of antiretroviral drugs in pregnant HIV-1-infected women for maternal health and interventions to reduce perinatal HIV transmission in the United States. http://aidsinfo.nih.gov/contentfiles/lvguidelines/PerinatalGL.pdf. Accessed 2 May 2016.

  5. World Health Organization. Global summary of the AIDS epidemic, December 2014. http://www.who.int/hiv/data/epi_core_july2015.png?ua=1. Accessed 14 Sep 2015.

  6. Darroch JE. Trends in contraceptive use. Contraception. 2013;87(3):259–63. doi:10.1016/j.contraception.2012.08.029.

    Article  PubMed  Google Scholar 

  7. Darroch JE, Singh S. Trends in contraceptive need and use in developing countries in 2003, 2008, and 2012: an analysis of national surveys. Lancet. 2013;381(9879):1756–62. doi:10.1016/S0140-6736(13)60597-8.

    Article  PubMed  Google Scholar 

  8. World Health Organization. Hormonal contraceptive methods for women at high risk of HIV and living with HIV: 2014 guidance statement. Geneva: World Health Organization; 2014.

    Google Scholar 

  9. Reynolds HW, Janowitz B, Homan R, Johnson L. The value of contraception to prevent perinatal HIV transmission. Sex Transm Dis. 2006;33(6):350–6. doi:10.1097/01.olq.0000194602.01058.e1.

    Article  PubMed  Google Scholar 

  10. Reynolds HW, Janowitz B, Wilcher R, Cates W. Contraception to prevent HIV-positive births: current contribution and potential cost savings in PEPFAR countries. Sex Transm Infect. 2008;84(Suppl 2):ii49–53. doi:10.1136/sti.2008.030049.

    Article  PubMed  Google Scholar 

  11. Phillips SJ, Polis CB, Curtis KM. The safety of hormonal contraceptives for women living with HIV and their sexual partners. Contraception. 2016;93(1):11–6. doi:10.1016/j.contraception.2015.10.002.

    Article  CAS  PubMed  Google Scholar 

  12. World Health Organization. Consolidated guidelines on the use of antiretroviral drugs for treating and preventing HIV infection: recommendations for a public health approach. 2nd ed. Geneva: World Health Organization; 2016.

    Google Scholar 

  13. Shrader SP, Ragucci KR. Contraception. In: DiPiro JT, Talbert RL, Yee GC, Matzke GR, Wells BG, Posey LM, editors. Pharmacotherapy: a pathophysiologic approach. 9th ed. New York: McGaw Hill Education; 2014. p. 1271–86.

    Google Scholar 

  14. Espey E, Ogburn T. Long-acting reversible contraceptives: intrauterine devices and the contraceptive implant. Obstet Gynecol. 2011;117(3):705–19. doi:10.1097/AOG.0b013e31820ce2f0.

    Article  PubMed  Google Scholar 

  15. American College of Obstetricians and Gynecologists Committee on. Gynecologic Practice; Long-Acting Reversible Contraception Working Group. ACOG Committee Opinion No. 450: increasing use of contraceptive implants and intrauterine devices to reduce unintended pregnancy. Obstet Gynecol. 2009;114:1434–8.

    Article  Google Scholar 

  16. Buhling KJ, Zite NB, Lotke P, Black K, INTRA Writing Group. Worldwide use of intrauterine contraception: a review. Contraception. 2014;89(3):162–73. doi:10.1016/j.contraception.2013.11.011.

    Article  PubMed  Google Scholar 

  17. World Health Organization. Medical eligibility criteria for contraceptive use. 5th ed. 2015. http://apps.who.int/iris/bitstream/10665/181468/1/9789241549158_eng.pdf?ua=1. Accessed 15 Feb 2016.

  18. Skyla [package insert]. Whippany: Bayer HealthCare Pharmaceuticals Inc.; 2016.

  19. Wu JP, Pickle S. Extended use of the intrauterine device: a literature review and recommendations for clinical practice. Contraception. 2014;89(6):495–503. doi:10.1016/j.contraception.2014.02.011.

    Article  PubMed  Google Scholar 

  20. Tittle V, Bull L, Boffito M, Nwokolo N. Pharmacokinetic and pharmacodynamic drug interactions between antiretrovirals and oral contraceptives. Clin Pharmacokinet. 2015;54(1):23–34. doi:10.1007/s40262-014-0204-8.

    Article  CAS  PubMed  Google Scholar 

  21. Desogen® [package insert]. Whitehouse Station: Merck & Co., Inc.; 2014.

  22. Levonorgestrel and ethinyl estradiol tablets [package insert]. Morgantown: Mylan Pharmaceuticals Inc.; 2013.

  23. Estrostep FE [package insert]. Fajardo: Warner Chilcott Company, Inc.; 2009.

  24. Back DJ, Houlgrave R, Tjia JF, Ward S, Orme ML. Effect of the progestogens, gestodene, 3-keto desogestrel, levonorgestrel, norethisterone and norgestimate on the oxidation of ethinyloestradiol and other substrates by human liver microsomes. J Steroid Biochem Mol Biol. 1991;38(2):219–25.

    Article  CAS  PubMed  Google Scholar 

  25. Balogh A, Gessinger S, Svarovsky U, Hippius M, Mellinger U, Klinger G, et al. Can oral contraceptive steroids influence the elimination of nifedipine and its primary pryidine metabolite in humans? Eur J Clin Pharmacol. 1998;54(9–10):729–34.

    Article  CAS  PubMed  Google Scholar 

  26. Martin P, Riley R, Back DJ, Owen A. Comparison of the induction profile for drug disposition proteins by typical nuclear receptor activators in human hepatic and intestinal cells. Br J Pharmacol. 2008;153(4):805–19. doi:10.1038/sj.bjp.0707601.

    Article  CAS  PubMed  Google Scholar 

  27. Palovaara S, Pelkonen O, Uusitalo J, Lundgren S, Laine K. Inhibition of cytochrome P450 2B6 activity by hormone replacement therapy and oral contraceptive as measured by bupropion hydroxylation. Clin Pharmacol Ther. 2003;74(4):326–33. doi:10.1016/S0009-9236(03)00202-9.

    Article  CAS  PubMed  Google Scholar 

  28. Polis CB, Bradley SE, Bankole A, Onda T, Croft T, Singh S. Typical-use contraceptive failure rates in 43 countries with Demographic and Health Survey data: summary of a detailed report. Contraception. 2016;94(1):11–7. doi:10.1016/j.contraception.2016.03.011.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Patel RC, Onono M, Gandhi M, Blat C, Hagey J, Shade SB, et al. Pregnancy rates in HIV-positive women using contraceptives and efavirenz-based or nevirapine-based antiretroviral therapy in Kenya: a retrospective cohort study. Lancet HIV. 2015;2(11):e474–82. doi:10.1016/S2352-3018(15)00184-8.

    Article  PubMed  Google Scholar 

  30. Pyra M, Heffron R, Mugo NR, Nanda K, Thomas KK, Celum C, et al. Effectiveness of hormonal contraception in HIV-infected women using antiretroviral therapy. AIDS. 2015;29(17):2353–9. doi:10.1097/QAD.0000000000000827.

    Article  CAS  PubMed  Google Scholar 

  31. Speroff L, Darney PD. A clinical guide for contraception. Baltimore: Williams & Wilkins; 2011.

    Google Scholar 

  32. Hatcher RA, Trussell J, Nelson AL, Cates W. Contraceptive technology. New York: Ardent Media, Incorporated; 2011.

    Google Scholar 

  33. American College of Gynecologists Committee on Gynecologic Practice. ACOG committee opinion. No. 337: noncontraceptive uses of the levonorgestrel intrauterine system. Obstet Gynecol. 2006;107(6):1479–82.

    Article  Google Scholar 

  34. Browne H, Manipalviratn S, Armstrong A. Using an intrauterine device in immunocompromised women. Obstet Gynecol. 2008;112(3):667–9. doi:10.1097/AOG.0b013e318183464e.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Farley TM, Rosenberg MJ, Rowe PJ, Chen JH, Meirik O. Intrauterine devices and pelvic inflammatory disease: an international perspective. Lancet. 1992;339(8796):785–8.

    Article  CAS  PubMed  Google Scholar 

  36. Centers for Disease Control and Prevention (CDC). US Medical Eligibility Criteria for Contraceptive Use, 2010: adapted from the World Health Organization Medical Eligibility Criteria for Contraceptive Use. 4th ed. MMWR Recomm Rep. 2010;59(RR-4):1–86.

    Google Scholar 

  37. Aweeka FT, Rosenkranz SL, Segal Y, Coombs RW, Bardeguez A, Thevanayagam L, et al. The impact of sex and contraceptive therapy on the plasma and intracellular pharmacokinetics of zidovudine. AIDS. 2006;20(14):1833–41. doi:10.1097/01.aids.0000244202.18629.36.

    Article  CAS  PubMed  Google Scholar 

  38. Todd CS, Deese J, Wang M, Hubacher D, Steiner MJ, Otunga S, et al. Sino-implant (II)(R) continuation and effect of concomitant tenofovir disoproxil fumarate-emtricitabine use on plasma levonorgestrel concentrations among women in Bondo, Kenya. Contraception. 2015;91(3):248–52. doi:10.1016/j.contraception.2014.10.008.

    Article  CAS  PubMed  Google Scholar 

  39. Kearney BP, Mathias A. Lack of effect of tenofovir disoproxil fumarate on pharmacokinetics of hormonal contraceptives. Pharmacotherapy. 2009;29(8):924–9. doi:10.1592/phco.29.8.924.

    Article  CAS  PubMed  Google Scholar 

  40. Selzentry® [package insert]. New York: Pfizer, Inc.; 2010.

  41. Anderson MS, Hanley WD, Moreau AR, Jin B, Bieberdorf FA, Kost JT, et al. Effect of raltegravir on estradiol and norgestimate plasma pharmacokinetics following oral contraceptive administration in healthy women. Br J Clin Pharmacol. 2011;71(4):616–20. doi:10.1111/j.1365-2125.2010.03885.x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Song IH, Borland J, Chen S, Wajima T, Peppercorn AF, Piscitelli SC. Dolutegravir has no effect on the pharmacokinetics of oral contraceptives with norgestimate and ethinyl estradiol. Ann Pharmacother. 2015;49(7):784–9. doi:10.1177/1060028015580637.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Food and Drug Administration (FDA). Stribild (elvitegravir/cobicistat/emtricitabine/tenofovir). 2011. http://www.accessdata.fda.gov/drugsatfda_docs/nda/2012/203100Orig1s000ClinPharmR.pdf. Accessed 18 Feb 2016.

  44. Stuart GS, Moses A, Corbett A, Phiri G, Kumwenda W, Mkandawire N, et al. Combined oral contraceptives and antiretroviral PK/PD in Malawian women: pharmacokinetics and pharmacodynamics of a combined oral contraceptive and a generic combined formulation antiretroviral in Malawi. J Acquir Immune Defic Syndr. 2011;58(2):e40–3. doi:10.1097/QAI.0b013e31822b8bf8.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Landolt NK, Phanuphak N, Ubolyam S, Pinyakorn S, Kerr S, Ahluwalia J, et al. Significant decrease of ethinylestradiol with nevirapine, and of etonogestrel with efavirenz in HIV-positive women. J Acquir Immune Defic Syndr. 2014;66(2):e50–2. doi:10.1097/QAI.0000000000000134.

    PubMed  Google Scholar 

  46. Landolt NK, Phanuphak N, Ubolyam S, Pinyakorn S, Kriengsinyot R, Ahluwalia J, et al. Efavirenz, in contrast to nevirapine, is associated with unfavorable progesterone and antiretroviral levels when coadministered with combined oral contraceptives. J Acquir Immune Defic Syndr. 2013;62(5):534–9. doi:10.1097/QAI.0b013e31827e8f98.

    Article  CAS  PubMed  Google Scholar 

  47. Sevinsky H, Eley T, Persson A, Garner D, Yones C, Nettles R, et al. The effect of efavirenz on the pharmacokinetics of an oral contraceptive containing ethinyl estradiol and norgestimate in healthy HIV-negative women. Antivir Ther. 2011;16(2):149–56. doi:10.3851/IMP1725.

    Article  CAS  PubMed  Google Scholar 

  48. Carten ML, Kiser JJ, Kwara A, Mawhinney S, Cu-Uvin S. Pharmacokinetic interactions between the hormonal emergency contraception, levonorgestrel (Plan B), and efavirenz. Infect Dis Obstet Gynecol. 2012;2012:137192. doi:10.1155/2012/137192.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Center for Drug Evaluation and Research. Guidance for Industry: bioavailability and bioequivalence studies for orally administered drug products—general considerations. Rockville: United States Food and Drug Administration; 2003.

    Google Scholar 

  50. Scholler-Gyure M, Kakuda TN, Woodfall B, Aharchi F, Peeters M, Vandermeulen K, et al. Effect of steady-state etravirine on the pharmacokinetics and pharmacodynamics of ethinylestradiol and norethindrone. Contraception. 2009;80(1):44–52. doi:10.1016/j.contraception.2009.01.009.

    Article  PubMed  Google Scholar 

  51. Crauwels HM, van Heeswijk RP, Buelens A, Stevens M, Hoetelmans RM. Lack of an effect of rilpivirine on the pharmacokinetics of ethinylestradiol and norethindrone in healthy volunteers. Int J Clin Pharmacol Ther. 2014;52(2):118–28. doi:10.5414/CP201943.

    Article  CAS  PubMed  Google Scholar 

  52. Ouellet D, Hsu A, Qian J, Locke CS, Eason CJ, Cavanaugh JH, et al. Effect of ritonavir on the pharmacokinetics of ethinyl oestradiol in healthy female volunteers. Br J Clin Pharmacol. 1998;46(2):111–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Vogler MA, Patterson K, Kamemoto L, Park JG, Watts H, Aweeka F, et al. Contraceptive efficacy of oral and transdermal hormones when co-administered with protease inhibitors in HIV-1-infected women: pharmacokinetic results of ACTG trial A5188. J Acquir Immune Defic Syndr. 2010;55(4):473–82. doi:10.1097/QAI.0b013e3181eb5ff5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Sekar VJ, Lefebvre E, Guzman SS, Felicione E, De Pauw M, Vangeneugden T, et al. Pharmacokinetic interaction between ethinyl estradiol, norethindrone and darunavir with low-dose ritonavir in healthy women. Antivir Ther. 2008;13(4):563–9.

    CAS  PubMed  Google Scholar 

  55. Kancheva Landolt N, Bunupuradah T, Kosalaraksa P, Ubolyam S, Thammajaruk N, Cremers S, et al. High variability of hormonal levels and no clinically relevant interaction between ethinyl estradiol, desogestrel and lopinavir/ritonavir in a small sample of HIV-positive adolescents. J Acquir Immune Defic Syndr. 2016;72(5):507–12. doi:10.1097/QAI.0000000000000997.

    CAS  PubMed  Google Scholar 

  56. Zhang J, Chung E, Yones C, Persson A, Mahnke L, Eley T, et al. The effect of atazanavir/ritonavir on the pharmacokinetics of an oral contraceptive containing ethinyl estradiol and norgestimate in healthy women. Antivir Ther. 2011;16(2):157–64. doi:10.3851/IMP1724.

    Article  CAS  PubMed  Google Scholar 

  57. Atrio J, Stanczyk FZ, Neely M, Cherala G, Kovacs A, Mishell DR Jr. Effect of protease inhibitors on steady-state pharmacokinetics of oral norethindrone contraception in HIV-infected women. J Acquir Immune Defic Syndr. 2014;65(1):72–7. doi:10.1097/QAI.0b013e3182a9b3f1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. DuBois BN, Atrio J, Stanczyk FZ, Cherala G. Increased exposure of norethindrone in HIV+ women treated with ritonavir-boosted atazanavir therapy. Contraception. 2015;91(1):71–5. doi:10.1016/j.contraception.2014.08.009.

    Article  CAS  PubMed  Google Scholar 

  59. Cohn SE, Park JG, Watts DH, Stek A, Hitti J, Clax PA, et al. Depo-medroxyprogesterone in women on antiretroviral therapy: effective contraception and lack of clinically significant interactions. Clin Pharmacol Ther. 2007;81(2):222–7. doi:10.1038/sj.clpt.6100040.

    Article  CAS  PubMed  Google Scholar 

  60. Luque AE, Cohn SE, Park JG, Cramer Y, Weinberg A, Livingston E, et al. Depot medroxyprogesterone acetate in combination with a twice-daily lopinavir-ritonavir-based regimen in HIV-infected women showed effective contraception and a lack of clinically significant interactions, with good safety and tolerability: results of the ACTG 5283 study. Antimicrob Agents Chemother. 2015;59(4):2094–101. doi:10.1128/AAC.04701-14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Nanda K, Amaral E, Hays M, Viscola MA, Mehta N, Bahamondes L. Pharmacokinetic interactions between depot medroxyprogesterone acetate and combination antiretroviral therapy. Fertil Steril. 2008;90(4):965–71. doi:10.1016/j.fertnstert.2007.07.1348.

    Article  CAS  PubMed  Google Scholar 

  62. Vieira CS, Bahamondes MV, de Souza RM, Brito MB, Rocha Prandini TR, Amaral E, et al. Effect of antiretroviral therapy including lopinavir/ritonavir or efavirenz on etonogestrel-releasing implant pharmacokinetics in HIV-positive women. J Acquir Immune Defic Syndr. 2014;66(4):378–85. doi:10.1097/QAI.0000000000000189.

    Article  CAS  PubMed  Google Scholar 

  63. Scarsi KK, Darin KM, Nakalema S, Back DJ, Byakika-Kibwika P, Else LJ, et al. Unintended pregnancies observed with combined use of the levonorgestrel contraceptive implant and efavirenz-based antiretroviral therapy: a three-arm pharmacokinetic evaluation over 48 weeks. Clin Infect Dis. 2016;62(6):675–82. doi:10.1093/cid/civ1001.

    Article  PubMed  Google Scholar 

  64. Heikinheimo O, Lehtovirta P, Aho I, Ristola M, Paavonen J. The levonorgestrel-releasing intrauterine system in human immunodeficiency virus-infected women: a 5-year follow-up study. Am J Obstet Gynecol. 2011;204(2):126 e1–4. doi:10.1016/j.ajog.2010.09.002.

    Article  PubMed  Google Scholar 

  65. Heikinheimo O, Lehtovirta P, Suni J, Paavonen J. The levonorgestrel-releasing intrauterine system (LNG-IUS) in HIV-infected women–effects on bleeding patterns, ovarian function and genital shedding of HIV. Hum Reprod. 2006;21(11):2857–61. doi:10.1093/humrep/del264.

    Article  CAS  PubMed  Google Scholar 

  66. Lehtovirta P, Paavonen J, Heikinheimo O. Experience with the levonorgestrel-releasing intrauterine system among HIV-infected women. Contraception. 2007;75(1):37–9. doi:10.1016/j.contraception.2006.09.006.

    Article  CAS  PubMed  Google Scholar 

  67. Mirena [package insert]. Whippany: Bayer HealthCare Pharmaceuticals Inc.; 2015.

  68. Stanczyk FZ, Hapgood JP, Winer S, Mishell DR Jr. Progestogens used in postmenopausal hormone therapy: differences in their pharmacological properties, intracellular actions, and clinical effects. Endocr Rev. 2013;34(2):171–208. doi:10.1210/er.2012-1008.

    Article  CAS  PubMed  Google Scholar 

  69. Hapgood JP, Ray RM, Govender Y, Avenant C, Tomasicchio M. Differential glucocorticoid receptor-mediated effects on immunomodulatory gene expression by progestin contraceptives: implications for HIV-1 pathogenesis. Am J Reprod Immunol. 2014;71(6):505–12. doi:10.1111/aji.12214.

    Article  CAS  PubMed  Google Scholar 

  70. Huijbregts RP, Michel KG, Hel Z. Effect of progestins on immunity: medroxyprogesterone but not norethisterone or levonorgestrel suppresses the function of T cells and pDCs. Contraception. 2014;90(2):123–9. doi:10.1016/j.contraception.2014.02.006.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Phillips SJ, Curtis KM, Polis CB. Effect of hormonal contraceptive methods on HIV disease progression: a systematic review. AIDS. 2013;27(5):787–94. doi:10.1097/QAD.0b013e32835bb672.

    Article  CAS  PubMed  Google Scholar 

  72. Stringer EM, Levy J, Sinkala M, Chi BH, Matongo I, Chintu N, et al. HIV disease progression by hormonal contraceptive method: secondary analysis of a randomized trial. AIDS. 2009;23(11):1377–82. doi:10.1097/QAD.0b013e32832cbca8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Heffron R, Mugo N, Ngure K, Celum C, Donnell D, Were E, et al. Hormonal contraceptive use and risk of HIV-1 disease progression. AIDS. 2013;27(2):261–7. doi:10.1097/QAD.0b013e32835ad473.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Heikinheimo O, Lahteenmaki P. Contraception and HIV infection in women. Hum Reprod Update. 2009;15(2):165–76. doi:10.1093/humupd/dmn049.

    Article  PubMed  Google Scholar 

  75. Polis CB, Gray RH, Bwanika JB, Kigozi G, Kiwanuka N, Nalugoda F, et al. Effect of hormonal contraceptive use before HIV seroconversion on viral load setpoint among women in Rakai, Uganda. J Acquir Immune Defic Syndr. 2011;56(2):125–30. doi:10.1097/QAI.0b013e3181fbcc11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Polis CB, Wawer MJ, Kiwanuka N, Laeyendecker O, Kagaayi J, Lutalo T, et al. Effect of hormonal contraceptive use on HIV progression in female HIV seroconverters in Rakai, Uganda. AIDS. 2010;24(12):1937–44. doi:10.1097/QAD.0b013e32833b3282.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Cohen MS, Chen YQ, McCauley M, Gamble T, Hosseinipour MC, Kumarasamy N, et al. Prevention of HIV-1 infection with early antiretroviral therapy. N Engl J Med. 2011;365(6):493–505. doi:10.1056/NEJMoa1105243.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Baeten JM, Kahle E, Lingappa JR, Coombs RW, Delany-Moretlwe S, Nakku-Joloba E, et al. Genital HIV-1 RNA predicts risk of heterosexual HIV-1 transmission. Sci Transl Med. 2011;3(77):77ra29. doi:10.1126/scitranslmed.3001888.

    Article  PubMed  PubMed Central  Google Scholar 

  79. Quinn TC, Wawer MJ, Sewankambo N, Serwadda D, Li C, Wabwire-Mangen F, et al. Viral load and heterosexual transmission of human immunodeficiency virus type 1. Rakai Project Study Group. N Engl J Med. 2000;342(13):921–9. doi:10.1056/NEJM200003303421303.

    Article  CAS  PubMed  Google Scholar 

  80. Morrison CS, Turner AN, Jones LB. Highly effective contraception and acquisition of HIV and other sexually transmitted infections. Best Pract Res Clin Obstet Gynaecol. 2009;23(2):263–84. doi:10.1016/j.bpobgyn.2008.11.004.

    Article  PubMed  Google Scholar 

  81. Mauck CK, Callahan MM, Baker J, Arbogast K, Veazey R, Stock R, et al. The effect of one injection of Depo-Provera on the human vaginal epithelium and cervical ectopy. Contraception. 1999;60(1):15–24.

    Article  CAS  PubMed  Google Scholar 

  82. Tjernlund A, Carias AM, Andersson S, Gustafsson-Sanchez S, Rohl M, Petersson P, et al. Progesterone-based intrauterine device use is associated with a thinner apical layer of the human ectocervical epithelium and a lower ZO-1 mRNA expression. Biol Reprod. 2015;92(3):68. doi:10.1095/biolreprod.114.122887.

    Article  PubMed  PubMed Central  Google Scholar 

  83. Polis CB, Phillips SJ, Curtis KM. Hormonal contraceptive use and female-to-male HIV transmission: a systematic review of the epidemiologic evidence. AIDS. 2013;27(4):493–505. doi:10.1097/QAD.0b013e32835ad539.

    Article  CAS  PubMed  Google Scholar 

  84. Lutalo T, Musoke R, Kong X, Makumbi F, Serwadda D, Nalugoda F, et al. Effects of hormonal contraceptive use on HIV acquisition and transmission among HIV-discordant couples. AIDS. 2013;27(Suppl 1):S27–34. doi:10.1097/QAD.0000000000000045.

    Article  CAS  PubMed  Google Scholar 

  85. Heffron R, Donnell D, Rees H, Celum C, Mugo N, Were E, et al. Use of hormonal contraceptives and risk of HIV-1 transmission: a prospective cohort study. Lancet Infect Dis. 2012;12(1):19–26. doi:10.1016/S1473-3099(11)70247-X.

    Article  PubMed  Google Scholar 

  86. Clemetson DB, Moss GB, Willerford DM, Hensel M, Emonyi W, Holmes KK, et al. Detection of HIV DNA in cervical and vaginal secretions. Prevalence and correlates among women in Nairobi, Kenya. JAMA. 1993;269(22):2860–4.

    Article  CAS  PubMed  Google Scholar 

  87. Mostad SB, Overbaugh J, DeVange DM, Welch MJ, Chohan B, Mandaliya K, et al. Hormonal contraception, vitamin A deficiency, and other risk factors for shedding of HIV-1 infected cells from the cervix and vagina. Lancet. 1997;350(9082):922–7. doi:10.1016/S0140-6736(97)04240-2.

    Article  CAS  PubMed  Google Scholar 

  88. Lavreys L, Baeten JM, Kreiss JK, Richardson BA, Chohan BH, Hassan W, et al. Injectable contraceptive use and genital ulcer disease during the early phase of HIV-1 infection increase plasma virus load in women. J Infect Dis. 2004;189(2):303–11. doi:10.1086/380974.

    Article  PubMed  Google Scholar 

  89. Graham SM, Masese L, Gitau R, Jalalian-Lechak Z, Richardson BA, Peshu N, et al. Antiretroviral adherence and development of drug resistance are the strongest predictors of genital HIV-1 shedding among women initiating treatment. J Infect Dis. 2010;202(10):1538–42. doi:10.1086/656790.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Coleman JS, Mwachari C, Balkus J, Sanguli L, Muliro A, Agnew K, et al. Effect of the levonorgestrel intrauterine device on genital HIV-1 RNA shedding among HIV-1-infected women not taking antiretroviral therapy in Nairobi, Kenya. J Acquir Immune Defic Syndr. 2013;63(2):245–8. doi:10.1097/QAI.0b013e31828decf8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Richardson BA, Morrison CS, Sekadde-Kigondu C, Sinei SK, Overbaugh J, Panteleeff DD, et al. Effect of intrauterine device use on cervical shedding of HIV-1 DNA. AIDS. 1999;13(15):2091–7.

    Article  CAS  PubMed  Google Scholar 

  92. Day S, Graham SM, Masese LN, Richardson BA, Kiarie JN, Jaoko W, et al. A prospective cohort study of the effect of depot medroxyprogesterone acetate on detection of plasma and cervical HIV-1 in women initiating and continuing antiretroviral therapy. J Acquir Immune Defic Syndr. 2014;66(4):452–6. doi:10.1097/QAI.0000000000000187.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Low AJ, Konate I, Nagot N, Weiss HA, Kania D, Vickerman P, et al. Cervicovaginal HIV-1 shedding in women taking antiretroviral therapy in Burkina Faso: a longitudinal study. J Acquir Immune Defic Syndr. 2014;65(2):237–45. doi:10.1097/QAI.0000000000000049.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Centers for Disease Control and Prevention. (CDC). Update to CDC’s U.S. Medical Eligibility Criteria for Contraceptive Use, 2010: revised recommendations for the use of hormonal contraception among women at high risk for HIV infection or infected with HIV. MMWR Morb Mortal Wkly Rep. 2012;61(24):449–52.

    Google Scholar 

  95. Wang B, Sanchez RI, Franklin RB, Evans DC, Huskey SE. The involvement of CYP3A4 and CYP2C9 in the metabolism of 17 alpha-ethinylestradiol. Drug Metab Dispos. 2004;32(11):1209–12. doi:10.1124/dmd.104.000182.

    Article  CAS  PubMed  Google Scholar 

  96. Benowitz NL, Lessov-Schlaggar CN, Swan GE, Jacob P 3rd. Female sex and oral contraceptive use accelerate nicotine metabolism. Clin Pharmacol Ther. 2006;79(5):480–8. doi:10.1016/j.clpt.2006.01.008.

    Article  CAS  PubMed  Google Scholar 

  97. Zhang H, Cui D, Wang B, Han YH, Balimane P, Yang Z, et al. Pharmacokinetic drug interactions involving 17alpha-ethinylestradiol: a new look at an old drug. Clin Pharmacokinet. 2007;46(2):133–57.

    Article  CAS  PubMed  Google Scholar 

  98. Tseng A, Hills-Nieminen C. Drug interactions between antiretrovirals and hormonal contraceptives. Expert Opin Drug Metab Toxicol. 2013;9(5):559–72. doi:10.1517/17425255.2013.772579.

    Article  CAS  PubMed  Google Scholar 

  99. Natazia® [package insert]. Whippany: Bayer HealthCare Pharmaceuticals Inc.; 2015.

  100. Kobayashi K, Mimura N, Fujii H, Minami H, Sasaki Y, Shimada N, et al. Role of human cytochrome P450 3A4 in metabolism of medroxyprogesterone acetate. Clin Cancer Res. 2000;6(8):3297–303.

    CAS  PubMed  Google Scholar 

  101. Yamazaki H, Shimada T. Progesterone and testosterone hydroxylation by cytochromes P450 2C19, 2C9, and 3A4 in human liver microsomes. Arch Biochem Biophys. 1997;346(1):161–9. doi:10.1006/abbi.1997.0302.

    Article  CAS  PubMed  Google Scholar 

  102. Tsunoda SM, Harris RZ, Mroczkowski PJ, Benet LZ. Preliminary evaluation of progestins as inducers of cytochrome P450 3A4 activity in postmenopausal women. J Clin Pharmacol. 1998;38(12):1137–43.

    CAS  PubMed  Google Scholar 

  103. Loestrin FE [package insert]. Fajardo: Warner Chilcott Company, Inc.; 2009.

  104. Korhonen T, Turpeinen M, Tolonen A, Laine K, Pelkonen O. Identification of the human cytochrome P450 enzymes involved in the in vitro biotransformation of lynestrenol and norethindrone. J Steroid Biochem Mol Biol. 2008;110(1–2):56–66. doi:10.1016/j.jsbmb.2007.09.025.

    Article  CAS  PubMed  Google Scholar 

  105. Korhonen T, Tolonen A, Uusitalo J, Lundgren S, Jalonen J, Laine K. The role of CYP2C and CYP3A in the disposition of 3-keto-desogestrel after administration of desogestrel. Br J Clin Pharmacol. 2005;60(1):69–75. doi:10.1111/j.1365-2125.2005.02382.x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Gentile DM, Verhoeven CH, Shimada T, Back DJ. The role of CYP2C in the in vitro bioactivation of the contraceptive steroid desogestrel. J Pharmacol Exp Ther. 1998;287(3):975–82.

    CAS  PubMed  Google Scholar 

  107. Ortho Evra® [package insert]. Titusville: Janssen Pharmaceuticals Inc.; 2015.

  108. Yasmin [package insert]. Wayne: Bayer HealthCare Pharmaceuticals, Inc.; 2015.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kimberly K. Scarsi.

Ethics declarations

Funding

We acknowledge support from the following grants from the National Institutes of Health, Eunice Kennedy Shriver National Institute of Child Health and Human Development [Grant Numbers 1R01HD085887 (Kimberly Scarsi) and K12HD043441 (Catherine Chappell)]. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.

Conflict of interest

Kimberly Scarsi, Kristin Darin, Catherine Chappell, Stephanie Nitz, and Mohammed Lamorde have no conflicts of interest that are directly relevant to this content.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Scarsi, K.K., Darin, K.M., Chappell, C.A. et al. Drug–Drug Interactions, Effectiveness, and Safety of Hormonal Contraceptives in Women Living with HIV. Drug Saf 39, 1053–1072 (2016). https://doi.org/10.1007/s40264-016-0452-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40264-016-0452-7

Keywords

Navigation