Skip to main content
Log in

Comparative Performance of Two Drug Interaction Screening Programmes Analysing a Cross-Sectional Prescription Dataset of 84,625 Psychiatric Inpatients

Drug Safety Aims and scope Submit manuscript

Abstract

Background

Clinical decision support software (CDSS) solutions can automatically identify drug interactions and thereby aim to improve drug safety. However, data on the comparative performance of different CDSS to detect and appropriately classify interactions in real-life prescription datasets is limited.

Objective

The aim of this study was to compare the results from two different CDSS analysing the pharmacotherapy of a large population of psychiatric inpatients for drug interactions.

Methods

We performed mass analyses of cross-sectional patient-level prescriptions from 84,625 psychiatric inpatients using two CDSS – MediQ and ID PHARMA CHECK®. Interactions with the highest risk ratings and the most frequent ratings were reclassified according to the Zurich Interaction System (ZHIAS), a multidimensional classification that incorporates the OpeRational ClassificAtion of Drug Interactions (ORCA) and served as a reference standard.

Results

MediQ reported 6,133 unique interacting combinations responsible for 270,617 alerts affecting 63,454 patients. ID PHARMA CHECK® issued 5,400 interactions and 157,489 alerts in 48,302 patients. Only 2,154 unique interactions were identified by both programmes, but overlap increased with higher risk rating. MediQ reported high-risk interactions in 2.5 % of all patients, compared with 5 % according to ID PHARMA CHECK®. The positive predictive value for unique major alerts to be (provisionally) contraindicated according to ORCA was higher for MediQ (0.63) than for either of the two ID PHARMA CHECK® components (0.42 for hospINDEX and 0.30 for ID MACS). MediQ reported more interactions, and ID PHARMA CHECK® tended to classify interactions into a higher risk class, but overall both programmes identified a similar number of (provisionally) contraindicated interactions according to ORCA criteria. Both programmes identified arrhythmia as the most frequent specific risk associated with interactions in psychiatric patients.

Conclusions

CDSS can be used for mass-analysis of prescription data and thereby support quality management. However, in clinical practice CDSS impose an overwhelming alert burden on the prescriber, and prediction of clinical relevance remains a major challenge. Only a small subset of yet to be determined alerts appears suitable for automated display in clinical routine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

References

  1. Gurwitz J, Field T, Judge J, Rochon P, Harrold L, Cadoret C, et al. The incidence of adverse drug events in two large academic long-term care facilities. Am J Med. 2005;118(3):251–8.

    Article  PubMed  Google Scholar 

  2. Classen DC, Pestotnik SL, Evans RS, Lloyd JF, Burke JP. Adverse drug events in hospitalized patients: excess length of stay, extra costs, and attributable mortality. JAMA. 1997;277(4):301–6.

    Article  PubMed  CAS  Google Scholar 

  3. Ernst FR, Grizzle AJ. Drug-related morbidity and mortality: updating the cost-of-illness model. J Am Pharm Assoc (Wash). 2001;41(2):192–9.

    CAS  Google Scholar 

  4. Bates DW, Cullen DJ, Laird N, Petersen LA, Small SD, Servi D, et al. Incidence of adverse drug events and potential adverse drug events. Implications for prevention. ADE Prevention Study Group. JAMA. 1995;274(1):29–34.

    Article  PubMed  CAS  Google Scholar 

  5. Hansten PD. Drug interaction management. Pharm World Sci. 2003;25(3):94–7.

    Article  PubMed  Google Scholar 

  6. Kaushal R, Shojania KG, Bates DW. Effects of computerized physician order entry and clinical decision support systems on medication safety: a systematic review. Arch Intern Med. 2003;163(12):1409–16.

    Article  PubMed  Google Scholar 

  7. Garg AX, Adhikari NK, McDonald H, Rosas-Arellano MP, Devereaux PJ, Beyene J, et al. Effects of computerized clinical decision support systems on practitioner performance and patient outcomes: a systematic review. JAMA. 2005;293(10):1223–38.

    Article  PubMed  CAS  Google Scholar 

  8. Bergk V, Gasse C, Schnell R, Haefeli WE. Requirements for a successful implementation of drug interaction information systems in general practice: results of a questionnaire survey in Germany. Eur J Clin Pharmacol. 2004;60(8):595–602.

    Article  PubMed  Google Scholar 

  9. Indermitte J, Erba L, Beutler M, Bruppacher R, Haefeli WE, Hersberger KE. Management of potential drug interactions in community pharmacies: a questionnaire-based survey in Switzerland. Eur J Clin Pharmacol. 2007;63(3):297–305.

    Article  PubMed  Google Scholar 

  10. Hazlet TK, Lee TA, Hansten PD, Horn JR. Performance of community pharmacy drug interaction software. J Am Pharm Assoc (Wash). 2001;41(2):200–4.

    CAS  Google Scholar 

  11. Smith WD. Evaluation of drug interaction software to identify alerts for transplant medications. Ann Pharmacother. 2004;39(1):45–50.

    Article  PubMed  Google Scholar 

  12. Wang LM, Wong M, Lightwood JM, Cheng CM. Black box warning contraindicated comedications: concordance among three major drug interaction screening programs. Ann Pharmacother. 2010;44(1):28–34.

    Article  PubMed  CAS  Google Scholar 

  13. Fritz D, Ceschi A, Curkovic I, Huber M, Egbring M, Kullak-Ublick GA, et al. Comparative evaluation of three clinical decision support systems: prospective screening for medication errors in 100 medical inpatients. Eur J Clin Pharmacol. 2012;68(8):1209–19.

    Article  PubMed  Google Scholar 

  14. Glassman PA, Simon B, Belperio P, Lanto A. Improving recognition of drug interactions: benefits and barriers to using automated drug alerts. Med Care. 2002;40(12):1161–71.

    Article  PubMed  Google Scholar 

  15. Isaac T, Weissman JS, Davis RB, Massagli M, Cyrulik A, Sands DZ, et al. Overrides of medication alerts in ambulatory care. Arch Intern Med. 2009;169(3):305–11.

    Article  PubMed  Google Scholar 

  16. Bates DW. Ten commandments for effective clinical decision support: making the practice of evidence-based medicine a reality. J Am Med Inform Assoc. 2003;10(6):523–30.

    Article  PubMed  Google Scholar 

  17. van der Sijs H, Aarts J, Vulto A, Berg M. Overriding of drug safety alerts in computerized physician order entry. J Am Med Inform Assoc. 2006;13(2):138–47.

    Article  PubMed  Google Scholar 

  18. Fulda TR, Valuck RJ, Vander Zanden J, Parker S, Byrns PJ, The US Pharmacopeia Drug Utilization Review Advisory Panel. Disagreement among drug compendia on inclusion and ratings of drug–drug interactions. Curr Ther Res. 2000;61(8):540–8.

    Article  Google Scholar 

  19. Hansten PD, Horn JR, Hazlet TK. ORCA: OpeRational ClassificAtion of drug interactions. J Am Pharm Assoc (Wash). 2001;41(2):161–5.

    CAS  Google Scholar 

  20. Vitry AI. Comparative assessment of four drug interaction compendia. Br J Clin Pharmacol. 2007;63(6):709–14.

    Article  PubMed  CAS  Google Scholar 

  21. Malone DC, Abarca J, Hansten PD, Grizzle AJ, Armstrong EP, Van Bergen RC, et al. Identification of serious drug–drug interactions: results of the partnership to prevent drug–drug interactions. J Am Pharm Assoc. 2004;44(2):142–51.

    Article  Google Scholar 

  22. Frolich T, Zorina O, Fontana AO, Kullak-Ublick GA, Vollenweider A, Russmann S. Evaluation of medication safety in the discharge medication of 509 surgical inpatients using electronic prescription support software and an extended operational interaction classification. Eur J Clin Pharmacol. 2011;67(12):1273–82.

    Article  PubMed  Google Scholar 

  23. Guzek M, Zorina OI, Semmler A, Gonzenbach RR, Huber M, Kullak-Ublick GA, et al. Evaluation of drug interactions and dosing in 484 neurological inpatients using clinical decision support software and an extended operational interaction classification system (Zurich Interaction System). Pharmacoepidemiol Drug Saf. 2011;20(9):930–8.

    PubMed  Google Scholar 

  24. Haueis P, Greil W, Huber M, Grohmann R, Kullak-Ublick GA, Russmann S. Evaluation of drug interactions in a large sample of psychiatric inpatients: a data interface for mass analysis with clinical decision support software. Clin Pharmacol Ther. 2011;90(4):588–96.

    Article  PubMed  CAS  Google Scholar 

  25. Zorina OI, Haueis P, Semmler A, Marti I, Gonzenbach RR, Guzek M, et al. Comparative evaluation of the drug interaction screening programs MediQ and ID PHARMA CHECK in neurological inpatients. Pharmacoepidemiol Drug Saf. 2012;21(8):872–80.

    Article  PubMed  CAS  Google Scholar 

  26. Rothschild JM, Mann K, Keohane CA, Williams DH, Foskett C, Rosen SL, et al. Medication safety in a psychiatric hospital. Gen Hosp Psychiatry. 2007;29(2):156–62.

    Article  PubMed  Google Scholar 

  27. Mojtabai R, Olfson M. National trends in psychotropic medication polypharmacy in office-based psychiatry. Arch Gen Psychiatry. 2010;67(1):26–36.

    Article  PubMed  Google Scholar 

  28. Weih M, Bachmeier C, Degirmenci U, Sojer R, Kreil S, Thurauf N, et al. Assessment of possible drug–drug interactions in psychopharmacotherapy after hospital discharge using an interactive database. Fortschr Neurol Psychiatr. 2011;79(2):92–6.

    Article  PubMed  CAS  Google Scholar 

  29. Grohmann R, Engel RR, Ruther E, Hippius H. The AMSP drug safety program: methods and global results. Pharmacopsychiatry. 2004;37(Suppl. 1):S4–11.

    PubMed  Google Scholar 

  30. Engel RR, Grohmann R, Ruther E, Hippius H. Research methods in drug surveillance. Pharmacopsychiatry. 2004;37(Suppl. 1):S12–5.

    PubMed  Google Scholar 

  31. Hansten PD, Horn JR. Drug interactions: analysis and management. St Louis: Wolters Kluwer Health: Facts & Comparisons, 2010.

  32. Baxter K, Stockley IH. Stockley’s drug interactions: a source book of interactions, their mechanisms, clinical importance, and management. 9th ed. London and Chicago: Pharmaceutical Press; 2010.

    Google Scholar 

  33. Woosley RL. Drugs that prolong the QT interval and/or induce torsades de pointes. Available from URL: http://www.azcert.org. Accessed 10 Aug 2012.

  34. Jankel CA, Martin BC. Evaluation of six computerized drug interaction screening programs. Am J Hosp Pharm. 1992;49(6):1430–5.

    PubMed  CAS  Google Scholar 

  35. Barrons R. Evaluation of personal digital assistant software for drug interactions. Am J Health Syst Pharm. 2004;61(4):380–5.

    PubMed  Google Scholar 

  36. Abarca J, Colon LR, Wang VS, Malone DC, Murphy JE, Armstrong EP. Evaluation of the performance of drug–drug interaction screening software in community and hospital pharmacies. J Manag Care Pharm. 2006;12(5):383–9.

    PubMed  Google Scholar 

  37. Vonbach P, Dubied A, Krähenbühl S, Beer JH. Evaluation of frequently used drug interaction screening programs. Pharm World Sci. 2008;30(4):367–74.

    Article  PubMed  Google Scholar 

  38. Abarca J, Malone DC, Armstrong EP, Grizzle AJ, Hansten PD, Van Bergen RC, et al. Concordance of severity ratings provided in four drug interaction compendia. J Am Pharm Assoc. 2004;44(2):136–41.

    Article  Google Scholar 

  39. Vonbach P, Dubied A, Krahenbuhl S, Beer JH. Evaluation of frequently used drug interaction screening programs. Pharm World Sci. 2008;30(4):367–74.

    Article  PubMed  Google Scholar 

  40. Phansalkar S, Desai AA, Bell D, Yoshida E, Doole J, Czochanski M, et al. High-priority drug– drug interactions for use in electronic health records. J Am Med Inform Assoc. 2012;19(5):735–43.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Eveline Jaquenoud Sirot, MediQ, Aargau, Switzerland, and ID Berlin GmbH & Co. KGAA, Berlin, Germany/ID Suisse AG, St. Gallen, Switzerland, for their support of mass analyses for interactions using MediQ and ID PHARMA CHECK®. The current study was supported by unrestricted grants to Stefan Russmann from the Swiss Society of Drug Safety in Psychiatry (SGAMSP) and the Hartmann-Müller Foundation for Medical Research, Zurich, Switzerland. Stefan Russmann provided financial compensation to MediQ and ID Berlin for the use of their software and services. The manuscript was made available to MediQ and ID Berlin before submission, but neither MediQ nor ID PHARMA CHECK® had any influence on the study design, analysis or interpretation of the results. After completion of the presented study Stefan Russmann negotiated research support with ID Berlin for the conduct of future studies using ID PHARMA CHECK®, but the current study was not funded by ID Berlin. All authors declare that no conflicts of interest influenced the present study. Renate Grohmann is a member of the project management team of AMSP. The AMSP Drug Safety Programme is organized by non-profit associations in Germany, Austria and Switzerland. Almost all pharmaceutical companies involved in CNS research contribute financial support to the three associations.

Educational and Research Grants Since 1993

Austrian companies: Astra Zeneca Österreich GmbH, Boehringer Ingelheim Austria, Bristol Myers Squibb GmbH, CSC Pharmaceuticals GmbH, Eli Lilly GmbH, Germania Pharma GmbH, GlaxoSmithKline Pharma GmbH, Janssen-Cilag Pharma GmbH, Lundbeck GmbH, Novartis Pharma GmbH, Pfizer Med Inform, Wyeth Lederle Pharma GmbH.

German companies: Abbott GmbH & Co. KG, AstraZeneca GmbH, Aventis Pharma Deutschland GmbH GE-O/R/N, Bayer Vital GmbH & Co. KG, Boehringer Mannheim GmbH, Bristol-Myers-Squibb, Ciba Geigy GmbH, Desitin Arzneimittel GmbH, Duphar Pharma GmbH & Co. KG, Eisai GmbH, Esparma GmbH Arzneimittel, GlaxoSmithKline Pharma GmbH & Co. KG, Hoffmann-La Roche AG Medical Affairs, Janssen-Cilag GmbH, Janssen Research Foundation, Knoll Deutschland GmbH, Lilly Deutschland GmbH Niederlassung Bad Homburg, Lundbeck GmbH & Co. KG, Novartis Pharma GmbH, Nordmark Arzneimittel GmbH, Organon GmbH, Otsuka-Pharma Frankfurt, Pfizer GmbH, Pharmacia & Upjohn GmbH, Promonta Lundbeck Arzneimittel, Rhone-Poulenc Rohrer, Sanofi-Synthelabo GmbH, Sanofi-Aventis Deutschland, Schering AG, SmithKline Beecham Pharma GmbH, Solvay Arzneimittel GmbH, Synthelabo Arzneimittel GmbH, Dr. Wilmar Schwabe GmbH & Co., Thiemann Arzneimittel GmbH, Troponwerke GmbH & Co. KG, Upjohn GmbH, Wander Pharma GmbH, Wyeth-Pharma GmbH.

Swiss companies: AHP (Schweiz) AG, AstraZeneca AG, Bristol-Myers, Squibb AG, Desitin Pharma GmbH, Eli Lilly (Suisse) S.A., Essex Chemie AG, GlaxoSmithKline AG, Janssen-Cilag AG, Lundbeck (Suisse) AG, Mepha Pharma AG, Organon AG, Pfizer AG, Pharmacia, Sanofi-Aventis (Suisse) S.A., Sanofi-Synthélabo SA, Servier SA, SmithKlineBeecham AG, Solvay Pharma AG, Wyeth AHP (Suisse) AG, Wyeth Pharmaceuticals AG.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefan Russmann.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zorina, O.I., Haueis, P., Greil, W. et al. Comparative Performance of Two Drug Interaction Screening Programmes Analysing a Cross-Sectional Prescription Dataset of 84,625 Psychiatric Inpatients. Drug Saf 36, 247–258 (2013). https://doi.org/10.1007/s40264-013-0027-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40264-013-0027-9

Keywords

Navigation