Skip to main content
Log in

Piribedil for the Treatment of Motor and Non-motor Symptoms of Parkinson Disease

  • Review Article
  • Published:
CNS Drugs Aims and scope Submit manuscript

Abstract

Dopamine agonists are well-established symptomatic medications for treating early and advanced Parkinson disease (PD). Piribedil was one of the first agonists to be marketed (1969) and is widely used as an extended-release oral formulation in European, Latin-American, and Asian countries. Piribedil acts as a non-ergot partial dopamine D2/D3-selective agonist, blocks alpha2-adrenoreceptors and has minimal effects on serotoninergic, cholinergic, and histaminergic receptors. Animal models support the efficacy of piribedil to improve parkinsonian motor symptoms with a lower propensity than levodopa to induce dyskinesia. In PD patients, randomized double-blind studies show that piribedil (150–300 mg/day, three times daily) is superior to placebo in improving motor disability in early PD patients. Based on such evidence, piribedil was considered in the last Movement Disorder Society Evidence-Based Medicine review as “efficacious” and “clinically useful” for the symptomatic treatment of PD, either as monotherapy or in conjunction with levodopa, in non-fluctuating early PD patients. This effect appears comparable to what is known from other D2 agonists. However, randomized controlled trials are not available to assess the effect of piribedil in managing levodopa-induced motor complications. Pilot clinical studies suggest that piribedil may improve non-motor symptoms, such as apathy, but confirmatory trials are needed. The tolerability and safety profile of piribedil fits with that of the class of dopaminergic agonists. As for other non-ergot agonists, pneumo-pulmonary, retroperitoneal, and valvular fibrotic side effects are not a concern with piribedil. The original combination of piribedil D2 dopaminergic and alpha-2 adrenergic properties deserve further investigations to better understand its antiparkinsonian profile.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Pringsheim T, Jette N, Frolkis A, et al. The prevalence of Parkinson’s disease: a systematic review and meta-analysis. Mov Disord. 2014;29:1583–90.

    Article  PubMed  Google Scholar 

  2. Hughes AJ, Daniel SE, Kilford L, et al. Accuracy of clinical diagnosis of idiopathic Parkinson’s disease: a clinico-pathological study of 100 cases. J Neurol Neurosurg Psychiatry. 1992;55:181–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Lang AE, Lozano AM. Parkinson’s disease. First of two parts. N Engl J Med. 1998;339:1044–53.

    Article  CAS  PubMed  Google Scholar 

  4. Chaudhuri KR, Schapira AH. Non-motor symptoms of Parkinson’s disease: dopaminergic pathophysiology and treatment. Lancet Neurol. 2009;8:464–74.

    Article  CAS  PubMed  Google Scholar 

  5. Mahlknecht P, Seppi K, Poewe W. The concept of prodromal Parkinson’s disease. J Parkinsons Dis. 2015;5:681–97.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Birkmayer W, Hornykiewicz O. The effect of l-3,4-dihydroxyphenylalanine (=DOPA) on akinesia in parkinsonism. Parkinsonism Relat Disord. 1998;4:59–60.

    Article  CAS  PubMed  Google Scholar 

  7. Fabbrini G, Brotchie JM, Grandas F, et al. Levodopa-induced dyskinesias. Mov Disord. 2007;22:1379–89 (quiz 523).

    Article  PubMed  Google Scholar 

  8. Nutt JG. Motor fluctuations and dyskinesia in Parkinson’s disease. Parkinsonism Relat Disord. 2001;8:101–8.

    Article  CAS  PubMed  Google Scholar 

  9. Perez-Lloret S, Rascol O. Dopamine receptor agonists for the treatment of early or advanced Parkinson’s disease. CNS Drugs. 2010;24:941–68.

    Article  CAS  PubMed  Google Scholar 

  10. Antonini A, Poewe W. Fibrotic heart-valve reactions to dopamine-agonist treatment in Parkinson’s disease. Lancet Neurol. 2007;6:826–9.

    Article  CAS  PubMed  Google Scholar 

  11. DA Jenner P. agonists: non-ergot derivatives: piribedil: management of Parkinson’s disease. Mov Disord. 2002;17(Suppl 4):S90–2.

    Google Scholar 

  12. Jenner P. Parkinson’s disease: pathological mechanisms and actions of piribedil. J Neurol. 1992;239(Suppl 1):S2–8.

    PubMed  Google Scholar 

  13. Millan MJ, Maiofiss L, Cussac D, et al. Differential actions of antiparkinson agents at multiple classes of monoaminergic receptor. I. A multivariate analysis of the binding profiles of 14 drugs at 21 native and cloned human receptor subtypes. J Pharmacol Exp Ther. 2002;303:791–804.

    Article  CAS  PubMed  Google Scholar 

  14. Servier Laboratories. Trivastal 50 mg LP Summary of Product Characteristics. http://www.servier.com/sites/default/files/SPC_TRIVASTAL_50mg.pdf. Accessed 22 Sept 2015.

  15. Dourish CT. Piribedil: behavioural, neurochemical and clinical profile of a dopamine agonist. Prog Neuropsychopharmacol Biol Psychiatry. 1983;7:3–27.

    Article  CAS  PubMed  Google Scholar 

  16. Millan MJ. From the cell to the clinic: a comparative review of the partial D(2)/D(3)receptor agonist and alpha2-adrenoceptor antagonist, piribedil, in the treatment of Parkinson’s disease. Pharmacol Ther. 2010;128:229–73.

    Article  CAS  PubMed  Google Scholar 

  17. Robertson HA, Peterson MR, Worth GG. Synergistic and persistent interaction between the D2 agonist, bromocriptine, and the D1 selective agonist, CY 208-243. Brain Res. 1992;593:332–4.

    Article  CAS  PubMed  Google Scholar 

  18. Millan MJ, Cussac D, Milligan G, et al. Antiparkinsonian agent piribedil displays antagonist properties at native, rat, and cloned, human alpha(2)-adrenoceptors: cellular and functional characterization. J Pharmacol Exp Ther. 2001;297:876–87.

    CAS  PubMed  Google Scholar 

  19. Gobert A, Di Cara B, Cistarelli L, et al. Piribedil enhances frontocortical and hippocampal release of acetylcholine in freely moving rats by blockade of alpha 2A-adrenoceptors: a dialysis comparison to talipexole and quinelorane in the absence of acetylcholinesterase inhibitors. J Pharmacol Exp Ther. 2003;305:338–46.

    Article  CAS  PubMed  Google Scholar 

  20. Butterworth RF, Poignant JC, Barbeau A. Apomorphine and piribedil in rats: biochemical and pharmacologic studies. Adv Neurol. 1975;9:307–26.

    CAS  PubMed  Google Scholar 

  21. Hill MP, Brotchie JM. The adrenergic receptor agonist, clonidine, potentiates the anti-parkinsonian action of the selective kappa-opioid receptor agonist, enadoline, in the monoamine-depleted rat. Br J Pharmacol. 1999;128:1577–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Grace AA. Physiology of the normal and dopamine-depleted basal ganglia: insights into levodopa pharmacotherapy. Mov Disord. 2008;23(Suppl 3):S560–9.

    Article  PubMed  Google Scholar 

  23. Pertovaara A, Haapalinna A, Sirvio J, et al. Pharmacological properties, central nervous system effects, and potential therapeutic applications of atipamezole, a selective alpha2-adrenoceptor antagonist. CNS Drug Rev. 2005;11:273–88.

    Article  CAS  PubMed  Google Scholar 

  24. Tellez S, Colpaert F, Marien M. Acetylcholine release in the rat prefrontal cortex in vivo: modulation by alpha 2-adrenoceptor agonists and antagonists. J Neurochem. 1997;68:778–85.

    Article  CAS  PubMed  Google Scholar 

  25. Millan MJ, Lejeune F, Gobert A. Reciprocal autoreceptor and heteroreceptor control of serotonergic, dopaminergic and noradrenergic transmission in the frontal cortex: relevance to the actions of antidepressant agents. J Psychopharmacol. 2000;14:114–38.

    Article  CAS  PubMed  Google Scholar 

  26. Scheinin M, Sallinen J, Haapalinna A. Evaluation of the alpha2C-adrenoceptor as a neuropsychiatric drug target studies in transgenic mouse models. Life Sci. 2001;68:2277–85.

    Article  CAS  PubMed  Google Scholar 

  27. Malberg JE, Eisch AJ, Nestler EJ, et al. Chronic antidepressant treatment increases neurogenesis in adult rat hippocampus. J Neurosci. 2000;20:9104–10.

    CAS  PubMed  Google Scholar 

  28. Rizk P, Salazar J, Raisman-Vozari R, et al. The alpha2-adrenoceptor antagonist dexefaroxan enhances hippocampal neurogenesis by increasing the survival and differentiation of new granule cells. Neuropsychopharmacology. 2006;31:1146–57.

    CAS  PubMed  Google Scholar 

  29. Deleu D, Northway MG, Hanssens Y. Clinical pharmacokinetic and pharmacodynamic properties of drugs used in the treatment of Parkinson’s disease. Clin Pharmacokinet. 2002;41:261–309.

    Article  CAS  PubMed  Google Scholar 

  30. Simon N, Micallef J, Reynier JC, et al. End-of-dose akinesia after a single intravenous infusion of the dopaminergic agonist piribedil in Parkinson’s disease patients: a pharmacokinetic/pharmacodynamic, randomized, double-blind study. Mov Disord. 2005;20:803–9.

    Article  PubMed  Google Scholar 

  31. Demirel M, Yazan Y, Muller RH, et al. Formulation and in vitro-in vivo evaluation of piribedil solid lipid micro- and nanoparticles. J Microencapsul. 2001;18:359–71.

    Article  CAS  PubMed  Google Scholar 

  32. Rascol O, Azulay JP, Blin O, et al. Orodispersible sublingual piribedil to abort OFF episodes: a single dose placebo-controlled, randomized, double-blind, cross-over study. Mov Disord. 2010;25:368–76.

    Article  PubMed  Google Scholar 

  33. Jenner P, Marsden CD. The influence of piribedil (ET495) on components of locomotor activity. Eur J Pharmacol. 1975;33:211–5.

    Article  CAS  PubMed  Google Scholar 

  34. Corrodi H, Fuxe K, Ungerstedt U. Evidence for a new type of dopamine receptor stimulating agent. J Pharm Pharmacol. 1971;23:989–91.

    Article  CAS  PubMed  Google Scholar 

  35. Lane EL, Dunnett SB. Pre-treatment with dopamine agonists influence L-dopa mediated rotations without affecting abnormal involuntary movements in the 6-OHDA lesioned rat. Behav Brain Res. 2010;213:66–72.

    Article  CAS  PubMed  Google Scholar 

  36. Smith L, De Salvia M, Jenner P, et al. An appraisal of the antiparkinsonian activity of piribedil in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-treated common marmosets. Mov Disord. 1996;11:125–35.

    Article  CAS  PubMed  Google Scholar 

  37. Smith LA, Jackson MG, Bonhomme C, et al. Transdermal administration of piribedil reverses MPTP-induced motor deficits in the common marmoset. Clin Neuropharmacol. 2000;23:133–42.

    Article  CAS  PubMed  Google Scholar 

  38. Smith LA, Jackson MJ, Johnston L, et al. Switching from levodopa to the long-acting dopamine D2/D3 agonist piribedil reduces the expression of dyskinesia while maintaining effective motor activity in MPTP-treated primates. Clin Neuropharmacol. 2006;29:112–25.

    Article  CAS  PubMed  Google Scholar 

  39. Smith LA, Tel BC, Jackson MJ, et al. Repeated administration of piribedil induces less dyskinesia than L-dopa in MPTP-treated common marmosets: a behavioural and biochemical investigation. Mov Disord. 2002;17:887–901.

    Article  PubMed  Google Scholar 

  40. Ahlskog JE, Muenter MD. Frequency of levodopa-related dyskinesias and motor fluctuations as estimated from the cumulative literature. Mov Disord. 2001;16:448–58.

    Article  CAS  PubMed  Google Scholar 

  41. Fahn S, Oakes D, Shoulson I, et al. Levodopa and the progression of Parkinson’s disease. N Engl J Med. 2004;351:2498–508.

    Article  CAS  PubMed  Google Scholar 

  42. Gerlach M, Halley P, Riederer P, et al. The effect of piribedil on L-DOPA-induced dyskinesias in a rat model of Parkinson’s disease: differential role of alpha(2) adrenergic mechanisms. J Neural Transm. 2013;120:31–6.

    Article  CAS  PubMed  Google Scholar 

  43. Turle-Lorenzo N, Maurin B, Puma C, et al. The dopamine agonist piribedil with L-DOPA improves attentional dysfunction: relevance for Parkinson’s disease. J Pharmacol Exp Ther. 2006;319:914–23.

    Article  CAS  PubMed  Google Scholar 

  44. Flynn DD, Mash DC. Characterization of L-[3H]nicotine binding in human cerebral cortex: comparison between Alzheimer’s disease and the normal. J Neurochem. 1986;47:1948–54.

    Article  CAS  PubMed  Google Scholar 

  45. Perez-Lloret S, Barrantes FJ. Deficits in cholinergic neurotransmission and their clinical correlates in Parkinson’s disease. npj. Parkinson’s Disease. 2016;2:16001–12.

    Article  Google Scholar 

  46. Marighetto A, Valerio S, Philippin JN, et al. Comparative effects of the dopaminergic agonists piribedil and bromocriptine in three different memory paradigms in rodents. J Psychopharmacol. 2008;22:511–21.

    Article  CAS  PubMed  Google Scholar 

  47. Brocco M, Dekeyne A, Papp M, et al. Antidepressant-like properties of the anti-Parkinson agent, piribedil, in rodents: mediation by dopamine D2 receptors. Behav Pharmacol. 2006;17:559–72.

    Article  CAS  PubMed  Google Scholar 

  48. Perez-Lloret S, Sampaio C, Rascol O. Disease-modifying strategies in Parkinson’s Disease. In: Jankovik J, Tolosa E, editors. Parkinson’s disease and movement disorders. Philadelphia: Wolters Kluwer; 2015.

    Google Scholar 

  49. Calzi F, Bellasio R, Guiso G, et al. Effect of piribedil and its metabolite, S584, on brain lipid peroxidation in vitro and in vivo. Eur J Pharmacol. 1997;338:185–90.

    Article  CAS  PubMed  Google Scholar 

  50. Kong P, Zhang B, Lei P, et al. Neuroprotection of MAO-B inhibitor and dopamine agonist in Parkinson disease. Int J Clin Exp Med. 2015;8:431–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Fox SH, Katzenschlager R, Lim SY, et al. The movement disorder society evidence-based medicine review update: treatments for the motor symptoms of Parkinson’s disease. Mov Disord. 2011;26(Suppl 3):S2–41.

    Article  PubMed  Google Scholar 

  52. Rondot P, Bathien N, Dumas JL. Indications of piribedil in L-DOPA-treated parkinsonian patients: physiopathologic implications. Adv Neurol. 1975;9:373–81.

    CAS  PubMed  Google Scholar 

  53. McLellan DL, Chalmers RJ, Johnson RH. Clinical and pharmacological evaluation of the effects of piribedil in patients with parkinsonism. Acta Neurol Scand. 1975;51:74–82.

    Article  CAS  PubMed  Google Scholar 

  54. Truelle JL, Chanelet J, Bastard J, et al. Piribedil, dopaminergic agonist. Prolonged clinical and electrophysiological study in 60 parkinsonian patients. Nouv Presse Med. 1977;6:2987–90.

    CAS  PubMed  Google Scholar 

  55. Lieberman A, Le Brun Y, Zolfaghari M. Proceedings: effects of piribedil (ET 495)–a dopaminergic receptor stimulating agent in Parkinson’s disease. Psychopharmacol Bull. 1974;10:42–3.

    CAS  PubMed  Google Scholar 

  56. Mentenopoulos G, Katsarou Z, Bostantjopoulou S, et al. Piribedil therapy in Parkinson’s disease. Use of the drug in the retard form. Clin Neuropharmacol. 1989;12:23–8.

    Article  CAS  PubMed  Google Scholar 

  57. Rondot P, Ziegler M. Activity and acceptability of piribedil in Parkinson’s disease: a multicentre study. J Neurol. 1992;239(Suppl 1):S28–34.

    PubMed  Google Scholar 

  58. Ziegler M, Rondot P. Action of piribedil in Parkinson disease. Multicenter study. Presse Med. 1999;28:1414–8.

    CAS  PubMed  Google Scholar 

  59. Suwantamee J, Nidhinandana S, Srisuwananukorn S, et al. Efficacy and safety of piribedil in early combination with L-dopa in the treatment of Parkinson’s disease: a 6-month open study. J Med Assoc Thai. 2004;87:1293–300.

    PubMed  Google Scholar 

  60. Evidente VG, Esteban RP, Domingo FM, et al. Piribedil as an adjunct to levodopa in advanced Parkinson’s disease: the Asian experience. Parkinsonism Relat Disord. 2003;10:117–21.

    Article  PubMed  Google Scholar 

  61. Salazar TG, Wix RR, Salazar AP, et al. The effectiveness and tolerance of piribedil as adjunct therapy to levodopa in patients with Parkinson’s disease: a nine month follow up. Rev Neurol. 2004;38:715–9.

    Google Scholar 

  62. Callaghan N, Fitzpatrick E, O’Mahony JB. Piribedil (ET 495) in the treatment of Parkinson’s disease combined with amantadine or levodopa. Acta Neurol Scand. 1975;52:179–86.

    Article  CAS  PubMed  Google Scholar 

  63. European Medicines Agency. Guideline on clinical investigation of medicinal products in the treatment of Parkinson’s disease. http://www.ema.europa.eu/docs/en_GB/document_library/Scientific_guideline/2012/07/WC500129601.pdf. Accessed 25 Mar 2014.

  64. Ziegler M, Castro-Caldas A, Del Signore S, et al. Efficacy of piribedil as early combination to levodopa in patients with stable Parkinson’s disease: a 6-month, randomized, placebo-controlled study. Mov Disord. 2003;18:418–25.

    Article  PubMed  Google Scholar 

  65. Rascol O, Dubois B, Caldas AC, et al. Early piribedil monotherapy of Parkinson’s disease: a planned seven-month report of the REGAIN study. Mov Disord. 2006;21:2110–5.

    Article  PubMed  Google Scholar 

  66. Castro-Caldas A, Delwaide P, Jost W, et al. The Parkinson-Control study: a 1-year randomized, double-blind trial comparing piribedil (150 mg/day) with bromocriptine (25 mg/day) in early combination with levodopa in Parkinson’s disease. Mov Disord. 2006;21:500–9.

    Article  PubMed  Google Scholar 

  67. Tan EK, Ratnagopal P, Han SY, et al. Piribedil and bromocriptine in Parkinson’s disease: a single-blind crossover study. Acta Neurol Scand. 2003;107:202–6.

    Article  CAS  PubMed  Google Scholar 

  68. Fedorova NV. Use of pronoran (piribedil) in Parkinson’s disease: the results of a multicenter study. Zh Nevrol Psikhiatr Im S S Korsakova. 2003;103:21–4.

    CAS  PubMed  Google Scholar 

  69. Montastruc JL, Ziegler M, Rascol O, et al. A randomized, double-blind study of a skin patch of a dopaminergic agonist, piribedil, in Parkinson’s disease. Mov Disord. 1999;14:336–41.

    Article  CAS  PubMed  Google Scholar 

  70. Pagonabarraga J, Kulisevsky J, Strafella AP, et al. Apathy in Parkinson’s disease: clinical features, neural substrates, diagnosis, and treatment. Lancet Neurol. 2015;14:518–31.

    Article  PubMed  Google Scholar 

  71. Thobois S, Lhommee E, Klinger H, et al. Parkinsonian apathy responds to dopaminergic stimulation of D2/D3 receptors with piribedil. Brain. 2013;136:1568–77.

    Article  PubMed  Google Scholar 

  72. Eggert K, Ohlwein C, Kassubek J, et al. Influence of the nonergot dopamine agonist piribedil on vigilance in patients With Parkinson Disease and excessive daytime sleepiness (PiViCog-PD): an 11-week randomized comparison trial against pramipexole and ropinirole. Clin Neuropharmacol. 2014;37:116–22.

    Article  CAS  PubMed  Google Scholar 

  73. Gierski F, Peretti CS, Ergis AM. Effects of the dopamine agonist piribedil on prefrontal temporal cortical network function in normal aging as assessed by verbal fluency. Prog Neuropsychopharmacol Biol Psychiatry. 2007;31:262–8.

    Article  CAS  PubMed  Google Scholar 

  74. Ollat H. Dopaminergic insufficiency reflecting cerebral ageing: value of a dopaminergic agonist, piribedil. J Neurol. 1992;239(Suppl 1):S13–6.

    PubMed  Google Scholar 

  75. Peretti CS, Gierski F, Harrois S. Cognitive skill learning in healthy older adults after 2 months of double-blind treatment with piribedil. Psychopharmacology. 2004;176:175–81.

    Article  CAS  PubMed  Google Scholar 

  76. Schuck S, Bentue-Ferrer D, Kleinermans D, et al. Psychomotor and cognitive effects of piribedil, a dopamine agonist, in young healthy volunteers. Fundam Clin Pharmacol. 2002;16:57–65.

    Article  CAS  PubMed  Google Scholar 

  77. Schrag A, Sauerbier A, Chaudhuri KR. New clinical trials for nonmotor manifestations of Parkinson’s disease. Mov Disord. 2015;30:1490–504.

    Article  CAS  PubMed  Google Scholar 

  78. Thobois S, Ardouin C, Lhommee E, et al. Non-motor dopamine withdrawal syndrome after surgery for Parkinson’s disease: predictors and underlying mesolimbic denervation. Brain. 2010;133:1111–27.

    Article  PubMed  Google Scholar 

  79. Barone P, Poewe W, Albrecht S, et al. Pramipexole for the treatment of depressive symptoms in patients with Parkinson’s disease: a randomised, double-blind, placebo-controlled trial. Lancet Neurol. 2010;9:573–80.

    Article  CAS  PubMed  Google Scholar 

  80. Newman-Tancredi A, Cussac D, Quentric Y, et al. Differential actions of antiparkinson agents at multiple classes of monoaminergic receptor. III. Agonist and antagonist properties at serotonin, 5-HT(1) and 5-HT(2), receptor subtypes. J Pharmacol Exp Ther. 2002;303:815–22.

    Article  CAS  PubMed  Google Scholar 

  81. Giugni JC, Tschopp L, Escalante V, et al. Dose-dependent impulse control disorders in piribedil overdose. Clin Neuropharmacol. 2012;35:49–50.

    Article  PubMed  Google Scholar 

  82. Micheli FE, Giugni JC, Espinosa ME, et al. Piribedil and pathological gambling in six parkinsonian patients. Arq Neuropsiquiatr. 2015;73:115–8.

    Article  PubMed  Google Scholar 

  83. Tschopp L, Salazar Z, Gomez Botello MT, et al. Impulse control disorder and piribedil: report of 5 cases. Clin Neuropharmacol. 2010;33:11–3.

    Article  PubMed  Google Scholar 

  84. Perez-Lloret S, Rey MV, Fabre N, et al. Prevalence and pharmacological factors associated with impulse-control disorder symptoms in patients with Parkinson disease. Clin Neuropharmacol. 2012;35:261–5.

    Article  PubMed  Google Scholar 

  85. Perez-Lloret S, Bondon-Guitton E, Rascol O, et al. Adverse drug reactions to dopamine agonists: a comparative study in the French Pharmacovigilance Database. Mov Disord. 2010;25:1876–80.

    Article  PubMed  Google Scholar 

  86. Kolle M, Lepping P, Kassubek J, et al. Delusional infestation induced by piribedil add-on in Parkinson’s disease. Pharmacopsychiatry. 2010;43:240–2.

    Article  CAS  PubMed  Google Scholar 

  87. Ferreira JJ, Galitzky M, Montastruc JL, et al. Sleep attacks and Parkinson’s disease treatment. Lancet. 2000;355:1333–4.

    Article  CAS  PubMed  Google Scholar 

  88. Homann CN, Wenzel K, Suppan K, et al. Sleep attacks in patients taking dopamine agonists: review. BMJ. 2002;324:1483–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Tan EK. Piribedil: sleep attacks, also in patients without Parkinson’s disease. Prescrire Int. 2013;22:265.

    Google Scholar 

  90. Gouraud A, Millaret A, Descotes J, et al. Piribedil-induced sleep attacks in patients without Parkinson disease: a case series. Clin Neuropharmacol. 2011;34:104–7.

    Article  CAS  PubMed  Google Scholar 

  91. Tan EK. Peripheral edema and dopamine agonists in Parkinson disease. Arch Neurol. 2007;64:1546–7 (author reply 7).

    Article  PubMed  Google Scholar 

  92. Haapalinna A, Leino T, Heinonen E. The alpha 2-adrenoceptor antagonist atipamezole potentiates anti-Parkinsonian effects and can reduce the adverse cardiovascular effects of dopaminergic drugs in rats. Naunyn Schmiedebergs Arch Pharmacol. 2003;368:342–51.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Olivier Rascol.

Ethics declarations

Funding

No sources of funding were received for the preparation of this article.

Conflict of interest

SPLL has received grants from Servier Laboratorios (France), and has consulted for Aguettant Laboratories and Neurohealing Pharmaceuticals Inc. OR has acted as a scientific advisor for most drug companies developing antiparkinsonian medications (Abbott, Abbvie, Acorda, Adamas, Cynapsus, GSK, Novartis, Boehringer-Ingelheim, Impax, Osmotica, Oxford-Biomedica, Lundbeck, Servier, TEVA, UCB, Zambon) and has received unrestricted scientific grants from academic non-profit entities (Toulouse University Hospital, French Health Ministry, MJFox Foundation, France-Parkinson, European Commission).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Perez-Lloret, S., Rascol, O. Piribedil for the Treatment of Motor and Non-motor Symptoms of Parkinson Disease. CNS Drugs 30, 703–717 (2016). https://doi.org/10.1007/s40263-016-0360-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40263-016-0360-5

Keywords

Navigation