Skip to main content
Log in

Maternal Anti-Fetal Brain IgG Autoantibodies and Autism Spectrum Disorder: Current Knowledge and its Implications for Potential Therapeutics

  • Leading Article
  • Published:
CNS Drugs Aims and scope Submit manuscript

Abstract

Several studies have found a correlation between the presence of circulating maternal autoantibodies and neuronal dysfunction in the neonate. Specifically, maternal anti-brain autoantibodies, which may access the fetal compartment during gestation, have been identified as one risk factor for developing autism spectrum disorder (ASD). Studies by our laboratory elucidated seven neurodevelopmental proteins recognized by maternal autoantibodies whose presence is associated with a diagnosis of maternal autoantibody-related (MAR) autism in the child. While the specific process of anti-brain autoantibody generation is unclear and the detailed pathogenic mechanisms are currently unknown, identification of the maternal autoantibody targets increases the therapeutic possibilities. The potential therapies discussed in this review provide a framework for possible future medical interventions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. American Psychiatric Association. DSM-5 autism spectrum disorder fact sheet. 2013. http://www.dsm5.org/Documents/Autism%20Spectrum%20Disorder%20Fact%20Sheet.pdf. Accessed 24 Aug 2015.

  2. Hertz-Picciotto I, Croen LA, Hansen R, Jones CR, van de Water J, Pessah IN. The CHARGE study: an epidemiologic investigation of genetic and environmental factors contributing to autism. Environ Health Perspect. 2006;114(7):1119–25.

  3. Hallmayer J, Cleveland S, Torres A, Phillips J, Cohen B, Torigoe T, et al. Genetic heritability and shared environmental factors among twin pairs with autism. Arch Gen Psychiatry. 2011;68(11):1095–102. doi:10.1001/archgenpsychiatry.2011.76.

    Article  PubMed Central  PubMed  Google Scholar 

  4. Braunschweig D, Van de Water J. Maternal autoantibodies in autism. Arch Neurol. 2012;69(6):693–9. doi:10.1001/archneurol.2011.2506.

    Article  PubMed  Google Scholar 

  5. Palmeira P, Quinello C, Silveira-Lessa AL, Zago CA, Carneiro-Sampaio M. IgG placental transfer in healthy and pathological pregnancies. Clin Dev Immunol. 2012;2012:985646. doi:10.1155/2012/985646.

    Article  PubMed Central  PubMed  Google Scholar 

  6. Braunschweig D, Ashwood P, Krakowiak P, Hertz-Picciotto I, Hansen R, Croen LA, et al. Autism: maternally derived antibodies specific for fetal brain proteins. Neurotoxicology. 2008;29(2):226–31. doi:10.1016/j.neuro.2007.10.010.

    PubMed Central  CAS  PubMed  Google Scholar 

  7. Braunschweig D, Duncanson P, Boyce R, Hansen R, Ashwood P, Pessah IN, et al. Behavioral correlates of maternal antibody status among children with autism. J Autism Dev Disord. 2012;42(7):1435–45. doi:10.1007/s10803-011-1378-7.

    Article  PubMed  Google Scholar 

  8. Ghetie V, Ward ES. Multiple roles for the major histocompatibility complex class I–related receptor FcRn. Annu Rev Immunol. 2000;18(1):739–66. doi:10.1146/annurev.immunol.18.1.739.

    Article  CAS  PubMed  Google Scholar 

  9. Garty BZ, Ludomirsky A, Danon YL, Peter JB, Douglas SD. Placental transfer of immunoglobulin G subclasses. Clin Diagn Lab Immunol. 1994;1(6):667–9.

    PubMed Central  CAS  PubMed  Google Scholar 

  10. Simister NE. Placental transport of immunoglobulin G. Vaccine. 2003;21(24):3365–9.

    Article  CAS  PubMed  Google Scholar 

  11. Goines P, Van de Water J. The immune system’s role in the biology of autism. Curr Opin Neurol. 2010;23(2):111–7. doi:10.1097/WCO.0b013e3283373514.

    Article  PubMed Central  PubMed  Google Scholar 

  12. Dalton P, Deacon R, Blamire A, Pike M, McKinlay I, Stein J, et al. Maternal neuronal antibodies associated with autism and a language disorder. Ann Neurol. 2003;53(4):533–7. doi:10.1002/ana.10557.

    Article  PubMed  Google Scholar 

  13. Singer HS, Morris CM, Williams PN, Yoon DY, Hong JJ, Zimmerman AW. Antibrain antibodies in children with autism and their unaffected siblings. J Neuroimmunol. 2006;178(1–2):149–55. doi:10.1016/j.jneuroim.2006.05.025.

    Article  CAS  PubMed  Google Scholar 

  14. Zimmerman AW, Connors SL, Matteson KJ, Lee LC, Singer HS, Castaneda JA, et al. Maternal antibrain antibodies in autism. Brain Behav Immun. 2007;21(3):351–7. doi:10.1016/j.bbi.2006.08.005.

    Article  CAS  PubMed  Google Scholar 

  15. Singer HS, Morris CM, Gause CD, Gillin PK, Crawford S, Zimmerman AW. Antibodies against fetal brain in sera of mothers with autistic children. J Neuroimmunol. 2008;194(1–2):165–72. doi:10.1016/j.jneuroim.2007.11.004.

    Article  CAS  PubMed  Google Scholar 

  16. Croen LA, Braunschweig D, Haapanen L, Yoshida CK, Fireman B, Grether JK, et al. Maternal mid-pregnancy autoantibodies to fetal brain protein: the early markers for autism study. Biol Psychiatry. 2008;64(7):583–8. doi:10.1016/j.biopsych.2008.05.006.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  17. Braunschweig D, Krakowiak P, Duncanson P, Boyce R, Hansen RL, Ashwood P, et al. Autism-specific maternal autoantibodies recognize critical proteins in developing brain. Transl Psychiatry. 2013;3:e277. doi:10.1038/tp.2013.50.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  18. Brimberg L, Sadiq A, Gregersen PK, Diamond B. Brain-reactive IgG correlates with autoimmunity in mothers of a child with an autism spectrum disorder. Mol Psychiatry. 2013;18(11):1171–7.

    Article  CAS  PubMed  Google Scholar 

  19. Nandakumar KS, Holmdahl R. Therapeutic cleavage of IgG: new avenues for treating inflammation. Trends Immunol. 2008;29(4):173–8. doi:10.1016/j.it.2008.01.007.

    Article  CAS  PubMed  Google Scholar 

  20. Christen U, von Herrath MG. Initiation of autoimmunity. Curr Opin Immunol. 2004;16(6):759–67. doi:10.1016/j.coi.2004.09.002.

    Article  CAS  PubMed  Google Scholar 

  21. Atladóttir HÓ, Pedersen MG, Thorsen P, Mortensen PB, Deleuran B, Eaton WW, et al. Association of family history of autoimmune diseases and autism spectrum disorders. Pediatrics. 2009;124(2):687–94. doi:10.1542/peds.2008-2445.

    Article  PubMed  Google Scholar 

  22. Diamond B, Honig G, Mader S, Brimberg L, Volpe BT. Brain-reactive antibodies and disease. Annu Rev Immunol. 2013;31(1):345–85. doi:10.1146/annurev-immunol-020711-075041.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  23. Ingudomnukul E, Baron-Cohen S, Wheelwright S, Knickmeyer R. Elevated rates of testosterone-related disorders in women with autism spectrum conditions. Horm Behav. 2007;51(5):597–604. doi:10.1016/j.yhbeh.2007.02.001.

    Article  CAS  PubMed  Google Scholar 

  24. Fairthorne J, Hammond G, Bourke J, Jacoby P, Leonard H. Early mortality and primary causes of death in mothers of children with intellectual disability or autism spectrum disorder: a retrospective cohort study. PLoS One. 2014;9(12):e113430. doi:10.1371/journal.pone.0113430.

    Article  PubMed Central  PubMed  Google Scholar 

  25. Mylona E, Melissaris S, Giannopoulou I, Theohari I, Papadimitriou C, Keramopoulos A, et al. Y-box-binding protein 1 (YB1) in breast carcinomas: relation to aggressive tumor phenotype and identification of patients at high risk for relapse. Eur J Surg Oncol. 2014;40(3):289–96. doi:10.1016/j.ejso.2013.09.008.

    Article  CAS  PubMed  Google Scholar 

  26. Diamond B, Huerta PT, Mina-Osorio P, Kowal C, Volpe BT. Losing your nerves? Maybe it’s the antibodies. Nat Rev Immunol. 2009;9(6):449–56. doi:10.1038/nri2529.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  27. Hershko AY, Naparstek Y. Removal of pathogenic autoantibodies by immunoadsorption. Ann N Y Acad Sci. 2005;1051(1):635–46. doi:10.1196/annals.1361.108.

    Article  CAS  PubMed  Google Scholar 

  28. Martin LA, Ashwood P, Braunschweig D, Cabanlit M, Van de Water J, Amaral DG. Stereotypies and hyperactivity in rhesus monkeys exposed to IgG from mothers of children with autism. Brain Behav Immun. 2008;22(6):806–16. doi:10.1016/j.bbi.2007.12.007.

  29. Singer HS, Morris C, Gause C, Pollard M, Zimmerman AW, Pletnikov M. Prenatal exposure to antibodies from mothers of children with autism produces neurobehavioral alterations: a pregnant dam mouse model. J Neuroimmunol. 2009;211(1–2):39–48. doi:10.1016/j.jneuroim.2009.03.011.

    Article  CAS  PubMed  Google Scholar 

  30. Braunschweig D, Golub MS, Koenig CM, Qi L, Pessah IN, Van de Water J, et al. Maternal autism-associated IgG antibodies delay development and produce anxiety in a mouse gestational transfer model. J Neuroimmunol. 2012;252(1):56–65.

  31. Bauman MD, Iosif AM, Ashwood P, Braunschweig D, Lee A, Schumann CM, et al. Maternal antibodies from mothers of children with autism alter brain growth and social behavior development in the rhesus monkey. Transl Psychiatry. 2013;3:e278. doi:10.1038/tp.2013.47.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  32. Martínez-Cerdeño V, Camacho J, Fox E, Miller E, Ariza J, Kienzle D, et al. Prenatal exposure to autism-specific maternal autoantibodies alters proliferation of cortical neural precursor cells, enlarges brain, and increases neuronal size in adult animals. Cerebral Cortex. 2014. doi:10.1093/cercor/bhu291 (Epub 2014 Dec 22).

    PubMed  Google Scholar 

  33. Nordahl CW, Braunschweig D, Iosif A-M, Lee A, Rogers S, Ashwood P, et al. Maternal autoantibodies are associated with abnormal brain enlargement in a subgroup of children with autism spectrum disorder. Brain Behav Immun. 2013;30:61–5. doi:10.1016/j.bbi.2013.01.084.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  34. Kowal C, DeGiorgio LA, Nakaoka T, Hetherington H, Huerta PT, Diamond B, et al. Cognition and immunity; antibody impairs memory. Immunity. 2004;21(2):179–88. doi:10.1016/j.immuni.2004.07.011.

    Article  CAS  PubMed  Google Scholar 

  35. Rönspeck W, Brinckmann R, Egner R, Gebauer F, Winkler D, Jekow P, et al. Peptide based adsorbers for therapeutic immunoadsorption. Therapeutic apheresis and dialysis. 2003;7(1):91–7. doi:10.1046/j.1526-0968.2003.00017.x.

  36. Schröder A, Linker RA, Gold R. Plasmapheresis for neurological disorders. Expert Rev Neurother. 2009;9(9):1331–9. doi:10.1586/ern.09.81.

    Article  PubMed  Google Scholar 

  37. Claude RJ, Sylvie C, AC HR, Djillali A. Plasma exchange for Guillain-Barré syndrome. Cochrane Database Syst Rev. 2012;(7):CD001798. doi:10.1002/14651858.CD001798.pub2.

  38. Goding JW. Use of staphylococcal protein A as an immunological reagent. J Immunol Methods. 1978;20:241–53. doi:10.1016/0022-1759(78)90259-4.

    Article  CAS  PubMed  Google Scholar 

  39. Manz RA, Hauser AE, Hiepe F, Radbruch A. Maintenance of serum antibody levels. Annu Rev Immunol. 2005;23(1):367–86. doi:10.1146/annurev.immunol.23.021704.115723.

    Article  CAS  PubMed  Google Scholar 

  40. Roopenian DC, Akilesh S. FcRn: the neonatal Fc receptor comes of age. Nat Rev Immunol. 2009;7(9):715–25. doi:10.1038/nri2155.

    Article  Google Scholar 

  41. Vaccaro C, Zhou J, Ober RJ, Ward ES. Engineering the Fc region of immunoglobulin G to modulate in vivo antibody levels. Nat Biotechnol. 2005;23(10):1283–8.

    Article  CAS  PubMed  Google Scholar 

  42. Schwab I, Nimmerjahn F. Intravenous immunoglobulin therapy: how does IgG modulate the immune system? Nat Rev Immunol. 2013;13(3):176–89.

    Article  CAS  PubMed  Google Scholar 

  43. Bloom O, Cheng KF, He M, Papatheodorou A, Volpe BT, Diamond B, et al. Generation of a unique small molecule peptidomimetic that neutralizes lupus autoantibody activity. Proc Natl Acad Sci. 2011;108(25):10255–9. doi:10.1073/pnas.1103555108.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  44. Diamond B, Volpe BT. A model for lupus brain disease. Immunol Rev. 2012;248(1):56–67. doi:10.1111/j.1600-065X.2012.01137.x.

    Article  PubMed Central  PubMed  Google Scholar 

  45. Murphy K. Janeway’s immunobiology. 8th ed. New York: Garland Science; 2011.

    Google Scholar 

  46. Schifferli JA, Ng YC, Peters DK. The role of complement and its receptor in the elimination of immune complexes. N Engl J Med. 1986;315(8):488–95. doi:10.1056/NEJM198608213150805.

    Article  CAS  PubMed  Google Scholar 

  47. Smith SEP, Li J, Garbett K, Mirnics K, Patterson PH. Maternal immune activation alters fetal brain development through interleukin-6. J Neurosci. 2007;27(40):10695–702.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  48. Neubert K, Meister S, Moser K, Weisel F, Maseda D, Amann K, et al. The proteasome inhibitor bortezomib depletes plasma cells and protects mice with lupus-like disease from nephritis. Nat Med. 2008;14(7):748–55.

    Article  CAS  PubMed  Google Scholar 

  49. Ichikawa HT, Conley T, Muchamuel T, Jiang J, Lee S, Owen T, et al. Beneficial effect of novel proteasome inhibitors in murine lupus via dual inhibition of type I interferon and autoantibody-secreting cells. Arthritis Rheum. 2012;64(2):493–503. doi:10.1002/art.33333.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  50. Gomez AM, Willcox N, Molenaar PC, Buurman W, Martinez-Martinez P, De Baets MH, et al. Targeting plasma cells with proteasome inhibitors: possible roles in treating myasthenia gravis? Ann N Y Acad Sci. 2012;1274(1):48–59. doi:10.1111/j.1749-6632.2012.06824.x.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Judy Van de Water.

Ethics declarations

Funding

This work was supported by National Institute of Environmental Health Sciences (NIEHS) 5P01ES011269-13, the U.S. Environmental Protection Agency (US EPA) through the Science to Achieve Results (STAR) program (Grant R829388), and the National Institutes of Health (NIH)-funded M.I.N.D. (Medical Investigation of Neurodevelopmental Disorders) Institute Intellectual and Developmental Disabilities Research Center (U54 HD079125).

Conflict of interest

Judy Van de Water is a scientific advisor to Pediatric Bioscience, the company that has licensed the MAR technology from UC Davis. Elizabeth Fox-Edmiston has no conflicts of interest to declare.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fox-Edmiston, E., Van de Water, J. Maternal Anti-Fetal Brain IgG Autoantibodies and Autism Spectrum Disorder: Current Knowledge and its Implications for Potential Therapeutics. CNS Drugs 29, 715–724 (2015). https://doi.org/10.1007/s40263-015-0279-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40263-015-0279-2

Keywords

Navigation