Skip to main content
Log in

Orexin (Hypocretin) Receptor Agonists and Antagonists for Treatment of Sleep Disorders

Rationale for Development and Current Status

  • Leading Article
  • Published:
CNS Drugs Aims and scope Submit manuscript

Abstract

Orexin A and orexin B are hypothalamic neuropeptides initially identified as endogenous ligands for two orphan G-protein coupled receptors (GPCRs). They play critical roles in the maintenance of wakefulness by regulating function of monoaminergic and cholinergic neurons that are implicated in the regulation of wakefulness. Loss of orexin neurons in humans is associated with narcolepsy, a sleep disorder characterized by excessive daytime sleepiness and cataplexy, further suggesting the particular importance of orexin in the maintenance of the wakefulness state. These findings have encouraged pharmaceutical companies to develop drugs targeting orexin receptors as novel medications of sleep disorders, such as narcolepsy and insomnia. Indeed, phase III clinical trials were completed last year of suvorexant, a non-selective (dual) antagonist for orexin receptors, for the treatment of primary insomnia, and demonstrate promising results. The New Drug Application (NDA) for suvorexant has been submitted to the US FDA. Thus, the discovery of a critical role played by the orexin system in the regulation of sleep/wakefulness has opened the door of a new era for sleep medicine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Sakurai T, Mieda M. Connectomics of orexin-producing neurons: interface of systems of emotion, energy homeostasis and arousal. Trends Pharmacol Sci. 2011;32(8):451–62.

    Article  PubMed  CAS  Google Scholar 

  2. Sakurai T, Amemiya A, Ishii M, et al. Orexins and orexin receptors: a family of hypothalamic neuropeptides and G protein-coupled receptors that regulate feeding behavior. Cell. 1998;92(4):573–85.

    Article  PubMed  CAS  Google Scholar 

  3. de Lecea L, Kilduff TS, Peyron C, et al. The hypocretins: hypothalamus-specific peptides with neuroexcitatory activity. Proc Natl Acad Sci USA. 1998;95(1):322–7.

    Article  PubMed  Google Scholar 

  4. Date Y, Ueta Y, Yamashita H, et al. Orexins, orexigenic hypothalamic peptides, interact with autonomic, neuroendocrine and neuroregulatory systems. Proc Natl Acad Sci USA. 1999;96(2):748–53.

    Article  PubMed  CAS  Google Scholar 

  5. Nambu T, Sakurai T, Mizukami K, et al. Distribution of orexin neurons in the adult rat brain. Brain Res. 1999;827(1–2):243–60.

    Article  PubMed  CAS  Google Scholar 

  6. Peyron C, Tighe DK, van den Pol AN, et al. Neurons containing hypocretin (orexin) project to multiple neuronal systems. J Neurosci. 1998;18(23):9996–10015.

    PubMed  CAS  Google Scholar 

  7. van den Pol AN. Hypothalamic hypocretin (orexin): robust innervation of the spinal cord. J Neurosci. 1999;19(8):3171–82.

    PubMed  Google Scholar 

  8. Kilduff TS, Peyron C. The hypocretin/orexin ligand-receptor system: implications for sleep and sleep disorders. Trends Neurosci. 2000;23(8):359–65.

    Article  PubMed  CAS  Google Scholar 

  9. Thannickal TC, Moore RY, Nienhuis R, et al. Reduced number of hypocretin neurons in human narcolepsy. Neuron. 2000;27(3):469–74.

    Article  PubMed  CAS  Google Scholar 

  10. Marcus JN, Aschkenasi CJ, Lee CE, et al. Differential expression of orexin receptors 1 and 2 in the rat brain. J Comp Neurol. 2001;435(1):6–25.

    Article  PubMed  CAS  Google Scholar 

  11. Mieda M, Hasegawa E, Kisanuki YY, et al. Differential roles of orexin receptor-1 and -2 in the regulation of non-REM and REM sleep. J Neurosci. 2011;31(17):6518–26.

    Article  PubMed  CAS  Google Scholar 

  12. Mignot E. Genetic and familial aspects of narcolepsy. Neurology. 1998;50(2 Suppl. 1):S16–22.

    Article  PubMed  CAS  Google Scholar 

  13. Zeitzer JM, Nishino S, Mignot E. The neurobiology of hypocretins (orexins), narcolepsy and related therapeutic interventions. Trends Pharmacol Sci. 2006;27(7):368–74.

    Article  PubMed  CAS  Google Scholar 

  14. Chemelli RM, Willie JT, Sinton CM, et al. Narcolepsy in orexin knockout mice: molecular genetics of sleep regulation. Cell. 1999;98(4):437–51.

    Article  PubMed  CAS  Google Scholar 

  15. Hara J, Beuckmann CT, Nambu T, et al. Genetic ablation of orexin neurons in mice results in narcolepsy, hypophagia, and obesity. Neuron. 2001;30(2):345–54.

    Article  PubMed  CAS  Google Scholar 

  16. Sakurai T. The neural circuit of orexin (hypocretin): maintaining sleep and wakefulness. Nat Rev Neurosci. 2007;8(3):171–81.

    Article  PubMed  CAS  Google Scholar 

  17. Lin L, Faraco J, Li R, et al. The sleep disorder canine narcolepsy is caused by a mutation in the hypocretin (orexin) receptor 2 gene. Cell. 1999;98(3):365–76.

    Article  PubMed  CAS  Google Scholar 

  18. Mignot E, Lammers GJ, Ripley B, et al. The role of cerebrospinal fluid hypocretin measurement in the diagnosis of narcolepsy and other hypersomnias. Arch Neurol. 2002;59(10):1553–62.

    Article  PubMed  Google Scholar 

  19. Peyron C, Faraco J, Rogers W, et al. A mutation in a case of early onset narcolepsy and a generalized absence of hypocretin peptides in human narcoleptic brains. Nat Med. 2000;6(9):991–7.

    Article  PubMed  CAS  Google Scholar 

  20. Crocker A, Espana RA, Papadopoulou M, et al. Concomitant loss of dynorphin, NARP, and orexin in narcolepsy. Neurology. 2005;65(8):1184–8.

    Article  PubMed  CAS  Google Scholar 

  21. Kadotani H, Faraco J, Mignot E. Genetic studies in the sleep disorder narcolepsy. Genome Res. 1998;8(5):427–34.

    PubMed  CAS  Google Scholar 

  22. Nishino S, Okuro M, Kotorii N, et al. Hypocretin/orexin and narcolepsy: new basic and clinical insights. Acta Physiol (Oxf). 2010;198(3):209–22.

    Article  PubMed  CAS  Google Scholar 

  23. Espana RA, Scammell TE. Sleep neurobiology from a clinical perspective. Sleep. 2011;34(7):845–58.

    PubMed  Google Scholar 

  24. Pace-Schott EF, Hobson JA. The neurobiology of sleep: genetics, cellular physiology and subcortical networks. Nat Rev Neurosci. 2002;3(8):591–605.

    PubMed  CAS  Google Scholar 

  25. Horvath TL, Peyron C, Diano S, et al. Hypocretin (orexin) activation and synaptic innervation of the locus coeruleus noradrenergic system. J Comp Neurol. 1999;415(2):145–59.

    Article  PubMed  CAS  Google Scholar 

  26. Yamanaka A, Tsujino N, Funahashi H, et al. Orexins activate histaminergic neurons via the orexin 2 receptor. Biochem Biophys Res Commun. 2002;290(4):1237–45.

    Article  PubMed  CAS  Google Scholar 

  27. Hagan JJ, Leslie RA, Patel S, et al. Orexin A activates locus coeruleus cell firing and increases arousal in the rat. Proc Natl Acad Sci USA. 1999;96(19):10911–6.

    Article  PubMed  CAS  Google Scholar 

  28. Adamantidis AR, Zhang F, Aravanis AM, et al. Neural substrates of awakening probed with optogenetic control of hypocretin neurons. Nature. 2007;450(7168):420–4.

    Article  PubMed  CAS  Google Scholar 

  29. Bourgin P, Huitron-Resendiz S, Spier AD, et al. Hypocretin-1 modulates rapid eye movement sleep through activation of locus coeruleus neurons. J Neurosci. 2000;20(20):7760–5.

    PubMed  CAS  Google Scholar 

  30. Huang ZL, Qu WM, Li WD, et al. Arousal effect of orexin A depends on activation of the histaminergic system. Proc Natl Acad Sci USA. 2001;98(17):9965–70.

    Article  PubMed  CAS  Google Scholar 

  31. Espana RA, Baldo BA, Kelley AE, et al. Wake-promoting and sleep-suppressing actions of hypocretin (orexin): basal forebrain sites of action. Neuroscience. 2001;106(4):699–715.

    Article  PubMed  CAS  Google Scholar 

  32. Xi MC, Morales FR, Chase MH. Effects on sleep and wakefulness of the injection of hypocretin-1 (orexin-A) into the laterodorsal tegmental nucleus of the cat. Brain Res. 2001;901(1–2):259–64.

    Article  PubMed  CAS  Google Scholar 

  33. van den Pol AN, Ghosh PK, Liu RJ, et al. Hypocretin (orexin) enhances neuron activity and cell synchrony in developing mouse GFP-expressing locus coeruleus. J Physiol. 2002;541(Pt 1):169–85.

    PubMed  Google Scholar 

  34. Brown RE, Sergeeva O, Eriksson KS, et al. Orexin A excites serotonergic neurons in the dorsal raphe nucleus of the rat. Neuropharmacology. 2001;40(3):457–9.

    Article  PubMed  CAS  Google Scholar 

  35. Liu RJ, van den Pol AN, Aghajanian GK. Hypocretins (orexins) regulate serotonin neurons in the dorsal raphe nucleus by excitatory direct and inhibitory indirect actions. J Neurosci. 2002;22(21):9453–64.

    PubMed  CAS  Google Scholar 

  36. Bayer L, Eggermann E, Serafin M, et al. Orexins (hypocretins) directly excite tuberomammillary neurons. Eur J Neurosci. 2001;14(9):1571–5.

    Article  PubMed  CAS  Google Scholar 

  37. Eriksson KS, Sergeeva O, Brown RE, et al. Orexin/hypocretin excites the histaminergic neurons of the tuberomammillary nucleus. J Neurosci. 2001;21(23):9273–9.

    PubMed  CAS  Google Scholar 

  38. Burlet S, Tyler CJ, Leonard CS. Direct and indirect excitation of laterodorsal tegmental neurons by hypocretin/orexin peptides: implications for wakefulness and narcolepsy. J Neurosci. 2002;22(7):2862–72.

    PubMed  CAS  Google Scholar 

  39. Eggermann E, Serafin M, Bayer L, et al. Orexins/hypocretins excite basal forebrain cholinergic neurones. Neuroscience. 2001;108(2):177–81.

    Article  PubMed  CAS  Google Scholar 

  40. Li Y, Gao XB, Sakurai T, et al. Hypocretin/orexin excites hypocretin neurons via a local glutamate neuron-A potential mechanism for orchestrating the hypothalamic arousal system. Neuron. 2002;36(6):1169–81.

    Article  PubMed  CAS  Google Scholar 

  41. Yamanaka A, Tabuchi S, Tsunematsu T, et al. Orexin directly excites orexin neurons through orexin 2 receptor. J Neurosci. 2010;30(38):12642–52.

    Article  PubMed  CAS  Google Scholar 

  42. Lee MG, Hassani OK, Jones BE. Discharge of identified orexin/hypocretin neurons across the sleep-waking cycle. J Neurosci. 2005;25(28):6716–20.

    Article  PubMed  CAS  Google Scholar 

  43. Mileykovskiy BY, Kiyashchenko LI, Siegel JM. Behavioral correlates of activity in identified hypocretin/orexin neurons. Neuron. 2005;46(5):787–98.

    Article  PubMed  CAS  Google Scholar 

  44. Takahashi K, Lin JS, Sakai K. Neuronal activity of orexin and non-orexin waking-active neurons during wake-sleep states in the mouse. Neuroscience. 2008;153:860–70.

    Article  PubMed  CAS  Google Scholar 

  45. Horvath TL, Gao XB. Input organization and plasticity of hypocretin neurons: possible clues to obesity’s association with insomnia. Cell Metab. 2005;1(4):279–86.

    Article  PubMed  CAS  Google Scholar 

  46. Mieda M, Willie JT, Hara J, et al. Orexin peptides prevent cataplexy and improve wakefulness in an orexin neuron-ablated model of narcolepsy in mice. Proc Natl Acad Sci USA. 2004;101(13):4649–54.

    Article  PubMed  CAS  Google Scholar 

  47. Scammell TE, Winrow CJ. Orexin receptors: pharmacology and therapeutic opportunities. Annu Rev Pharmacol Toxicol. 2011;51:243–66.

    Article  PubMed  CAS  Google Scholar 

  48. Brisbare-Roch C, Dingemanse J, Koberstein R, et al. Promotion of sleep by targeting the orexin system in rats, dogs and humans. Nat Med. 2007;13(2):150–5.

    Article  PubMed  CAS  Google Scholar 

  49. Hoever P, de Haas S, Winkler J, et al. Orexin receptor antagonism, a new sleep-promoting paradigm: an ascending single-dose study with almorexant. Clin Pharmacol Ther. 2010;87(5):593–600.

    Article  PubMed  CAS  Google Scholar 

  50. Hoever P, Dorffner G, Benes H, et al. Orexin receptor antagonism, a new sleep-enabling paradigm: a proof-of-concept clinical trial. Clin Pharmacol Ther. 2012;91(6):975–85.

    Article  PubMed  CAS  Google Scholar 

  51. Porter RA, Chan WN, Coulton S, et al. 1,3-Biarylureas as selective non-peptide antagonists of the orexin-1 receptor. Bioorg Med Chem Lett. 2001;11(14):1907–10.

    Article  PubMed  CAS  Google Scholar 

  52. Smart D, Sabido-David C, Brough SJ, et al. SB-334867-A: the first selective orexin-1 receptor antagonist. Br J Pharmacol. 2001;132(6):1179–82.

    Article  PubMed  CAS  Google Scholar 

  53. Langmead CJ, Jerman JC, Brough SJ, et al. Characterisation of the binding of [3H]-SB-674042, a novel nonpeptide antagonist, to the human orexin-1 receptor. Br J Pharmacol. 2004;141(2):340–6.

    Article  PubMed  CAS  Google Scholar 

  54. Renzulli C, Nash M, Wright M, et al. Disposition and metabolism of [14C]SB-649868, an orexin 1 and 2 receptor antagonist, in humans. Drug Metab Dispos. 2011;39(2):215–27.

    Article  PubMed  CAS  Google Scholar 

  55. Bettica P, Squassante L, Groeger JA, et al. Differential effects of a dual orexin receptor antagonist (SB-649868) and zolpidem on sleep initiation and consolidation, SWS, REM sleep, and EEG power spectra in a model of situational insomnia. Neuropsychopharmacology. 2012;37(5):1224–33.

    Article  PubMed  CAS  Google Scholar 

  56. Cox CD, Breslin MJ, Whitman DB, et al. Discovery of the dual orexin receptor antagonist [(7R)-4-(5-chloro-1,3-benzoxazol-2-yl)-7-methyl-1,4-diazepan-1-yl][5-methyl-2-(2H–1,2,3-triazol-2-yl)phenyl]methanone (MK-4305) for the treatment of insomnia. J Med Chem. 2010;53(14):5320–32.

    Article  PubMed  CAS  Google Scholar 

  57. Winrow CJ, Gotter AL, Cox CD, et al. Pharmacological characterization of MK-6096: a dual orexin receptor antagonist for insomnia. Neuropharmacology. 2012;62(2):978–87.

    Article  PubMed  CAS  Google Scholar 

  58. Dugovic C, Shelton JE, Aluisio LE, et al. Blockade of orexin-1 receptors attenuates orexin-2 receptor antagonism-induced sleep promotion in the rat. J Pharmacol Exp Ther. 2009;330(1):142–51.

    Article  PubMed  CAS  Google Scholar 

  59. Morairty SR, Revel FG, Malherbe P, et al. Dual hypocretin receptor antagonism is more effective for sleep promotion than antagonism of either receptor alone. PLoS One. 2012;7(7):e39131.

    Article  PubMed  CAS  Google Scholar 

  60. Mochizuki T, Arrigoni E, Marcus JN, et al. Orexin receptor 2 expression in the posterior hypothalamus rescues sleepiness in narcoleptic mice. Proc Natl Acad Sci USA. 2011;108(11):4471–6.

    Article  PubMed  CAS  Google Scholar 

  61. Carter ME, Adamantidis A, Ohtsu H, et al. Sleep homeostasis modulates hypocretin-mediated sleep-to-wake transitions. J Neurosci. 2009;29(35):10939–49.

    Article  PubMed  CAS  Google Scholar 

  62. Carter ME, Brill J, Bonnavion P, et al. Mechanism for hypocretin-mediated sleep-to-wake transitions. Proc Natl Acad Sci USA. 2012;109(39):E2635–44.

    Article  PubMed  CAS  Google Scholar 

  63. Actelion. Actelion and GSK discontinue clinical development of almorexant (online). http://www1.actelion.com/en/our-company/news-and-events/index.page?newsId=1483135. Accessed 4 Dec 2012.

  64. GlaxoSmithKline. To evaluate the effects of SB-649868 (10, 30 mg and 60 mg) on subjects with primary insomnia [ClinicalTrials.gov identifier NCT00426816]. (online). http://clinicaltrials.gov. Accessed 4 Dec 2012.

  65. Merck. Safety and efficacy study in primary insomnia patients-study B (4305-029) [ClinicalTrials.gov identifier NCT01097629]. US National Institutes of Health, ClinicalTrials.gov (online). http://www.clinicaltrials.gov. Accessed 4 Dec 2012.

  66. Merck. Safety and efficacy study in primary insomnia patients-study A (4305-028) [ClinicalTrials.gov identifier NCT01097616]. US National Institutes of Health, ClinicalTrials.gov (online). http://www.clinicaltrials.gov. Accessed 4 Dec 2012.

  67. Merck. Merck making news (online). http://www.merck.com/newsroom/news-release-archive/research-and-development/2012_0613.html. Accessed 4 Dec 2012.

  68. Merck. Polysomnography study of MK6096 in patients with primary insomnia (6096-011) [ClinicalTrials.gov identifier NCT01021852]. US National Institutes of Health, ClinicalTrials.gov (online). http://www.clinicaltrials.gov. Accessed 4 Dec 2012.

  69. Merck. A study of the safety and efficacy of MK-6096 for migraine prophylaxis in participants with episodic migraine (MK-6096-020) [ClinicalTrials.gov Identifier: NCT01513291]. US National Institutes of Health, ClinicalTrials.gov (online). http://www.clinicaltrials.gov. Accessed 4 Dec 2012.

  70. Merck. Safety and efficacy of MK-6096 as adjunctive therapy in participants with major depressive disorder and partial response to antidepressant monotherapy (MK-6096-022 AM2) [ClinicalTrials.gov Identifier: NCT01554176]. US National Institutes of Health, ClinicalTrials.gov (online). http://www.clinicaltrials.gov. Accessed 4 Dec 2012.

  71. Study to evaluate MK-6096 in the treatment of painful diabetic neuropathy (PDN) in adults (MK-6096-021 AM1) [ClinicalTrials.gov Identifier: NCT01564459] US National Institutes of Health, ClinicalTrials.gov (online). http://www.clinicaltrials.gov. Accessed 4 Dec 2012.

  72. Merck. Merck making news (online). http://www.mercknewsroom.com/press-release/prescription-medicine-news/merck-announces-fda-acceptance-new-drug-application-suvorex.

Download references

Acknowledgements

The writing of this review was supported in part by Grants-in-Aid for Challenging Exploratory Research from the Ministry of Education, Culture, Sports, Science, and Technology (MEXT) of Japan. The authors declare that there are no conflicts of interest present.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michihiro Mieda.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mieda, M., Sakurai, T. Orexin (Hypocretin) Receptor Agonists and Antagonists for Treatment of Sleep Disorders. CNS Drugs 27, 83–90 (2013). https://doi.org/10.1007/s40263-012-0036-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40263-012-0036-8

Keywords

Navigation