Skip to main content
Log in

Pharmacogenetics of UGT1A4, UGT2B7 and UGT2B15 and Their Influence on Tamoxifen Disposition in Asian Breast Cancer Patients

  • Original Research Article
  • Published:
Clinical Pharmacokinetics Aims and scope Submit manuscript

Abstract

Tamoxifen (TAM) is an established endocrine treatment for all stages of oestrogen receptor (ER)-positive breast cancer. Its complex metabolism leads to the formation of multiple active and inactive metabolites. One of the main detoxification and elimination pathways of tamoxifen and its active metabolites, 4-hydroxytamoxifen (4-OHT) and endoxifen, is via glucuronidation catalysed by uridine 5′-diphospho-glucuronosyltransferases (UGTs). However, few studies have comprehensively examined the impact of variations in the genes encoding the major hepatic UGTs on the disposition of tamoxifen and its metabolites. In the present study, we systematically sequenced exons, exon/intron boundaries, and flanking regions of UGT1A4, UGT2B7 and UGT2B15 in 240 healthy subjects of different Asian ethnicities (Chinese, Malays and Indians) to identify haplotype tagging single nucleotide polymorphisms. Subsequently, 202 Asian breast cancer patients receiving tamoxifen were genotyped for 50 selected variants in the three UGT genes to comprehensively investigate their associations with steady-state plasma levels of tamoxifen, its active metabolites and their conjugated counterparts. The UGT1A4 haplotype (containing variant 142T>G, L48 V defining the *3 allele) was strongly associated with higher plasma levels of TAM-N-glucuronide, with a twofold higher metabolic ratio of TAM-N-glucuronide/TAM observed in carriers of this haplotype upon covariate adjustment (P < 0.0001). Variants in UGT2B7 were not associated with altered O-glucuronidation of both 4-OHT and endoxifen, while UGT2B15 haplotypes had a modest effect on (E)-endoxifen plasma levels after adjustment for CYP2D6 genotypes. Our findings highlight the influence of UGT1A4 haplotypes on tamoxifen disposition in Asian breast cancer patients, while genetic variants in UGT2B7 and UGT2B15 appear to be of minor importance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Carlson RW, Allred DC, Anderson BO, et al. “Breast cancer: clinical practice guidelines in oncology. J Natl Compr Cancer Netw. 2009;7(2):122–92.

    CAS  Google Scholar 

  2. Jordan VC, O’Malley BW. Selective estrogen-receptor modulators and antihormonal resistance in breast cancer. J Clin Oncol. 2007;25(36):5815–24.

    Article  CAS  PubMed  Google Scholar 

  3. Hoskins JM, Carey LA, McLeod HL. CYP2D6 and tamoxifen: DNA matters in breast cancer. Nat Rev Cancer. 2009;9(8):576–86.

    Article  CAS  PubMed  Google Scholar 

  4. Madlensky L, Natarajan L, Tchu S, et al. Tamoxifen metabolite concentrations, CYP2D6 genotype, and breast cancer outcomes. Clin Pharmacol Ther. 2011;89(5):718–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Saladores P, Mürdter T, Eccles D, et al. Tamoxifen metabolism predicts drug concentrations and outcome in premenopausal patients with early breast cancer. Pharmacogenom J. 2015;15(1):84–94.

    Article  CAS  Google Scholar 

  6. Brauch H, Mürdter TE, Eichelbaum M, et al. Pharmacogenomics of tamoxifen therapy. Clin Chem. 2009;55(10):1770–82.

    Article  CAS  PubMed  Google Scholar 

  7. Brauch H, Schwab M. Prediction of tamoxifen outcome by genetic variation of CYP2D6 in post-menopausal women with early breast cancer. Br J Clin Pharmacol. 2014;77(4):695–703.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Johnson MD, Zuo H, Lee K-H, et al. Pharmacological characterization of 4-hydroxy-N-desmethyl tamoxifen, a novel active metabolite of tamoxifen. Breast Cancer Res Treat. 2004;85(2):151–9.

    Article  CAS  PubMed  Google Scholar 

  9. Lim YC, Desta Z, Flockhart DA, et al. Endoxifen (4-hydroxy-N-desmethyl-tamoxifen) has anti-estrogenic effects in breast cancer cells with potency similar to 4-hydroxy-tamoxifen. Cancer Chemother Pharmacol. 2005;55(5):471–8.

    Article  CAS  PubMed  Google Scholar 

  10. Desta Z, Ward BA, Soukhova NV, et al. Comprehensive evaluation of tamoxifen sequential biotransformation by the human cytochrome P450 system in vitro: prominent roles for CYP3A and CYP2D6. J Pharmacol Exp Ther. 2004;310(3):1062–75.

    Article  CAS  PubMed  Google Scholar 

  11. Lim JSL, Chen XA, Singh O, et al. Impact of CYP2D6, CYP3A5, CYP2C9 and CYP2C19 polymorphisms on tamoxifen pharmacokinetics in Asian breast cancer patients. Br J Clin Pharmacol. 2011;71(5):737–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Mürdter TE, Schroth W, Bacchus-Gerybadze L, et al. Activity levels of tamoxifen metabolites at the estrogen receptor and the impact of genetic polymorphisms of phase I and II enzymes on their concentration levels in plasma. Clin Pharmacol Ther. 2011;89(5):708–17.

    Article  PubMed  Google Scholar 

  13. Goetz MP, Suman VJ, Hoskin TL, et al. CYP2D6 metabolism and patient outcome in the Austrian Breast and colorectal cancer study group trial (ABCSG) 8. Clin Cancer Res. 2013;19(2):500–7.

    Article  CAS  PubMed  Google Scholar 

  14. Kaku T, Ogura K, Nishiyama T, et al. Quaternary ammonium-linked glucuronidation of tamoxifen by human liver microsomes and UDP-glucuronosyltransferase 1A4. Biochem Pharmacol. 2004;67(11):2093–102.

    Article  CAS  PubMed  Google Scholar 

  15. Ogura K, Ishikawa Y, Kaku T, et al. Quaternary ammonium-linked glucuronidation of trans-4-hydroxytamoxifen, an active metabolite of tamoxifen, by human liver microsomes and UDP-glucuronosyltransferase 1A4. Biochem Pharmacol. 2006;71(9):1358–69.

    Article  CAS  PubMed  Google Scholar 

  16. Sun D, Sharma AK, Dellinger RW, et al. Glucuronidation of active tamoxifen metabolites by the human UDP glucuronosyltransferases. Drug Metab Dispos. 2007;35(11):2006–14.

    Article  CAS  PubMed  Google Scholar 

  17. Varenhorst C, Eriksson N, Johansson Å, et al. Effect of genetic variations on ticagrelor plasma levels and clinical outcomes. Eur Heart J. 2015;36(29):1901–12.

    Article  PubMed  Google Scholar 

  18. Chang Y, Yang L, Zhang M-C, et al. Correlation of the UGT1A4 gene polymorphism with serum concentration and therapeutic efficacy of lamotrigine in Han Chinese of Northern China. Eur J Clin Pharmacol. 2014;70(8):941–6.

    Article  CAS  PubMed  Google Scholar 

  19. Parmar S, Stingl JC, Huber-Wechselberger A, et al. Impact of UGT2B7 His268Tyr polymorphism on the outcome of adjuvant epirubicin treatment in breast cancer. Breast Cancer Res. 2011;13(3):R57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Beal SL. Ways to fit a PK model with some data below the quantification limit. J Pharmacokinet Pharmacodyn. 2001;28(5):481–504.

    Article  CAS  PubMed  Google Scholar 

  21. Barrett JC. Haploview: visualization and analysis of SNP genotype data. CSH Protoc. 2009;2009(10):pdb–ip71.

    Google Scholar 

  22. Xu Z, Kaplan NL, Taylor JA. TAGster: efficient selection of LD tag SNPs in single or multiple populations. Bioinformatics. 2007;23(23):3254–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Benoit-Biancamano M-O, Adam J-P, Bernard O, et al. A pharmacogenetics study of the human glucuronosyltransferase UGT1A4. Pharmacogenet Genom. 2009;19(12):945–54.

    Article  CAS  Google Scholar 

  24. Saeki M, Saito Y, Jinno H, et al. Genetic variations and haplotypes of UGT1A4 in a Japanese population. Drug Metab Pharmacokinet. 2005;20(2):144–51.

    Article  PubMed  Google Scholar 

  25. Yea SS, Lee SS, Kim W-Y, et al. Genetic variations and haplotypes of UDP-glucuronosyltransferase 1A locus in a Korean population. Ther Drug Monit. 2008;30(1):23–34.

    Article  CAS  PubMed  Google Scholar 

  26. Sun D, Chen G, Dellinger RW, et al. Characterization of tamoxifen and 4-hydroxytamoxifen glucuronidation by human UGT1A4 variants. Breast Cancer Res. 2006;8(4):R50.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Gabriel SB, Schaffner SF, Nguyen H, et al. The structure of haplotype blocks in the human genome. Science. 2002;296(5576):2225–9.

    Article  CAS  PubMed  Google Scholar 

  28. Erichsen TJ, Ehmer U, Kalthoff S, et al. Genetic variability of aryl hydrocarbon receptor (AhR)-mediated regulation of the human UDP glucuronosyltransferase (UGT) 1A4 gene. Toxicol Appl Pharmacol. 2008;230(2):252–60.

    Article  CAS  PubMed  Google Scholar 

  29. Nagar S, Remmel RP. Uridine diphosphoglucuronosyltransferase pharmacogenetics and cancer. Oncogene. 2006;25(11):1659–72.

    Article  CAS  PubMed  Google Scholar 

  30. Maruo Y, Iwai M, Mori A, et al. Polymorphism of UDP-glucuronosyltransferase and drug metabolism. Curr Drug Metab. 2005;6(2):91–9.

    Article  CAS  PubMed  Google Scholar 

  31. Jin C, Miners JO, Lillywhite KJ, et al. Complementary deoxyribonucleic acid cloning and expression of a human liver uridine diphosphate-glucuronosyltransferase glucuronidating carboxylic acid-containing drugs. J Pharmacol Exp Ther. 1993;264(1):475–9.

    CAS  PubMed  Google Scholar 

  32. Ritter JK, Chen F, Sheen YY, et al. A novel complex locus UGT1 encodes human bilirubin, phenol, and other UDP-glucuronosyltransferase isozymes with identical carboxyl termini. J Biol Chem. 1992;267(5):3257–61.

    CAS  PubMed  Google Scholar 

  33. Holthe M, Rakvåg TN, Klepstad P, et al. Sequence variations in the UDP-glucuronosyltransferase 2B7 (UGT2B7) gene: identification of 10 novel single nucleotide polymorphisms (SNPs) and analysis of their relevance to morphine glucuronidation in cancer patients. Pharmacogenom J. 2003;3(1):17–26.

    Article  CAS  Google Scholar 

  34. Blevins-Primeau AS, Sun D, Chen G, et al. Functional significance of UDP-glucuronosyltransferase variants in the metabolism of active tamoxifen metabolites. Cancer Res. 2009;69(5):1892–900.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Rae JM, Drury S, Hayes DF, et al. CYP2D6 and UGT2B7 genotype and risk of recurrence in tamoxifen-treated breast cancer patients. J Natl Cancer Inst. 2012;104(6):452–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Ahern TP, Christensen M, Cronin-Fenton DP, et al. Functional polymorphisms in UDP-glucuronosyl transferases and recurrence in tamoxifen-treated breast cancer survivors. Cancer Epidemiol Biomark Prev. 2011;20(9):1937–43.

    Article  CAS  Google Scholar 

  37. Ishii Y, Hansen AJ, Mackenzie PI. Octamer transcription factor-1 enhances hepatic nuclear factor-1alpha-mediated activation of the human UDP glucuronosyltransferase 2B7 promoter. Mol Pharmacol. 2000;57(5):940–7.

    CAS  PubMed  Google Scholar 

  38. Sawyer MB, Innocenti F, Das S, et al. A pharmacogenetic study of uridine diphosphate-glucuronosyltransferase 2B7 in patients receiving morphine. Clin Pharmacol Ther. 2003;73(6):566–74.

    Article  CAS  PubMed  Google Scholar 

  39. Nakamura A, Nakajima M, Higashi E, et al. Genetic polymorphisms in the 5′-flanking region of human UDP-glucuronosyltransferase 2B7 affect the Nrf2-dependent transcriptional regulation. Pharmacogenet Genom. 2008;18(8):709–20.

    Article  CAS  Google Scholar 

  40. Innocenti F, Liu W, Fackenthal D, et al. Single nucleotide polymorphism discovery and functional assessment of variation in the UDP-glucuronosyltransferase 2B7 gene. Pharmacogenet Genom. 2008;18(8):683–97.

    Article  CAS  Google Scholar 

  41. Court MH, Hao Q, Krishnaswamy S, et al. UDP-glucuronosyltransferase (UGT) 2B15 pharmacogenetics: UGT2B15 D85Y genotype and gender are major determinants of oxazepam glucuronidation by human liver. J Pharmacol Exp Ther. 2004;310(2):656–65.

    Article  CAS  PubMed  Google Scholar 

  42. Lampe JW, Bigler J, Bush AC, et al. Prevalence of polymorphisms in the human UDP-glucuronosyltransferase 2B family: UGT2B4(D458E), UGT2B7(H268Y), and UGT2B15(D85Y). Cancer Epidemiol Biomark Prev. 2000;9(3):329–33.

    CAS  Google Scholar 

  43. Wu B, Kulkarni K, Basu S, et al. First-pass metabolism via UDP-glucuronosyltransferase: a barrier to oral bioavailability of phenolics. J Pharm Sci. 2011;100(9):3655–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Sun C, Southard C, Olopade OI, et al. Differential allelic expression of c.1568C>A at UGT2B15 is due to variation in a novel cis-regulatory element in the 3′UTR. Gene. 2011;481(1):24–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Balram Chowbay.

Ethics declarations

Funding

This study was supported by the National Medical Research Council Singapore (Grant numbers NMRC/1159/2008, NMRCB1011, NRFCG1516, NMRCG13163 and NMRC/CIRG/1423/2015); by the Robert Bosch Foundation, Stuttgart, Germany; by the German Federal Ministry of Education and Research (Grant number 03 IS 2061C); and in part by the Deutsche Foschungsgemeinschaft (Grant numbers SCHR 1323/2-1 and MU 1727/2-1) and the FP7 EU Initial Training Network Programme “Fighting Drug Failure” (Grant number PITN-GA-2009-238132).

Conflict of interest

Natalia Sutiman, Joanne Siok Liu Lim, Thomas E. Muerdter, Onkar Singh, Yin Bun Cheung, Raymond Chee Hui Ng, Yoon Sim Yap, Nan Soon Wong, Peter Cher Siang Ang, Rebecca Dent, Werner Schroth, Matthias Schwab, Chiea Chuen Khor and Balram Chowbay declare that they have no conflicts of interest.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki Declaration and its later amendments or comparable ethical standards.

Informed consent

Written informed consent was obtained from all individual participants included in the study.

Additional information

N. Sutiman and J. S. L. Lim contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 2648 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sutiman, N., Lim, J.S.L., Muerdter, T.E. et al. Pharmacogenetics of UGT1A4, UGT2B7 and UGT2B15 and Their Influence on Tamoxifen Disposition in Asian Breast Cancer Patients. Clin Pharmacokinet 55, 1239–1250 (2016). https://doi.org/10.1007/s40262-016-0402-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40262-016-0402-7

Keywords

Navigation