Skip to main content
Log in

Pharmacokinetics, Pharmacodynamics and Pharmacogenomics of Immunosuppressants in Allogeneic Haematopoietic Cell Transplantation: Part I

  • Review Article
  • Published:
Clinical Pharmacokinetics Aims and scope Submit manuscript

Abstract

Although immunosuppressive treatments and target concentration intervention (TCI) have significantly contributed to the success of allogeneic haematopoietic cell transplantation (alloHCT), there is currently no consensus on the best immunosuppressive strategies. Compared with solid organ transplantation, alloHCT is unique because of the potential for bidirectional reactions (i.e. host-versus-graft and graft-versus-host). Postgraft immunosuppression typically includes a calcineurin inhibitor (cyclosporine or tacrolimus) and a short course of methotrexate after high-dose myeloablative conditioning, or a calcineurin inhibitor and mycophenolate mofetil after reduced-intensity conditioning. There are evolving roles for the antithymyocyte globulins (ATGs) and sirolimus as postgraft immunosuppression. A review of the pharmacokinetics and TCI of the main postgraft immunosuppressants is presented in this two-part review. All immunosuppressants are characterized by large intra- and interindividual pharmacokinetic variability and by narrow therapeutic indices. It is essential to understand immunosuppressants’ pharmacokinetic properties and how to use them for individualized treatment incorporating TCI to improve outcomes. TCI, which is mandatory for the calcineurin inhibitors and sirolimus, has become an integral part of postgraft immunosuppression. TCI is usually based on trough concentration monitoring, but other approaches include measurement of the area under the concentration–time curve (AUC) over the dosing interval or limited sampling schedules with maximum a posteriori Bayesian personalization approaches. Interpretation of pharmacodynamic results is hindered by the prevalence of studies enrolling only a small number of patients, variability in the allogeneic graft source and variability in postgraft immunosuppression. Given the curative potential of alloHCT, the pharmacodynamics of these immunosuppressants deserves to be explored in depth. Development of sophisticated systems pharmacology models and improved TCI tools are needed to accurately evaluate patients’ exposure to drugs in general and to immunosuppressants in particular. Sequential studies, first without and then with TCI, should be conducted to validate the clinical benefit of TCI in homogenous populations; randomized trials are not feasible, because there are higher-priority research questions in alloHCT. In Part I of this article, we review the alloHCT process to facilitate optimal design of pharmacokinetic and pharmacodynamics studies. We also review the pharmacokinetics and TCI of calcineurin inhibitors and methotrexate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Martin PJ. Overview of hematopoietic cell transplantation immunology. In: Appelbaum FR, Forman SJ, Negrin RS, Blume KG, editors. Thomas’ hematopoietic cell transplantation. 4th ed. Hoboken: Blackwell Publishing; 2009. p. 131–44.

    Google Scholar 

  2. Copelan EA. Hematopoietic stem-cell transplantation. N Engl J Med. 2006;354:1813–26.

    Article  CAS  PubMed  Google Scholar 

  3. McCune JS, Slattery JT. Pharmacological considerations of primary alkylators. Cancer Treat Res. 2002;112:323–45.

    Article  CAS  PubMed  Google Scholar 

  4. McCune JS, Holmberg LA. Busulfan in hematopoietic stem cell transplant setting. Expert Opin Drug Metab Toxicol. 2009;5:957–69.

    Article  CAS  PubMed  Google Scholar 

  5. de Jonge ME, Huitema AD, Rodenhuis S, Beijnen JH. Clinical pharmacokinetics of cyclophosphamide. Clin Pharmacokinet. 2005;44:1135–64.

    Article  PubMed  Google Scholar 

  6. McCune JS, Woodahl EL, Furlong T, et al. A pilot pharmacologic biomarker study of busulfan and fludarabine in hematopoietic cell transplant recipients. Cancer Chemother Pharmacol. 2012;69:263–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Doroshow JH, Synvold TW. Pharmacologic basis for high-dose chemotherapy. In: Appelbaum F, Forman S, Negrin R, Blume K, editors. Thomas’ hematopoietic cell transplantation. 4th ed. Hoboken: Blackwell Publishing; 2009. p. 289–315.

    Google Scholar 

  8. Cinader B. Aging and the immune system. In: Delves PD, Roitt IM, editors. Encyclopedia of immunology. San Diego: Academic; 1998. p. 59–61.

    Chapter  Google Scholar 

  9. Mackall CL, Fleisher TA, Brown MR, et al. Age, thymopoiesis, and CD4+ T-lymphocyte regeneration after intensive chemotherapy [see comments]. N Engl J Med. 1995;332:143–9.

    Article  CAS  PubMed  Google Scholar 

  10. Savage WJ, Bleesing JJ, Douek D, et al. Lymphocyte reconstitution following non-myeloablative hematopoietic stem cell transplantation follows two patterns depending on age and donor/recipient chimerism. Bone Marrow Transplant. 2001;28:463–71.

    Article  CAS  PubMed  Google Scholar 

  11. Eder JP, Elias A, Shea TC, et al. A phase I–II study of cyclophosphamide, thiotepa, and carboplatin with autologous bone marrow transplantation in solid tumor patients. J Clin Oncol. 1990;8:1239–45.

    CAS  PubMed  Google Scholar 

  12. Deeg HJ, Maris MB, Scott BL, Warren EH. Optimization of allogeneic transplant conditioning: not the time for dogma. Leukemia. 2006;20:1701–5.

    Article  CAS  PubMed  Google Scholar 

  13. Storb R, Gyurkocza B, Storer BE, et al. Graft-versus-host disease and graft-versus-tumor effects after allogeneic hematopoietic cell transplantation. J Clin Oncol. 2013;31:1530–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Baron F, Baker JE, Storb R, et al. Kinetics of engraftment in patients with hematologic malignancies given allogeneic hematopoietic cell transplantation after nonmyeloablative conditioning. Blood. 2004;104:2254–62.

    Article  CAS  PubMed  Google Scholar 

  15. Baron F, Little MT, Storb R. Kinetics of engraftment following allogeneic hematopoietic cell transplantation with reduced-intensity or nonmyeloablative conditioning. Blood Rev. 2005;19:153–64.

    Article  PubMed  Google Scholar 

  16. McSweeney PA, Niederwieser D, Shizuru JA, et al. Hematopoietic cell transplantation in older patients with hematologic malignancies: replacing high-dose cytotoxic therapy with graft-versus-tumor effects. Blood. 2001;97:3390–400.

    Article  CAS  PubMed  Google Scholar 

  17. Kekre N, Antin JH. Hematopoietic stem cell transplantation donor sources in the 21st century: choosing the ideal donor when a perfect match does not exist. Blood. 2014;124:334–43.

    Article  CAS  PubMed  Google Scholar 

  18. Ballen KK, Gluckman E, Broxmeyer HE. Umbilical cord blood transplantation: the first 25 years and beyond. Blood. 2013;122:491–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Ballen KK, Koreth J, Chen YB, Dey BR, Spitzer TR. Selection of optimal alternative graft source: mismatched unrelated donor, umbilical cord blood, or haploidentical transplant. Blood. 2012;119:1972–80.

    Article  CAS  PubMed  Google Scholar 

  20. Mackall C, Fry T, Gress R, Peggs K, Storek J, Toubert A. Background to hematopoietic cell transplantation, including post transplant immune recovery. Bone Marrow Transplant. 2009;44:457–62.

    Article  CAS  PubMed  Google Scholar 

  21. Bayraktar UD, Champlin RE, Ciurea SO. Progress in haploidentical stem cell transplantation. Biol Blood Marrow Transplant. 2012;18:372–80.

    Article  PubMed  Google Scholar 

  22. O’Donnell PV, Luznik L, Jones RJ, et al. Nonmyeloablative bone marrow transplantation from partially HLA-mismatched related donors using posttransplantation cyclophosphamide. Biol Blood Marrow Transplant. 2002;8:377–86.

    Article  PubMed  Google Scholar 

  23. Appelbaum FR. Allogeneic hematopoietic cell transplantation for acute myeloid leukemia when a matched related donor is not available. Hematology Am Soc Hematol Educ Program 2008:412–7. doi:10.1182/asheducation-2008.1.412.

  24. Anasetti C, Logan BR, Lee SJ, et al. Peripheral-blood stem cells versus bone marrow from unrelated donors. N Engl J Med. 2012;367:1487–96.

    Article  CAS  PubMed  Google Scholar 

  25. McNeil C. Preventing graft-versus-host disease: transplanters glimpse hope beyond immunosuppressants. J Natl Cancer Inst. 2013;105:922–3.

    Article  PubMed  Google Scholar 

  26. Ho VT, Soiffer RJ. The history and future of T-cell depletion as graft-versus-host disease prophylaxis for allogeneic hematopoietic stem cell transplantation. Blood. 2001;98:3192–204.

    Article  CAS  PubMed  Google Scholar 

  27. Martin PJ, Hansen JA, Buckner CD, et al. Effects of in vitro depletion of T cells in HLA-identical allogeneic marrow grafts. Blood. 1985;66:664–72.

    CAS  PubMed  Google Scholar 

  28. Horowitz MM. High-resolution typing for unrelated donor transplantation: how far do we go? Best Pract Res. 2009;22:537–41.

    Article  Google Scholar 

  29. Petersdorf EW, Kollman C, Hurley CK, et al. Effect of HLA class II gene disparity on clinical outcome in unrelated donor hematopoietic cell transplantation for chronic myeloid leukemia: the US National Marrow Donor Program experience. Blood. 2001;98:2922–9.

    Article  CAS  PubMed  Google Scholar 

  30. Stevens CE, Carrier C, Carpenter C, Sung D, Scaradavou A. HLA mismatch direction in cord blood transplantation: impact on outcome and implications for cord blood unit selection. Blood. 2011;118:3969–78.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Petersdorf EW, Gooley TA, Malkki M, et al. HLA-C expression levels define permissible mismatches in hematopoietic cell transplantation. Blood. 2014;124(26):3996–4003.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Weiden PL, Doney K, Storb R, Thomas ED. Anti-human thymocyte globulin (ATG) for prophylaxis and treatment of graft-versus-host disease in recipients of allogeneic marrow grafts. Transplant Proc. 1978;10:213–6.

    CAS  PubMed  Google Scholar 

  33. Deeg HJ, Storb R, Thomas ED, et al. Cyclosporine as prophylaxis for graft-versus-host disease: a randomized study in patients undergoing marrow transplantation for acute nonlymphoblastic leukemia. Blood. 1985;65:1325–34.

    CAS  PubMed  Google Scholar 

  34. Storb R, Deeg HJ, Whitehead J, et al. Methotrexate and cyclosporine compared with cyclosporine alone for prophylaxis of acute graft versus host disease after marrow transplantation for leukemia. N Engl J Med. 1986;314:729–35.

    Article  CAS  PubMed  Google Scholar 

  35. Ramsay NK, Kersey JH, Robison LL, et al. A randomized study of the prevention of acute graft-versus-host disease. N Engl J Med. 1982;306:392–7.

    Article  CAS  PubMed  Google Scholar 

  36. Storb R, Deeg HJ, Pepe M, et al. Methotrexate and cyclosporine versus cyclosporine alone for prophylaxis of graft-versus-host disease in patients given HLA-identical marrow grafts for leukemia: long-term follow-up of a controlled trial. Blood. 1989;73:1729–34.

    CAS  PubMed  Google Scholar 

  37. Storb R, Deeg HJ, Farewell V, et al. Marrow transplantation for severe aplastic anemia: methotrexate alone compared with a combination of methotrexate and cyclosporine for prevention of acute graft-versus-host disease. Blood. 1986;68:119–25.

    CAS  PubMed  Google Scholar 

  38. Sorror ML, Leisenring W, Deeg HJ, Martin PJ, Storb R. Twenty-year follow-up of a controlled trial comparing a combination of methotrexate plus cyclosporine with cyclosporine alone for prophylaxis of graft-versus-host disease in patients administered HLA-identical marrow grafts for leukemia. Biol Blood Marrow Transplant. 2005;11(10):814–5.

    Article  PubMed  Google Scholar 

  39. Nash RA, Antin JH, Karanes C, et al. Phase 3 study comparing methotrexate and tacrolimus with methotrexate and cyclosporine for prophylaxis of acute graft-versus-host disease after marrow transplantation from unrelated donors. Blood. 2000;96:2062–8.

    CAS  PubMed  Google Scholar 

  40. Storb R, Antin JH, Cutler C. Should methotrexate plus calcineurin inhibitors be considered standard of care for prophylaxis of acute graft-versus-host disease? Biol Blood Marrow Transplant. 2010;16:S18–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Kornblit B, Maloney DG, Storer BE, et al. A randomized phase II trial of tacrolimus, mycophenolate mofetil and sirolimus after nonmyeloablative unrelated donor transplantation. Haematologica. 2014;99:1624–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Chao NJ, Schmidt GM, Niland JC, et al. Cyclosporine, methotrexate, and prednisone compared with cyclosporine and prednisone for prophylaxis of acute graft-versus-host disease. N Engl J Med. 1993;329:1225–30.

    Article  CAS  PubMed  Google Scholar 

  43. Bacigalupo A, Lamparelli T, Gualandi F, et al. Prophylactic antithymocyte globulin reduces the risk of chronic graft-versus-host disease in alternative-donor bone marrow transplants. Biol Blood Marrow Transplant. 2002;8:656–61.

    Article  CAS  PubMed  Google Scholar 

  44. Ruutu T, Gratwohl A, de Witte T, et al. Prophylaxis and treatment of GVHD: EBMT-ELN working group recommendations for a standardized practice. Bone Marrow Transplant. 2014;49:168–73.

    Article  CAS  PubMed  Google Scholar 

  45. Baron F, Sandmaier BM. Chimerism and outcomes after allogeneic hematopoietic cell transplantation following nonmyeloablative conditioning. Leukemia. 2006;20:1690–700.

    Article  CAS  PubMed  Google Scholar 

  46. Kristt D, Stein J, Yaniv I, Klein T. Assessing quantitative chimerism longitudinally: technical considerations, clinical applications and routine feasibility. Bone Marrow Transplant. 2007;39:255–68.

    Article  CAS  PubMed  Google Scholar 

  47. Kristt D, Klein T. Reliability of quantitative chimerism results: assessment of sample performance using novel parameters. Leukemia. 2006;20:1169–72.

    Article  CAS  PubMed  Google Scholar 

  48. Mohr B, Koch R, Thiede C, Kroschinsky F, Ehninger G, Bornhauser M. CD34+ cell dose, conditioning regimen and prior chemotherapy: factors with significant impact on the early kinetics of donor chimerism after allogeneic hematopoietic cell transplantation. Bone Marrow Transplant. 2004;34:949–54.

    Article  CAS  PubMed  Google Scholar 

  49. Antin JH, Childs R, Filipovich AH, et al. Establishment of complete and mixed donor chimerism after allogeneic lymphohematopoietic transplantation: recommendations from a workshop at the 2001 Tandem Meetings of the International Bone Marrow Transplant Registry and the American Society of Blood and Marrow Transplantation. Biol Blood Marrow Transplant. 2001;7:473–85.

    Article  CAS  PubMed  Google Scholar 

  50. Bader P, Niethammer D, Willasch A, Kreyenberg H, Klingebiel T. How and when should we monitor chimerism after allogeneic stem cell transplantation? Bone Marrow Transplant. 2005;35:107–19.

    Article  CAS  PubMed  Google Scholar 

  51. Kristt D, Gesundheit B, Stein J, et al. Quantitative monitoring of multi-donor chimerism: a systematic, validated framework for routine analysis. Bone Marrow Transplant. 2010;45:137–47.

    Article  CAS  PubMed  Google Scholar 

  52. Liesveld JL, Rothberg PG. Mixed chimerism in SCT: conflict or peaceful coexistence? Bone Marrow Transplant. 2008;42:297–310.

    Article  CAS  PubMed  Google Scholar 

  53. Khan F, Agarwal A, Agrawal S. Significance of chimerism in hematopoietic stem cell transplantation: new variations on an old theme. Bone Marrow Transplant. 2004;34:1–12.

    Article  CAS  PubMed  Google Scholar 

  54. Jacobsohn DA, Vogelsang GB. Acute graft versus host disease. Orphanet J Rare Dis. 2007;2:35.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Przepiorka D, Weisdorf D, Martin P, et al. 1994 Consensus conference on acute GVHD grading. Bone Marrow Transplant. 1995;15:825–8.

    CAS  PubMed  Google Scholar 

  56. Rowlings PA, Przepiorka D, Klein JP, et al. IBMTR Severity Index for grading acute graft-versus-host disease: retrospective comparison with Glucksberg grade. Br J Haematol. 1997;97:855–64.

    Article  CAS  PubMed  Google Scholar 

  57. Remberger M, Kumlien G, Aschan J, et al. Risk factors for moderate-to-severe chronic graft-versus-host disease after allogeneic hematopoietic stem cell transplantation. Biol Blood Marrow Transplant. 2002;8:674–82.

    Article  PubMed  Google Scholar 

  58. Beatty PG, Hansen JA, Longton GM, et al. Marrow transplantation from HLA-matched unrelated donors for treatment of hematologic malignancies. Transplantation. 1991;51:443–7.

    Article  CAS  PubMed  Google Scholar 

  59. Devine SM, Adkins DR, Khoury H, et al. Recent advances in allogeneic hematopoietic stem-cell transplantation. J Lab Clin Med. 2003;141:7–32.

    Article  CAS  PubMed  Google Scholar 

  60. Ratanatharathorn V, Ayash L, Lazarus HM, Fu J, Uberti JP. Chronic graft-versus-host disease: clinical manifestation and therapy. Bone Marrow Transplant. 2001;28:121–9.

    Article  CAS  PubMed  Google Scholar 

  61. Zecca M, Prete A, Rondelli R, et al. Chronic graft-versus-host disease in children: incidence, risk factors, and impact on outcome. Blood. 2002;100:1192–200.

    Article  CAS  PubMed  Google Scholar 

  62. Thomas ED, Storb R, Buckner CD. Total-body irradiation in preparation for marrow engraftment. Transplant Proc. 1976;8:591–3.

    CAS  PubMed  Google Scholar 

  63. Deeg HJ, Storb R, Weiden PL, et al. Abrogation of resistance to and enhancement of DLA-nonidentical unrelated marrow grafts in lethally irradiated dogs by thoracic duct lymphocytes. Blood. 1979;53:552–7.

    CAS  PubMed  Google Scholar 

  64. Bleakley M, Riddell SR. Molecules and mechanisms of the graft-versus-leukaemia effect. Nat Rev Cancer. 2004;4:371–80.

    Article  CAS  PubMed  Google Scholar 

  65. Riddell SR, Appelbaum FR. Graft-versus-host disease: a surge of developments. PLoS Med. 2007;4:e198.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  66. Lee SJ, Joffe S, Artz AS, et al. Individual physician practice variation in hematopoietic cell transplantation. J Clin Oncol. 2008;26:2162–70.

    Article  PubMed  Google Scholar 

  67. Pidala J, Lee SJ, Quinn G, Jim H, Kim J, Anasetti C. Variation in management of immune suppression after allogeneic hematopoietic cell transplantation. Biol Blood Marrow Transplant. 2011;17(10):1528–36.

    Article  PubMed  PubMed Central  Google Scholar 

  68. Schultz RK, Baker KS, Boelens JJ, et al. Challenges and opportunities for international cooperative studies in pediatric hematopoeitic cell transplantation: priorities of the Westhafen Intercontinental Group. Biol Blood Marrow Transplant. 2013;19:1279–87.

    Article  PubMed  PubMed Central  Google Scholar 

  69. Martin PJ, McDonald GB, Sanders JE, et al. Increasingly frequent diagnosis of acute gastrointestinal graft-versus-host disease after allogeneic hematopoietic cell transplantation. Biol Blood Marrow Transplant. 2004;10:320–7.

    Article  PubMed  Google Scholar 

  70. Leather HL. Drug interactions in the hematopoietic stem cell transplant (HSCT) recipient: what every transplanter needs to know. Bone Marrow Transplant. 2004;33:137–52.

    Article  CAS  PubMed  Google Scholar 

  71. Cutler C, Kesselheim A, Gabardi S, et al. Generic immunosuppressants in hematopoietic cell transplantation. Biol Blood Marrow Transplant. 2011;17:285–90.

    Article  PubMed  Google Scholar 

  72. Jaklic A, Collins CJ, Mrhar A, et al. High prevalence of potential drug interactions affecting mycophenolic acid pharmacokinetics in nonmyeloablative hematopoietic stem cell transplant recipients. Int J Clin Pharmacol Ther. 2013;51:711–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Staatz CE, Tett SE. Clinical pharmacokinetics and pharmacodynamics of mycophenolate in solid organ transplant recipients. Clin Pharmacokinet. 2007;46:13–58.

    Article  CAS  PubMed  Google Scholar 

  74. Monchaud C, Marquet P. Pharmacokinetic optimization of immunosuppressive therapy in thoracic transplantation: part II. Clin Pharmacokinet. 2009;48:489–516.

    Article  CAS  PubMed  Google Scholar 

  75. Monchaud C, Marquet P. Pharmacokinetic optimization of immunosuppressive therapy in thoracic transplantation: part I. Clin Pharmacokinet. 2009;48:419–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Tomblyn M, Chiller T, Einsele H, et al. Guidelines for preventing infectious complications among hematopoietic cell transplant recipients: a global perspective. Preface. Bone Marrow Transplant. 2009;44:453–5.

    Article  CAS  PubMed  Google Scholar 

  77. Li H, Mager DE, Sandmaier BM, Maloney DG, Bemer MJ, McCune JS. Population pharmacokinetics and dose optimization of mycophenolic acid in HCT recipients receiving oral mycophenolate mofetil. J Clin Pharmacol. 2013;53:393–402.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Wingard JR, Carter SL, Walsh TJ, et al. Randomized, double-blind trial of fluconazole versus voriconazole for prevention of invasive fungal infection after allogeneic hematopoietic cell transplantation. Blood. 2010;116:5111–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. de Jonge H, Naesens M, Kuypers DR. New insights into the pharmacokinetics and pharmacodynamics of the calcineurin inhibitors and mycophenolic acid: possible consequences for therapeutic drug monitoring in solid organ transplantation. Ther Drug Monit. 2009;31:416–35.

    Article  PubMed  CAS  Google Scholar 

  80. Przepiorka D, Devine S, Fay J, Uberti J, Wingard J. Practical considerations in the use of tacrolimus for allogeneic marrow transplantation. Bone Marrow Transplant. 1999;24:1053–6.

    Article  CAS  PubMed  Google Scholar 

  81. Ram R, Storb R. Pharmacologic prophylaxis regimens for acute graft-versus-host disease: past, present and future. Leuk Lymphoma. 2013;54:1591–601.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Dupuis LL, Seto W, Teuffel O, et al. Prediction of area under the cyclosporine concentration versus time curve in children undergoing hematopoietic stem cell transplantation. Biol Blood Marrow Transplant. 2013;19:418–23.

    Article  CAS  PubMed  Google Scholar 

  83. Bleyzac N. On the importance of blood sampling for ciclosporin pharmacokinetic studies. Br J Clin Pharmacol. 2013;75:869–70.

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Chao NJ, Sullivan KM. Pharmacologic prevention of acute graft-versus-host disease. In: Appelbaum FR, Forman SJ, Negrin RS, Blume KG, editors. Thomas’ hematopoietic cell transplantation. 4th ed. West Sussex: Blackwell Publishing; 2009. p. 1257–74.

    Chapter  Google Scholar 

  85. Cangemi G, Barco S, Bonifazio P, Maffia A, Agazzi A, Melioli G. Comparison of antibody-conjugated magnetic immunoassay and liquid chromatography-tandem mass spectrometry for the measurement of cyclosporine and tacrolimus in whole blood. Int J Immunopathol Pharmacol. 2013;26:419–26.

    CAS  PubMed  Google Scholar 

  86. Steimer W. Performance and specificity of monoclonal immunoassays for cyclosporine monitoring: how specific is specific? Clin Chem. 1999;45:371–81.

    CAS  PubMed  Google Scholar 

  87. Tredger JM, Roberts N, Sherwood R, Higgins G, Keating J. Comparison of five cyclosporin immunoassays with HPLC. Clin Chem Lab Med. 2000;38:1205–7.

    Article  CAS  PubMed  Google Scholar 

  88. Hermida J, Tutor JC. Falsely increased blood tacrolimus concentrations using the ACMIA assay due to circulating endogenous antibodies in a liver transplant recipient: a tentative approach to obtaining reliable results. Ther Drug Monit. 2009;31:269–72.

    Article  CAS  PubMed  Google Scholar 

  89. Dupuis LL, Schechter T. Cyclosporine dose intensity and risk of acute graft-versus-host disease: trough versus area under the curve. Biol Blood Marrow Transplant. 2010;16:866–7.

    Article  PubMed  Google Scholar 

  90. Barbarino JM, Staatz CE, Venkataramanan R, Klein TE, Altman RB. PharmGKB summary: cyclosporine and tacrolimus pathways. Pharmacogenet Genomics. 2013;23:563–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Staatz CE, Goodman LK, Tett SE. Effect of CYP3A and ABCB1 single nucleotide polymorphisms on the pharmacokinetics and pharmacodynamics of calcineurin inhibitors: part II. Clin Pharmacokinet. 2010;49:207–21.

    Article  CAS  PubMed  Google Scholar 

  92. Staatz CE, Goodman LK, Tett SE. Effect of CYP3A and ABCB1 single nucleotide polymorphisms on the pharmacokinetics and pharmacodynamics of calcineurin inhibitors: part I. Clin Pharmacokinet. 2010;49:141–75.

    Article  CAS  PubMed  Google Scholar 

  93. Baraldo M, Furlanut M. Chronopharmacokinetics of ciclosporin and tacrolimus. Clin Pharmacokinet. 2006;45:775–88.

    Article  CAS  PubMed  Google Scholar 

  94. Schultz KR, Nevill TJ, Balshaw RF, et al. Effect of gastrointestinal inflammation and age on the pharmacokinetics of oral microemulsion cyclosporin A in the first month after bone marrow transplantation. Bone Marrow Transplant. 2000;26:545–51.

    Article  CAS  PubMed  Google Scholar 

  95. Kimura S, Oshima K, Okuda S, et al. Pharmacokinetics of CsA during the switch from continuous intravenous infusion to oral administration after allogeneic hematopoietic stem cell transplantation. Bone Marrow Transplant. 2010;45:1088–94.

    Article  CAS  PubMed  Google Scholar 

  96. Thirumaran RK, Lamba JK, Kim RB, et al. Intestinal CYP3A4 and midazolam disposition in vivo associate with VDR polymorphisms and show seasonal variation. Biochem Pharmacol. 2012;84:104–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Schwinghammer TL, Przepiorka D, Venkataramanan R, et al. The kinetics of cyclosporine and its metabolites in bone marrow transplant patients. Br J Clin Pharmacol. 1991;32:323–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Jacobson PA, Ng J, Green KG, Rogosheske J, Brundage R. Posttransplant day significantly influences pharmacokinetics of cyclosporine after hematopoietic stem cell transplantation. Biol Blood Marrow Transplant. 2003;9:304–11.

    Article  CAS  PubMed  Google Scholar 

  99. Jacobson P, Ng J, Ratanatharathorn V, Uberti J, Brundage RC. Factors affecting the pharmacokinetics of tacrolimus (FK506) in hematopoietic cell transplant (HCT) patients. Bone Marrow Transplant. 2001;28:753–8.

    Article  CAS  PubMed  Google Scholar 

  100. Przepiorka D, Blamble D, Hilsenbeck S, Danielson M, Krance R, Chan KW. Tacrolimus clearance is age-dependent within the pediatric population. Bone Marrow Transplant. 2000;26:601–5.

    Article  CAS  PubMed  Google Scholar 

  101. Wallin JE, Friberg LE, Fasth A, Staatz CE. Population pharmacokinetics of tacrolimus in pediatric hematopoietic stem cell transplant recipients: new initial dosage suggestions and a model-based dosage adjustment tool. Ther Drug Monit. 2009;31:457–66.

    Article  CAS  PubMed  Google Scholar 

  102. Boswell GW, Bekersky I, Fay J, et al. Tacrolimus pharmacokinetics in BMT patients. Bone Marrow Transplant. 1998;21:23–8.

    Article  CAS  PubMed  Google Scholar 

  103. Utecht KN, Hiles JJ, Kolesar J. Effects of genetic polymorphisms on the pharmacokinetics of calcineurin inhibitors. Am J Health Syst Pharm. 2006;63:2340–8.

    Article  CAS  PubMed  Google Scholar 

  104. Koh Y, Kim I, Shin DY, et al. Polymorphisms in genes that regulate cyclosporine metabolism affect cyclosporine blood levels and clinical outcomes in patients who receive allogeneic hematopoietic stem cell transplantation. Biol Blood Marrow Transplant. 2012;18:37–43.

    Article  CAS  PubMed  Google Scholar 

  105. Qiu F, He XJ, Sun YX, Li-Ling J, Zhao LM. Influence of ABCB1, CYP3A4*18B and CYP3A5*3 polymorphisms on cyclosporine A pharmacokinetics in bone marrow transplant recipients. Pharmacol Rep. 2011;63:815–25.

    Article  CAS  PubMed  Google Scholar 

  106. Onizuka M, Kunii N, Toyosaki M, et al. Cytochrome P450 genetic polymorphisms influence the serum concentration of calcineurin inhibitors in allogeneic hematopoietic SCT recipients. Bone Marrow Transplant. 2011;46:1113–7.

    Article  CAS  PubMed  Google Scholar 

  107. Bleyzac N, Kebaili K, Mialou V, Bertrand Y, Goutelle S. Pharmacokinetic drug interaction between cyclosporine and imatinib in bone marrow transplant children and model-based reappraisal of imatinib drug interaction profile. Ther Drug Monit. 2014;36:724–9.

    Article  CAS  PubMed  Google Scholar 

  108. Bernard E, Goutelle S, Bertrand Y, Bleyzac N. Pharmacokinetic drug–drug interaction of calcium channel blockers with cyclosporine in hematopoietic stem cell transplant children. Ann Pharmacother. 2014;48:1580–4.

    Article  PubMed  CAS  Google Scholar 

  109. Yee GC, McGuire TR. Pharmacokinetic drug interactions with cyclosporin (part II). Clin Pharmacokinet. 1990;19:400–15.

    Article  CAS  PubMed  Google Scholar 

  110. Yee GC, McGuire TR. Pharmacokinetic drug interactions with cyclosporin (part I). Clin Pharmacokinet. 1990;19:319–32.

    Article  CAS  PubMed  Google Scholar 

  111. Chitnis SD, Ogasawara K, Schniedewind B, Gohh RY, Christians U, Akhlaghi F. Concentration of tacrolimus and major metabolites in kidney transplant recipients as a function of diabetes mellitus and cytochrome P450 3A gene polymorphism. Xenobiotica. 2013;43:641–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Schrauder A, Saleh S, Sykora KW, et al. Pharmacokinetic monitoring of intravenous cyclosporine A in pediatric stem-cell transplant recipients: the trough level is not enough. Pediatr Transplant. 2009;13:444–50.

    Article  CAS  PubMed  Google Scholar 

  113. Mehta P, Beltz S, Kedar A, Graham-Pole J, Wingard JR. Increased clearance of tacrolimus in children: need for higher doses and earlier initiation prior to bone marrow transplantation. Bone Marrow Transplant. 1999;24:1323–7.

    Article  CAS  PubMed  Google Scholar 

  114. Yee GC. Pharmacokinetic and pharmacodynamic studies of cyclosporine in bone marrow transplantation. Transplant Proc. 1990;22:1327–30.

    CAS  PubMed  Google Scholar 

  115. Bubalo J, Carpenter PA, Majhail N, et al. Conditioning chemotherapy dose adjustment in obese patients: a review and position statement by the American Society for Blood and Marrow Transplantation Practice Guideline Committee. Biol Blood Marrow Transplant. 2014;20:600–16.

    Article  CAS  PubMed  Google Scholar 

  116. Aplenc R, Zhang MJ, Sung L, et al. Effect of body mass in children with hematologic malignancies undergoing allogeneic bone marrow transplantation. Blood. 2014;123:3504–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Harskamp-van Ginkel MW, Hill KD, Becker K, et al. Drug dosing and pharmacokinetics in children with obesity: a systematic review. JAMA Pediatrics. 2015;169:678–85.

    Article  PubMed  Google Scholar 

  118. Kasap B, Soylu A, Turkmen M, Kavukcu S, Bora S, Gulay H. Effect of obesity and overweight on cyclosporine blood levels and renal functions in renal adolescent recipients. Transplant Proc. 2006;38:463–5.

    Article  CAS  PubMed  Google Scholar 

  119. Fruman DA, Klee CB, Bierer BE, Burakoff SJ. Calcineurin phosphatase activity in T lymphocytes is inhibited by FK 506 and cyclosporin A. Proc Natl Acad Sci USA. 1992;89:3686–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Sanquer S, Schwarzinger M, Maury S, et al. Calcineurin activity as a functional index of immunosuppression after allogeneic stem-cell transplantation. Transplantation. 2004;77:854–8.

    Article  CAS  PubMed  Google Scholar 

  121. Pai SY, Fruman DA, Leong T, et al. Inhibition of calcineurin phosphatase activity in adult bone marrow transplant patients treated with cyclosporine A. Blood. 1994;84:3974–9.

    CAS  PubMed  Google Scholar 

  122. Jorgensen KA, Koefoed-Nielsen PB, Karamperis N. Calcineurin phosphatase activity and immunosuppression: a review on the role of calcineurin phosphatase activity and the immunosuppressive effect of cyclosporin A and tacrolimus. Scand J Immunol. 2003;57:93–8.

    Article  CAS  PubMed  Google Scholar 

  123. Barten MJ, Tarnok A, Garbade J, et al. Pharmacodynamics of T-cell function for monitoring immunosuppression. Cell Prolif. 2007;40:50–63.

    Article  CAS  PubMed  Google Scholar 

  124. Kuzuya T, Kobayashi T, Katayama A, et al. Evaluation of interleukin-2 mRNA in whole blood as a parameter for monitoring cyclosporine pharmacodynamics. Biol Pharm Bull. 2009;32:604–8.

    Article  CAS  PubMed  Google Scholar 

  125. Albring A, Wendt L, Harz N, et al. Relationship between pharmacokinetics and pharmacodynamics of calcineurin inhibitors in renal transplant patients. Clin Transplant. 2015;29:294–300.

    Article  CAS  PubMed  Google Scholar 

  126. Philippe M, Henin E, Bertrand Y, Plantaz D, Goutelle S, Bleyzac N. Model-based determination of effective blood concentrations of cyclosporine for neutrophil response in the treatment of severe aplastic anemia in children. AAPS J. 2015;17:1157–67.

    Article  CAS  PubMed  Google Scholar 

  127. Trotter JF. Drugs that interact with immunosuppressive agents. Semin Gastrointest Dis. 1998;9:147–53.

    CAS  PubMed  Google Scholar 

  128. Yee GC, Self SG, McGuire TR, Carlin J, Sanders JE, Deeg HJ. Serum cyclosporine concentration and risk of acute graft-versus-host disease after allogeneic marrow transplantation. N Engl J Med. 1988;319:65–70.

    Article  CAS  PubMed  Google Scholar 

  129. Schmidt H, Ehninger G, Dopfer R, et al. Correlation between low CSA plasma concentration and severity of acute GvHD in bone marrow transplantation. Blut. 1988;57:139–42.

    Article  CAS  PubMed  Google Scholar 

  130. Ram R, Storer B, Mielcarek M, et al. Association between calcineurin inhibitor blood concentrations and outcomes after allogeneic hematopoietic cell transplantation. Biol Blood Marrow Transplant. 2012;18:414–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Socie G. Graft-versus-host disease prophylaxis: does drug dosage matter? Biol Blood Marrow Transplant. 2012;18:331–2.

    Article  PubMed  Google Scholar 

  132. Wingard JR, Nash RA, Przepiorka D, et al. Relationship of tacrolimus (FK506) whole blood concentrations and efficacy and safety after HLA-identical sibling bone marrow transplantation. Biol Blood Marrow Transplant. 1998;4:157–63.

    Article  CAS  PubMed  Google Scholar 

  133. Inamoto Y, Flowers ME, Appelbaum FR, et al. A retrospective comparison of tacrolimus versus cyclosporine with methotrexate for immunosuppression after allogeneic hematopoietic cell transplantation with mobilized blood cells. Biol Blood Marrow Transplant. 2011;17:1088–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Hows JM, Palmer S, Gordon-Smith EC. Use of cyclosporin A in allogeneic bone marrow transplantation for severe aplastic anemia. Transplantation. 1982;33:382–6.

    Article  CAS  PubMed  Google Scholar 

  135. Kennedy MS, Yee GC, McGuire TR, Leonard TM, Crowley JJ, Deeg HJ. Correlation of serum cyclosporine concentration with renal dysfunction in marrow transplant recipients. Transplantation. 1985;40:249–53.

    Article  CAS  PubMed  Google Scholar 

  136. Hingorani SR, Guthrie K, Batchelder A, et al. Acute renal failure after myeloablative hematopoietic cell transplant: incidence and risk factors. Kidney Int. 2005;67:272–7.

    Article  PubMed  Google Scholar 

  137. Hebert MF, Dowling AL, Gierwatowski C, et al. Association between ABCB1 (multidrug resistance transporter) genotype and post-liver transplantation renal dysfunction in patients receiving calcineurin inhibitors. Pharmacogenetics. 2003;13:661–74.

    Article  CAS  PubMed  Google Scholar 

  138. Woodahl EL, Hingorani SR, Wang J, et al. Pharmacogenomic associations in ABCB1 and CYP3A5 with acute kidney injury and chronic kidney disease after myeloablative hematopoietic cell transplantation. Pharmacogenomics J. 2008;8:248–55.

    Article  CAS  PubMed  Google Scholar 

  139. Rogosheske JR, Fargen AD, DeFor TE, et al. Higher therapeutic CsA levels early post transplantation reduce risk of acute GVHD and improves survival. Bone Marrow Transplant. 2014;49:122–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Wallemacq P, Armstrong VW, Brunet M, et al. Opportunities to optimize tacrolimus therapy in solid organ transplantation: report of the European consensus conference. Ther Drug Monit. 2009;31:139–52.

    Article  CAS  PubMed  Google Scholar 

  141. Ruutu T, Niederwieser D, Gratwohl A, Apperley JF. A survey of the prophylaxis and treatment of acute GVHD in Europe: a report of the European Group for Blood and Marrow, Transplantation (EBMT). Chronic Leukaemia Working Party of the EBMT. Bone Marrow Transplant. 1997;19:759–64.

    Article  CAS  PubMed  Google Scholar 

  142. Przepiorka D, Nash RA, Wingard JR, et al. Relationship of tacrolimus whole blood levels to efficacy and safety outcomes after unrelated donor marrow transplantation. Biol Blood Marrow Transplant. 1999;5:94–7.

    Article  CAS  PubMed  Google Scholar 

  143. Barkholt L, Remberger M, Bodegard H, Ringden O, Bottiger Y. Cyclosporine A (CsA) 2-h concentrations vary between patients without correlation to graft-versus-host disease after allogeneic haematopoietic stem cell transplantation. Bone Marrow Transplant. 2007;40:683–9.

    Article  CAS  PubMed  Google Scholar 

  144. Willemze AJ, Cremers SC, Schoemaker RC, et al. Ciclosporin kinetics in children after stem cell transplantation. Br J Clin Pharmacol. 2008;66:539–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Hendriks MP, Blijlevens NM, Schattenberg AV, Burger DM, Donnelly JP. Cyclosporine short infusion and C2 monitoring in haematopoietic stem cell transplant recipients. Bone Marrow Transplant. 2006;38:521–5.

    Article  CAS  PubMed  Google Scholar 

  146. Kong DC, Shuttleworth P, Bailey M, Grigg A. CsA 2-h concentration correlates best with area under the concentration–time curve after allo-SCT compared with trough CsA. Bone Marrow Transplant. 2012;47:54–9.

    Article  CAS  PubMed  Google Scholar 

  147. Balci YI, Tavil B, Karabulut E, et al. Cyclosporine level at the second hour in pediatric hematopoietic stem cell transplant patients. Exp Clin Transplant. 2011;9:329–35.

    PubMed  Google Scholar 

  148. Furukawa T, Kurasaki-Ida T, Masuko M, et al. Pharmacokinetic and pharmacodynamic analysis of cyclosporine A (CsA) to find the best single time point for the monitoring and adjusting of CsA dose using twice-daily 3-h intravenous infusions in allogeneic hematopoietic stem cell transplantation. Int J Hematol. 2010;92:144–51.

    Article  CAS  PubMed  Google Scholar 

  149. Hadjibabaie M, Vazirian I, Iravani M, et al. Development and validation of limited sampling strategies for estimation of cyclosporine area under the concentration–time curve in hematopoietic stem cell transplant patients. Ther Drug Monit. 2011;33:673–80.

    Article  CAS  PubMed  Google Scholar 

  150. Inoue Y, Saito T, Ogawa K, et al. Pharmacokinetics of cyclosporine A at a high-peak concentration of twice-daily infusion and oral administration in allogeneic haematopoietic stem cell transplantation. J Clin Pharm Ther. 2011;36:518–24.

    Article  CAS  PubMed  Google Scholar 

  151. Willemze AJ, Press RR, Lankester AC, Egeler RM, den Hartigh J, Vossen JM. CsA exposure is associated with acute GVHD and relapse in children after SCT. Bone Marrow Transplant. 2010;45:1056–61.

    Article  CAS  PubMed  Google Scholar 

  152. Sibbald C, Seto W, Taylor T, Saunders EF, Doyle J, Dupuis LL. Determination of area under the whole blood concentration versus time curve after first intravenous cyclosporine dose in children undergoing hematopoietic stem cell transplant: limited sampling strategies. Ther Drug Monit. 2008;30:434–8.

    CAS  PubMed  Google Scholar 

  153. Woillard JB, Lebreton V, Neely M, et al. Pharmacokinetic tools for the dose adjustment of ciclosporin in haematopoietic stem cell transplant patients. Br J Clin Pharmacol. 2014;78:836–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Eljebari H, Gaies E, Fradj NB, et al. Population pharmacokinetics and Bayesian estimation of cyclosporine in a Tunisian population of hematopoietic stem cell transplant recipient. Eur J Clin Pharmacol. 2012;68:1517–24.

    Article  CAS  PubMed  Google Scholar 

  155. Bleyzac N. The use of pharmacokinetic models in paediatric onco-haematology: effects on clinical outcome through the examples of busulfan and cyclosporine. Fundam Clin Pharmacol. 2008;22:605–8.

    Article  CAS  PubMed  Google Scholar 

  156. van Rossum HH, Press RR, den Hartigh J, de Fijter JW. Point: a call for advanced pharmacokinetic and pharmacodynamic monitoring to guide calcineurin inhibitor dosing in renal transplant recipients. Clin Chem. 2010;56:732–5.

    Article  PubMed  CAS  Google Scholar 

  157. Gerard C, Bleyzac N, Girard P, Freyer G, Bertrand Y, Tod M. Influence of dosing schedule on organ exposure to cyclosporin in pediatric hematopoietic stem cell transplantation: analysis with a PBPK model. Pharm Res. 2010;27:2602–13.

    Article  CAS  PubMed  Google Scholar 

  158. Op den Buijsch RA, van de Plas A, Stolk LM, et al. Evaluation of limited sampling strategies for tacrolimus. Eur J Clin Pharmacol. 2007;63:1039–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Schornagel JH, McVie JG. The clinical pharmacology of methotrexate. Cancer Treat Rev. 1983;10:53–75.

    Article  CAS  PubMed  Google Scholar 

  160. Storb R, Epstein RB, Graham TC, Thomas ED. Methotrexate regimens for control of graft-versus-host disease in dogs with allogeneic marrow grafts. Transplantation. 1970;9:240–6.

    Article  CAS  PubMed  Google Scholar 

  161. Aschan J, Ringden O, Sundberg B, Gahrton G, Ljungman P, Winiarski J. Methotrexate combined with cyclosporin A decreases graft-versus-host disease, but increases leukemic relapse compared to monotherapy. Bone Marrow Transplant. 1991;7:113–9.

    CAS  PubMed  Google Scholar 

  162. Ringden O, Horowitz MM, Sondel P, et al. Methotrexate, cyclosporine, or both to prevent graft-versus-host disease after HLA-identical sibling bone marrow transplants for early leukemia? Blood. 1993;81:1094–101.

    CAS  PubMed  Google Scholar 

  163. Pauley JL, Panetta JC, Crews KR, et al. Between-course targeting of methotrexate exposure using pharmacokinetically guided dosage adjustments. Cancer Chemother Pharmacol. 2013;72:369–78.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Petros WP, Evans WE. Anti-cancer agents. In: Burton ME, Shaw LM, Schentag JJ, Evans WE, editors. Applied pharmacokinetics and pharmacodynamics: principles in therapeutic drug monitoring. Philadelphia: Lippincott Williams & Wilkins; 2006. p. 617–36.

    Google Scholar 

  165. Wingard JR, Nash RA, Ratanatharathorn V, et al. Lack of interaction between tacrolimus (FK506) and methotrexate in bone marrow transplant recipients. Bone Marrow Transplant. 1997;20:49–51.

    Article  CAS  PubMed  Google Scholar 

  166. Kim IW, Yun HY, Choi B, et al. ABCB1 C3435T genetic polymorphism on population pharmacokinetics of methotrexate after hematopoietic stem cell transplantation in Korean patients: a prospective analysis. Clin Ther. 2012;34(8):1816–26.

    Article  CAS  PubMed  Google Scholar 

  167. Buice RG, Evans WE, Karas J, et al. Evaluation of enzyme immunoassay, radioassay, and radioimmunoassay of serum methotrexate, as compared with liquid chromatography. Clin Chem. 1980;26:1902–4.

    CAS  PubMed  Google Scholar 

  168. Robien K, Bigler J, Yasui Y, et al. Methylenetetrahydrofolate reductase and thymidylate synthase genotypes and risk of acute graft-versus-host disease following hematopoietic cell transplantation for chronic myelogenous leukemia. Biol Blood Marrow Transplant. 2006;12:973–80.

    Article  CAS  PubMed  Google Scholar 

  169. Robien K, Schubert MM, Chay T, et al. Methylenetetrahydrofolate reductase and thymidylate synthase genotypes modify oral mucositis severity following hematopoietic stem cell transplantation. Bone Marrow Transplant. 2006;37:799–800.

    Article  CAS  PubMed  Google Scholar 

  170. Ronchera CL, Hernandez T, Peris JE, et al. Pharmacokinetic interaction between high-dose methotrexate and amoxycillin. Ther Drug Monit. 1993;15:375–9.

    Article  CAS  PubMed  Google Scholar 

  171. Dean R, Nachman J, Lorenzana AN. Possible methotrexate–mezlocillin interaction. Am J Pediatr Hematol Oncol. 1992;14:88–9.

    Article  CAS  PubMed  Google Scholar 

  172. Najjar TA, Abou-Auda HS, Ghilzai NM. Influence of piperacillin on the pharmacokinetics of methotrexate and 7-hydroxymethotrexate. Cancer Chemother Pharmacol. 1998;42:423–8.

    Article  CAS  PubMed  Google Scholar 

  173. Ratanatharathorn V, Nash RA, Przepiorka D, et al. Phase III study comparing methotrexate and tacrolimus (Prograf, FK506) with methotrexate and cyclosporine for graft-versus-host disease prophylaxis after HLA-identical sibling bone marrow transplantation. Blood. 1998;92:2303–14.

    CAS  PubMed  Google Scholar 

  174. Slattery JT, Sanders JE, Buckner CD, et al. Graft-rejection and toxicity following bone marrow transplantation in relation to busulfan pharmacokinetics. Bone Marrow Transplant. 1995;16:31–42.

    CAS  PubMed  Google Scholar 

  175. Weiden PL, Flournoy N, Thomas ED, et al. Antileukemic effect of graft-versus-host disease in human recipients of allogeneic-marrow grafts. N Engl J Med. 1979;300:1068–73.

    Article  CAS  PubMed  Google Scholar 

  176. Weiden PL, Sullivan KM, Flournoy N, Storb R, Thomas ED. Antileukemic effect of chronic graft-versus-host disease: contribution to improved survival after allogeneic marrow transplantation. N Engl J Med. 1981;304:1529–33.

    Article  CAS  PubMed  Google Scholar 

  177. Marmont AM, Horowitz MM, Gale RP, et al. T-cell depletion of HLA-identical transplants in leukemia. Blood. 1991;78:2120–30.

    CAS  PubMed  Google Scholar 

  178. Gerard C, Bleyzac N, Girard P, Freyer G, Bertrand Y, Tod M. Links between cyclosporin exposure in tissues and graft-versus-host disease in pediatric bone marrow transplantation: analysis by a PBPK model. Pharm Res. 2011;28:531–9.

    Article  CAS  PubMed  Google Scholar 

  179. Malard F, Szydlo RM, Brissot E, et al. Impact of cyclosporine-A concentration on the incidence of severe acute graft-versus-host disease after allogeneic stem cell transplantation. Biol Blood Marrow Transplant. 2010;16:28–34.

    Article  CAS  PubMed  Google Scholar 

  180. Punnett A, Sung L, Price V, et al. Achievement of target cyclosporine concentrations as a predictor of severe acute graft versus host disease in children undergoing hematopoietic stem cell transplantation and receiving cyclosporine and methotrexate prophylaxis. Ther Drug Monit. 2007;29:750–7.

    Article  CAS  PubMed  Google Scholar 

  181. Gerull S, Arber C, Bucher C, et al. Cyclosporine levels and rate of graft rejection following non-myeloablative conditioning for allogeneic hematopoietic SCT. Bone Marrow Transplant. 2011;46:740–6.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The insightful comments of Rainer Storb, MD, upon an earlier draft of this review are gratefully acknowledged. This work was supported by Grants from the National Cancer Institute (Nos. CA162059, CA178104 and CA182963).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeannine S. McCune.

Ethics declarations

Conflicts of interest

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

McCune, J.S., Bemer, M.J. Pharmacokinetics, Pharmacodynamics and Pharmacogenomics of Immunosuppressants in Allogeneic Haematopoietic Cell Transplantation: Part I. Clin Pharmacokinet 55, 525–550 (2016). https://doi.org/10.1007/s40262-015-0339-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40262-015-0339-2

Keywords

Navigation