Skip to main content
Log in

Pharmacokinetic Aspects of Vascular Endothelial Growth Factor Tyrosine Kinase Inhibitors

  • Review Article
  • Published:
Clinical Pharmacokinetics Aims and scope Submit manuscript

Abstract

Scientists have identified the impact of angiogenesis on tumor growth and survival. Among other efficient drugs, several small-molecule tyrosine kinase inhibitors (TKIs) targeting the vascular endothelial growth factor receptor (VEGFR) have been developed and have already been integrated into the treatment of various advanced malignancies. This review provides a compilation of current knowledge on the pharmacokinetic aspects of all VEGFR–TKIs already approved by the US Food and Drug Administration (FDA) and the European Medicines Agency (EMA) and of those still under investigation. Additional information on substance metabolism, potential for drug–drug interactions (DDIs), and the need for dose adaptation in patients with predominant renal and/or hepatic impairment has been included. All TKIs introduced in this review were administered orally, allowing for easy drug handling for healthcare professionals and patients. For almost all substances, the maximum plasma concentrations were reached within a short period of time. The majority of the substances showed a high plasma protein binding and their excretion occurred via the feces and, to a lesser extent, via the urine. In most cases, dose adaptation in patients with mild to moderate renal or hepatic impairment is not recommended. Cytochrome P450 (CYP) 3A4 was found to play a crucial role in the drug metabolic processes of many compounds. In order to prevent unwanted DDIs, co-administration of VEGFR TKIs together with CYP3A4 inhibitors or inducers should be avoided. Throughout all TKIs, the data indicate high inter-individual variability. The causes of this are still unclear and require further research to allow for individualization of treatment regimens.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Abbreviations

AML:

Acute myeloid leukemia

AUC:

Area under the plasma concentration-time curve

BCRP:

Breast cancer resistance protein

C max :

Peak plasma concentration

CL/F :

Apparent total clearance

CML:

Chronic myeloid leukemia

CNS:

Central nervous system

CRC:

Colorectal carcinoma

CSF-1R:

Colony stimulating factor receptor Type 1

CYP:

Cytochrome P450

DDI:

Drug–drug interaction

EGF:

Epidermal growth factor

EGFR:

Epidermal growth factor receptor

EMA:

European Medicines Agency

FDA:

Food and Drug Administration

FGF:

Fibroblast growth factor

FGFR:

Fibroblast growth factor receptor

FLT3:

Fms-like tyrosine kinase-3

GIST:

Gastrointestinal stromal cancer

HCC:

Hepatocellular cancer

HGF:

Hepatocyte growth factor

HRPC:

Hormone refractory prostate cancer

IPF:

Idiopathic pulmonary fibrosis

InsR:

Insulin receptor

MDS:

Myelodysplastic syndrome

MTC:

Medullary thyroid cancer

MTD:

Maximum-tolerated dose

mTOR:

Mammalian target of rapamycin

NIH:

National Institute of Health

NSCLC:

Non-small cell lung cancer

PDGFR:

Platelet derived growth factor receptor

Pgp:

P-glycoprotein

pNET:

Pancreatic neuroendocrine tumors

PK:

Pharmacokinetics

PLGF:

Placenta growth factor

Raf kinases:

Rapid accelerated fibrosarcoma kinases

RCC:

Renal cell carcinoma

RTK:

Receptor tyrosine kinase

SCF:

Stem cell factor

SmPC:

Summary of product characteristics

T max :

Time to reach the peak plasma concentration (C max)

T 1/2 :

Half-life time needed for a drug concentration to reach half of its original value

TKI:

Tyrosine kinase inhibitor

UGT:

UDP-glucuronyltransferase

UI:

Under investigation

V d/F :

Apparent volume of distribution

VEGF:

Vascular endothelial growth factor

VEGFR:

Vascular endothelial growth factor receptor

References

  1. Weis SM, Cheresh DA. Tumor angiogenesis: molecular pathways and therapeutic targets. J Nat Med. 2011;17:1359–70.

    Article  CAS  Google Scholar 

  2. Gospodarowicz D, Greenburg G, Bialecki H, Zetter BR. Factors involved in the modulation of cell proliferation in vivo and in vitro: the role of fibroblast and epidermal growth factors in the proliferative response of mammalian cells. In Vitro. 1978;14:85–118.

    Article  PubMed  CAS  Google Scholar 

  3. Folkman J. Tumor angiogenesis: therapeutic implications. N Engl J Med. 1971;285:1182–6.

    Article  PubMed  CAS  Google Scholar 

  4. Folkman J. Angiogenesis in cancer, vascular, rheumatoid and other disease. Nat Med. 1995;1:27–31.

    Article  PubMed  CAS  Google Scholar 

  5. Ferrara N. VEGF and the quest for tumour angiogenesis factors. Nat Rev Cancer. 2002;2:795–803.

    Article  PubMed  CAS  Google Scholar 

  6. Medinger M, Passweg J. Role of tumour angiogenesis in haematological malignancies. Swiss Med Wkly. 2014;144:w14050.

    PubMed  Google Scholar 

  7. Ferrara N, Gerber HP, LeCouter J. Biology of VEGF and its receptors. Nat Med. 2003;9:669–76.

    Article  PubMed  CAS  Google Scholar 

  8. Karkkainen M, Makinen T, Alitalo K. Lymphatic endothelium: a new frontier of metastasis research. Nat Cell Biol. 2002;4:E2–5.

    Article  PubMed  CAS  Google Scholar 

  9. Iacovelli R, Sternberg CN, Porta C, Verzoni E, Braud Fd, Escudier B, et al. Inhibition of the VEGF/VEGFR pathway improves survival in advanced kidney cancer: a systematic review and meta-analysis. Curr Drug Targets. 2015;16:164–70.

    Article  PubMed  CAS  Google Scholar 

  10. Relf M, LeJeune S, Scott PA, Fox S, Smith K, Leek R, et al. Expression of the angiogenic factors vascular endothelial cell growth factor, acidic and basic fibroblast growth factor, tumor growth factor β-1, platelet-derived endothelial cell growth factor, placenta growth factor, and pleiotrophin in human primary breast cancer and its relation to angiogenesis. Cancer Res. 1997;57:963–9.

    PubMed  CAS  Google Scholar 

  11. Schlessinger J, Ullrich A. Growth factor signaling by receptor of tyrosine kinase. Neuron. 1992;9:383–91.

    Article  PubMed  CAS  Google Scholar 

  12. Hubbard SR, Till JH. Protein tyrosine kinase structure and function. Annu Rev Biochem. 2000;69:373–98.

    Article  PubMed  CAS  Google Scholar 

  13. Blume-Jensen P, Hunter T. Oncogenic kinase signaling. Nature. 2001;411:355–65.

    Article  PubMed  CAS  Google Scholar 

  14. Holmes K, Roberts OL, Thomas AM, Cross MJ. Vascular endothelial growth factor receptor-2: structure, function, intracellular signaling and therapeutic inhibition. Cell Signal. 2007;19:2003–12.

    Article  PubMed  CAS  Google Scholar 

  15. Houk BE, Bello CL, Poland B, Rosen LS, Demetri GD, Motzer RJ. Relationship between exposure to sunitinib and efficacy and tolerability endpoints in patients with cancer: results of a pharmacokinetic/pharmacodynamic meta-analysis. Cancer Chemother Pharmacol. 2010;66:357–71.

    Article  PubMed  CAS  Google Scholar 

  16. van Erp NP, Eechoute K, van der Veldt AA, Haanen JB, Reyners AK, Mathijssen RH, et al. Pharmacogenetic pathway analysis for determination of sunitinib-induced toxicity. J Clin Oncol. 2009;27:4406–12.

    Article  PubMed  CAS  Google Scholar 

  17. FDA. Highlights of prescribing information: axitinib (Inlyta®). 2014. http://www.accessdata.fda.gov/drugsatfda_docs/label/2014/202324s002lbl.pdf. Accessed Jan 2015.

  18. EMA. Summary of product characteristics: axitinib (Inlyta®). 2014. http://www.ema.europa.eu/docs/en_GB/document_library/EPAR_-_Product_Information/human/002406/WC500132188.pdf. Accessed Feb 2015.

  19. Ikeda H, Kanakura Y, Tamaki T, Kuriu A, Kitayama H, Ishikawa J, et al. Expression and functional role of the proto-oncogene c-kit in acute myeloblastic leukemia cells. Blood. 1991;78:2962–8.

    PubMed  CAS  Google Scholar 

  20. Rugo HS, Herbst RS, Liu G, Park JW, Kies MS, Steinfeldt HM, et al. Phase I trial of the oral antiangiogenesis agent AG-013736 in patients with advanced solid tumors: pharmacokinetic and clinical results. J Clin Oncol. 2005;23:5474–83.

    Article  PubMed  CAS  Google Scholar 

  21. Giles FJ, Bellamy WT, Estrov Z, O’Brien SM, Verstovsek S, Ravandi F, et al. The anti-angiogenesis agent, AG-013736, has minimal activity in elderly patients with poor prognosis acute myeloid leukemia (AML) or myelodysplastic syndrome (MDS). Leuk Res. 2006;30:801–11.

    Article  PubMed  CAS  Google Scholar 

  22. Pithavala YK, Tortorici M, Toh M, Garrett M, Hee B, Kuruganti U, et al. Effect of rifampin on the pharmacokinetics of axitinib (AG-013736) in Japanese and Caucasian healthy volunteers. Cancer Chemother Pharmacol. 2010;65:563–70.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Rugo HS, Stopeck AT, Joy AA, Chan S, Verma S, Lluch A, et al. Randomized, placebo-controlled, double-blind, phase II study of axitinib plus docetaxel versus docetaxel plus placebo in patients with metastatic breast cancer. J Clin Oncol. 2011;29:2459–65.

    Article  PubMed  CAS  Google Scholar 

  24. Pithavala Y, Klamerus KJ, Garrett M, Hee B, Mount J, Selaru P, et al. Effect of ketoconazole on the pharmacokinetics of axitinib (AG-013736) in healthy volunteers [abstract no. 232]. In: AACR Annual Meeting; 12–16 Apr 2008; San Diego.

  25. Sharma S, Abhyankar V, Burgess RE, Infante J, Trowbridge RC, Tarazi J, et al. A phase I study of axitinib (AG-013736) in combination with bevacizumab plus chemotherapy or chemotherapy alone in patients with metastatic colorectal cancer and other solid tumors. Ann Oncol. 2010;21:297–304.

    Article  PubMed  CAS  Google Scholar 

  26. FDA. Highlights of prescribing information: nintedanib (Ofev®). 2014. http://www.accessdata.fda.gov/drugsatfda_docs/label/2014/205832s000lbl.pdf. Accessed Jan 2015.

  27. EMA. Summary of product characteristics: nintedanib (Vargatef). 2014. http://www.ema.europa.eu/docs/en_GB/document_library/EPAR_-_Product_Information/human/002569/WC500179970.pdf. Accessed Mar 2015.

  28. Reck M, Kaiser R, Mellemgaard A, Douillard JY, Orlov S, Krzakowski M, et al. LUME-Lung 1 Study Group. Docetaxel plus nintedanib versus docetaxel plus placebo in patients with previously treated non-small-cell lung cancer (LUME-Lung 1): a phase 3, double-blind, randomised controlled trial. Lancet Oncol. 2014;15:143–55.

    Article  PubMed  CAS  Google Scholar 

  29. Roth GJ, Heckel A, Colbatzky F, Handschuh S, Kley J, Lehmann-Lintz T, et al. Design, synthesis, and evaluation of indolinones as triple angiokinase inhibitors and the discovery of a highly specific 6-methoxycarbonyl-substituted indolinone (BIBF 1120). J Med Chem. 2009;52:4466–80.

    Article  PubMed  CAS  Google Scholar 

  30. Mross K, Stefanic M, Gmehling D, Frost A, Baas F, Unger C, et al. Phase I study of the angiogenesis inhibitor BIBF 1120 in patients with advanced solid tumors. Clin Cancer Res. 2010;16:311–9.

    Article  PubMed  CAS  Google Scholar 

  31. Kropff M, Kienast J, Bisping G, Berdel WE, Gaschler-Markefski B, Stopfer P, et al. An open-label dose-escalation study of BIBF 1120 in patients with relapsed or refractory multiple myeloma. Anticancer Res. 2009;29:4233–8.

    PubMed  CAS  Google Scholar 

  32. du Bois A, Huober J, Stopfer P, Pfisterer J, Wimberger P, Loibl S, et al. A phase I open-label dose-escalation study of oral BIBF 1120 combined with standard paclitaxel and carboplatin in patients with advanced gynecological malignancies. Ann Oncol. 2010;21:370–5.

    Article  PubMed  Google Scholar 

  33. Ogura T, Taniguchi H, Azuma A, Inoue Y, Kondoh Y, Hasegawa Y, et al. Safety and pharmacokinetics of nintedanib and pirfenidone in idiopathic pulmonary fibrosis. Eur Respir J. 2015;45(5):1382–92.

    Article  PubMed  CAS  Google Scholar 

  34. FDA. Highlights of prescribing information: Cabozantinib (Cometriq). 2012. http://www.accessdata.fda.gov/drugsatfda_docs/label/2012/203756lbl.pdf. Accessed Jan 2015.

  35. Sennino B, Ishiguro-Oonuma T, Wei Y, Naylor RM, Williamson CW, Bhagwandin V, et al. Suppression of tumor invasion and metastasis by concurrent inhibition of c-Met and VEGF signaling in pancreatic neuroendocrine tumors. Cancer Discov. 2012;2:270–87.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Bentzien F, Zuzow M, Heald N, Gibson A, Shi Y, Goon L, et al. In vitro and in vivo activity of cabozantinib (XL184), an inhibitor of RET, MET, and VEGFR2, in a model of medullary thyroid cancer. Thyroid. 2013;23:1569–77.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Kurzrock R, Sherman SI, Ball DW, Forastiere AA, Cohen RB, Mehra R, et al. Activity of XL184 (cabozantinib), an oral tyrosine kinase inhibitor, in patients with medullary thyroid cancer. J Clin Oncol. 2011;29:2660–6.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. FDA. Highlights of prescribing information: pazopanib (Votrient). 2014. http://www.accessdata.fda.gov/drugsatfda_docs/label/2014/022465s019lbl.pdf. Accessed Jan 2015.

  39. Bukowski RM, Yasothan U, Kirkpatrick P. Pazopanib. Nat Rev Drug Discov. 2010;9:17–8.

    Article  PubMed  CAS  Google Scholar 

  40. Harris PA, Boloor A, Cheung M, Kumar R, Crosby RM, Davis-Ward RG, et al. Discovery of 5-[[4-[(2,3-dimethyl-2Hindazol-6-yl)methylamino]-2-pyrimidinyl]amino]-2-methylbenzenesulfonamide (pazopanib), a novel and potent vascular endothelial growth factor receptor inhibitor. J Med Chem. 2008;51:4632–40.

    Article  PubMed  CAS  Google Scholar 

  41. Kumar R, Knick VB, Rudolph SK, Johnson JH, Crosby RM, Crouthamel MC, et al. Pharmacokinetic–pharmacodynamic correlation from mouse to human with pazopanib, a multikinase angiogenesis inhibitor with potent antitumor and antiangiogenic activity. Mol Cancer Ther. 2007;6:2012–21.

    Article  PubMed  CAS  Google Scholar 

  42. Hurwitz HI, Dowlati A, Saini S, Savage S, Suttle AB, Gibson DM, et al. Phase I trial of pazopanib in patients with advanced cancer. Clin Cancer Res. 2009;15:4220–7.

    Article  PubMed  CAS  Google Scholar 

  43. Heath EI, Chiorean EG, Sweeney CJ, Hodge JP, Lager JJ, Forman K, et al. A phase I study of the pharmacokinetic and safety profiles of oral pazopanib with a high-fat or low-fat meal in patients with advanced solid tumors. Clin Pharmacol Ther. 2010;88:818–23.

    Article  PubMed  CAS  Google Scholar 

  44. Deeks ED. Pazopanib: in advanced soft tissue sarcoma. Drugs. 2012;72:2129–40.

    Article  PubMed  CAS  Google Scholar 

  45. Inada-Inoue M, Ando Y, Kawada K, Mitsuma A, Sawaki M, Yokoyama T, et al. Phase 1 study of pazopanib alone or combined with lapatinib in Japanese patients with solid tumors. Cancer Chemother Pharmacol. 2014;73:673–83.

    Article  PubMed  CAS  Google Scholar 

  46. Tan AR, Gibbon DG, Stein MN, Lindquist D, Edenfield JW, Martin JC, et al. Effects of ketoconazole and esomeprazole on the pharmacokinetics of pazopanib in patients with solid tumors. Cancer Chemother Pharmacol. 2013;71:1635–43.

    Article  PubMed  CAS  Google Scholar 

  47. Reardon DA, Groves MD, Wen PY, Nabors L, Mikkelsen T, Rosenfeld S, et al. A phase I/III trial of pazopanib in combination with lapatinib in adult patients with relapsed malignant glioma. Clin Cancer Res. 2013;19:900–8.

    Article  PubMed  CAS  Google Scholar 

  48. Johnston SR, Gómez H, Stemmer SM, Richie M, Durante M, Pandite L, et al. A randomized and open-label trial evaluating the addition of pazopanib to lapatinib as first-line therapy in patients with HER2-positive advanced breast cancer. Breast Cancer Res Treat. 2013;137:755–66.

    Article  PubMed  CAS  Google Scholar 

  49. Tan AR, Dowlati A, Jones SF, Infante JR, Nishioka J, Fang L, et al. Phase I study of pazopanib in combination with weekly paclitaxel in patients with advanced solid tumors. Oncologist. 2010;15:1253–61.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  50. Kendra K, Plummer R, Salgia R, O’Brien M, Paul E, Suttle AB, et al. A multicenter phase I study of pazopanib in combination with paclitaxel in first-line treatment of patients with advanced solid tumors. Mol Cancer Ther. 2015;14:461–9.

    Article  PubMed  CAS  Google Scholar 

  51. FDA. Highlights of prescribing information: sorafenib (Nexavar). 2013. http://www.accessdata.fda.gov/drugsatfda_docs/label/2013/021923s016lbl.pdf. Accessed Jan 2015.

  52. EMA. Summary of product characteristics: sorafenib (Nexavar) 2015. http://www.ema.europa.eu/docs/en_GB/document_library/EPAR_-_Product_Information/human/000690/WC500027704.pdf). Accessed Jan 2015.

  53. Ng R, Chen EX. Sorafenib (BAY 43-9006): review of clinical development. Curr Clin Pharmacol. 2006;1:223–8.

    Article  PubMed  CAS  Google Scholar 

  54. Clark JW, Eder JP, Ryan D, Lathia C, Lenz HJ. Safety and pharmacokinetics of the dual action Raf kinase and vascular endothelial growth factor receptor inhibitor, BAY 43-9006, in patients with advanced, refractory solid tumors. Clin Cancer Res. 2005;11:5472–80.

    Article  PubMed  CAS  Google Scholar 

  55. Moore M, Hirte HW, Siu L, Oza A, Hotte SJ, Petrenciuc O, et al. Phase I study to determine the safety and pharmacokinetics of the novel Raf kinase and VEGFR inhibitor BAY 43-9006, administered for 28 days on/7 days off in patients with advanced, refractory solid tumors. Ann Oncol. 2005;16:1688–94.

    Article  PubMed  CAS  Google Scholar 

  56. Richly H, Henning BF, Kupsch P, Passarge K, Grubert M, Hilger RA, et al. Results of a phase I trial of sorafenib (BAY 43-9006) in combination with doxorubicin in patients with refractory solid tumors. Ann Oncol. 2006;17:866–73.

    Article  PubMed  CAS  Google Scholar 

  57. Strumberg D, Richly H, Hilger RA, Schleucher N, Korfee S, Tewes M, et al. Phase I clinical and pharmacokinetic study of the novel Raf kinase and vascular endothelial growth factor receptor inhibitor BAY 43-9006 in patients with advanced refractory solid tumors. J Clin Oncol. 2005;23:965–72.

    Article  PubMed  CAS  Google Scholar 

  58. Awada A, Hendlisz A, Gil T, Bartholomeus S, Mano M, de Valeriola D, et al. Phase I safety and pharmacokinetics of BAY 43-9006 administered for 21 days on/7 days off in patients with advanced, refractory solid tumours. Br J Cancer. 2005;92:1855–61.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  59. Flaherty KT, Schiller J, Schuchter LM, Liu G, Tuveson DA, Redlinger M, et al. A phase I trial of the oral, multikinase inhibitor sorafenib in combination with carboplatin and paclitaxel. Clin Cancer Res. 2008;14:4836–42.

    Article  PubMed  CAS  Google Scholar 

  60. Adjei AA, Molina JR, Mandrekar SJ, Marks R, Reid JR, Croghan G, et al. Phase I trial of sorafenib in combination with gefitinib in patients with refractory or recurrent non-small cell lung cancer. Clin Cancer Res. 2007;13:2684–91.

    Article  PubMed  CAS  Google Scholar 

  61. Dahut WL, Scripture C, Posadas E, Jain L, Gulley JL, Arlen PM, et al. A phase II clinical trial of sorafenib in androgen-independent prostate cancer. Clin Cancer Res. 2008;14:209–14.

    Article  PubMed  CAS  Google Scholar 

  62. Minami H, Kawada K, Ebi H, Kitagawa K, Kim YI, Araki K, et al. Phase I and pharmacokinetic study of sorafenib, an oral multikinase inhibitor, in Japanese patients with advanced refractory solid tumors. Cancer Sci. 2008;99:1492–8.

    Article  PubMed  CAS  Google Scholar 

  63. Aragon-Ching JB, Jain L, Gulley JL, Arlen PM, Wright JJ, Steinberg SM, et al. Final analysis of a phase II trial using sorafenib for metastatic castration-resistant prostate cancer. BJU Int. 2009;103:1636–40.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  64. Okamoto I, Miyazaki M, Morinaga R, Kaneda H, Ueda S, Hasegawa Y, et al. Phase I clinical and pharmacokinetic study of sorafenib in combination with carboplatin and paclitaxel in patients with advanced non-small cell lung cancer. Invest New Drugs. 2010;28:844–53.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  65. Duran I, Hotté SJ, Hirte H, Chen EX, MacLean M, Turner S, et al. Phase I targeted combination trial of sorafenib and erlotinib in patients with advanced solid tumors. Clin Cancer Res. 2007;13:4849–57.

    Article  PubMed  CAS  Google Scholar 

  66. Kane RC, Farrell AT, Saber H, Tang S, Williams G, Jee JM, et al. Sorafenib for the treatment of advanced renal cell carcinoma. Clin Cancer Res. 2006;12:7271–8.

    Article  PubMed  CAS  Google Scholar 

  67. Lathia C, Lettieri J, Cihon F, Gallentine M, Radtke M, Sundaresan P. Lack of effect of ketoconazole-mediated CYP3A inhibition on sorafenib clinical pharmacokinetics. Cancer Chemother Pharmacol. 2006;57:685–92.

    Article  PubMed  CAS  Google Scholar 

  68. Miller AA, Murry DJ, Owzar K, Hollis DR, Kennedy EB, Abou-Alfa G, et al. Phase I and pharmacokinetic study of sorafenib in patients with hepatic or renal dysfunction: CALGB 60301. J Clin Oncol. 2009;27:1800–5.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  69. Flaherty KT, Lathia C, Frye RF, Schuchter L, Redlinger M, Rosen M, et al. Interaction of sorafenib and cytochrome P450 isoenzymes in patients with advanced melanoma: a phase I/II pharmacokinetic interaction study. Cancer Chemother Pharmacol. 2011;68:1111–8.

    Article  PubMed  CAS  Google Scholar 

  70. Keating GM, Santoro A. Sorafenib: a review of its use in advanced hepatocellular carcinoma. Drugs. 2009;69:223–40.

    Article  PubMed  CAS  Google Scholar 

  71. Mross K, Steinbild S, Baas F, Gmehling D, Radtke M, Voliotis D, et al. Results from an in vitro and a clinical/pharmacological phase I study with the combination irinotecan and sorafenib. Eur J Cancer. 2007;43:55–63.

    Article  PubMed  CAS  Google Scholar 

  72. Kupsch P, Henning BF, Passarge K, Richly H, Wiesemann K, Hilger RA, et al. Results of a phase I trial of sorafenib (BAY 43-9006) in combination with oxaliplatin in patients with refractory solid tumors, including colorectal cancer. Clin Colorectal Cancer. 2005;5:188–96.

    Article  PubMed  Google Scholar 

  73. Awada A, Hendlisz A, Christensen O, Lathia CD, Bartholomeus S, Lebrun F, et al. Phase I trial to investigate the safety, pharmacokinetics and efficacy of sorafenib combined with docetaxel in patients with advanced refractory solid tumours. Eur J Cancer. 2012;48:465–74.

    Article  PubMed  CAS  Google Scholar 

  74. Siu LL, Awada A, Takimoto CH, Piccart M, Schwartz B, Giannaris T, et al. Phase I trial of sorafenib and gemcitabine in advanced solid tumors with an expanded cohort in advanced pancreatic cancer. Clin Cancer Res. 2006;12:144–51.

    Article  PubMed  CAS  Google Scholar 

  75. Escudier B, Lassau N, Angevin E, Soria JC, Chami L, Lamuraglia M, et al. Phase I trial of sorafenib in combination with IFN alpha-2a in patients with unresectable and/or metastatic renal cell carcinoma or malignant melanoma. Clin Cancer Res. 2007;13:1801–9.

    Article  PubMed  CAS  Google Scholar 

  76. Lagas JS, van Waterschoot RA, Sparidans RW, Wagenaar E, Beijnen JH, Schinkel AH. Breast cancer resistance protein and P-glycoprotein limit sorafenib brain accumulation. Mol Cancer Ther. 2010;9:319–26.

    Article  PubMed  CAS  Google Scholar 

  77. Furuse J, Ishii H, Nakachi K, Suzuki E, Shimizu S, Nakajima K. Phase I study of sorafenib in Japanese patients with hepatocellular carcinoma. Cancer Sci. 2008;99:159–65.

    PubMed  CAS  Google Scholar 

  78. FDA. Highlights of prescribing information: sunitinib (Sutent). 2014. http://www.accessdata.fda.gov/drugsatfda_docs/label/2014/021938s027lbl.pdf. Accessed Jan 2015.

  79. EMA. Summary of product characteristics: sunitinib (Sutent). 2014. http://www.ema.europa.eu/docs/en_GB/document_library/EPAR_-_Product_Information/human/000687/WC500057737.pdf. Accessed Jan 2015.

  80. Deeks ED, Keating GM. Sunitinib. Drugs. 2006;66(17):2255–66.

    Article  PubMed  CAS  Google Scholar 

  81. Bello CL, Sherman L, Zhou J, Verkh L, Smeraglia J, Mount J, et al. Effect of food on the pharmacokinetics of sunitinib malate (SU11248), a multi-targeted receptor tyrosine kinase inhibitor: results from a phase I study in healthy subjects. Anticancer Drugs. 2006;17(3):353–8.

    Article  PubMed  CAS  Google Scholar 

  82. Faivre S, Delbaldo C, Vera K, Robert C, Lozahic S, Lassau N, et al. Safety, pharmacokinetic, and antitumor activity of SU11248, a novel oral multitarget tyrosine kinase inhibitor, in patients with cancer. J Clin Oncol. 2006;24:25–35.

    Article  PubMed  CAS  Google Scholar 

  83. Britten CD, Kabbinavar F, Hecht JR, Bello CL, Li J, Baum C, et al. A phase I and pharmacokinetic study of sunitinib administered daily for 2 weeks, followed by a 1-week off period. Cancer Chemother Pharmacol. 2008;61:515–24.

    Article  PubMed  CAS  Google Scholar 

  84. Khosravan R, Toh M, Garrett M, La Fargue J, Ni G, Marbury TC, et al. Pharmacokinetics and safety of sunitinib malate in subjects with impaired renal function. J Clin Pharmacol. 2010;50:472–81.

    Article  PubMed  CAS  Google Scholar 

  85. Shirao K, Nishida T, Doi T, Komatsu Y, Muro K, Li Y, et al. Phase I/II study of sunitinib malate in Japanese patients with gastrointestinal stromal tumor after failure of prior treatment with imatinib mesylate. Invest New Drugs. 2010;28(6):866–75.

    Article  PubMed  CAS  Google Scholar 

  86. Bello CL, Garrett M, Sherman L, Smeraglia J, Ryan B, Toh M. Pharmacokinetics of sunitinib malate in subjects with hepatic impairment. Cancer Chemother Pharmacol. 2010;66:699–707.

    Article  PubMed  CAS  Google Scholar 

  87. Fountzilas G, Fragkoulidi A, Kalogera-Fountzila A, Nikolaidou M, Bobos M, Calderaro J, et al. A phase II study of sunitinib in patients with recurrent and/or metastatic non-nasopharyngeal head and neck cancer. Cancer Chemother Pharmacol. 2010;65:649–60.

    Article  PubMed  CAS  Google Scholar 

  88. Goodman VL, Rock EP, Dagher R, Ramchandani RP, Abraham S, Gobburu JV, et al. Approval summary: sunitinib for the treatment of imatinib refractory or intolerant gastrointestinal stromal tumors and advanced renal cell carcinoma. Clin Cancer Res. 2007;13:1367–73.

    Article  PubMed  CAS  Google Scholar 

  89. Sakamoto KM. Su-11248 Sugen. Curr Opin Investig Drugs. 2004;5:1329–39.

    PubMed  CAS  Google Scholar 

  90. Houk BE, Bello CL, Kang D, Amantea M. A population pharmacokinetic meta-analysis of sunitinib malate (SU11248) and its primary metabolite (SU12662) in healthy volunteers and oncology patients. Clin Cancer Res. 2009;15:2497–506.

    Article  PubMed  CAS  Google Scholar 

  91. van Erp NP, Gelderblom H, Guchelaar HJ. Clinical pharmacokinetics of tyrosine kinase inhibitors. Cancer Treat Rev. 2009;35:692–706.

    Article  PubMed  CAS  Google Scholar 

  92. Adams VR, Leggas M. Sunitinib malate for the treatment of metastatic renal cell carcinoma and gastrointestinal stromal tumors. Clin Ther. 2007;29:1338–53.

    Article  PubMed  CAS  Google Scholar 

  93. Kozloff M, Chuang E, Starr A, Gowland PA, Cataruozolo PE, Collier M, et al. An exploratory study of sunitinib plus paclitaxel as first-line treatment for patients with advanced breast cancer. Ann Oncol. 2010;21:1436–41.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  94. Bergh J, Mariani G, Cardoso F, Liljegren A, Awada A, Viganò L, et al. Clinical and pharmacokinetic study of sunitinib and docetaxel in women with advanced breast cancer. Breast. 2012;21:507–13.

    Article  PubMed  Google Scholar 

  95. Robert F, Sandler A, Schiller JH, Liu G, Harper K, Verkh L, et al. Sunitinib in combination with docetaxel in patients with advanced solid tumors: a phase I dose-escalation study. Cancer Chemother Pharmacol. 2010;66:669–80.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  96. FDA. Highlights of prescribing information: vandetanib (Caprelsa®). 2014. http://www.accessdata.fda.gov/drugsatfda_docs/label/2014/022405s007lbl.pdf. Accessed Jan 2015.

  97. EMA. Summary of product characteristics: vandetanib (Caprelsa). 2014. http://www.ema.europa.eu/docs/en_GB/document_library/EPAR_-_Product_Information/human/002315/WC500123555.pdf). Accessed Jan 2015.

  98. Sahtornsumetee S, Rich JN. Vandetanib (ZD6474), a novel multitargeted kinase inhibitor, in cancer therapy. Drugs Today. 2006;42:657.

    Article  CAS  Google Scholar 

  99. Holden SN, Eckhardt SG, Basser R, de Boer R, Rischin D, Green M, et al. Clinical evaluation of ZD6474, an orally active inhibitor of VEGF and EGF receptor signaling, in patients with solid, malignant tumors. Ann Oncol. 2005;16:1391–7.

    Article  PubMed  CAS  Google Scholar 

  100. Michael M, Gibbs P, Smith R, Godwood A, Oliver S, Tebbutt N. Open-label phase I trial of vandetanib in combination with mFOLFOX6 in patients with advanced colorectal cancer. Invest New Drugs. 2009;27:253–61.

    Article  PubMed  CAS  Google Scholar 

  101. Tamura T, Minami H, Yamada Y, Yamamoto N, Shimoyama T, Murakami H, et al. A phase I dose-escalation study of ZD6474 in Japanese patients with solid, malignant tumors. J Thorac Oncol. 2006;1:1002–9.

    Article  PubMed  Google Scholar 

  102. Martin P, Oliver S, Robertson J, Kennedy SJ, Read J, Duvauchelle T. Pharmacokinetic drug interactions with vandetanib during coadministration with rifampicin or itraconazole. Drugs R D. 2011;11:37–51.

    Article  PubMed  PubMed Central  Google Scholar 

  103. Johansson S, Read J, Oliver S, Steinberg M, Li Y, Lisbon E, et al. Pharmacokinetic evaluations of the co-administrations of vandetanib and metformin, digoxin, midazolam, omeprazole or ranitidine. Clin Pharmacokinet. 2014;53:837–47.

    Article  PubMed  CAS  Google Scholar 

  104. Li J, Zhao X, Chen L, Guo H, Lv F, Jia K, et al. Safety and pharmacokinetics of novel selective vascular endothelial growth factor receptor-2 inhibitor YN968D1 in patients with advanced malignancies. BMC Cancer. 2010;10:529.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  105. Ding J, Chen X, Gao Z, Dai X, Li L, Xie C, et al. Metabolism and pharmacokinetics of novel selective vascular endothelial growth factor receptor-2 inhibitor apatinib in humans. Drug Metab Dispos. 2013;41:1195–210.

    Article  PubMed  CAS  Google Scholar 

  106. Dempke WC, Zippel R. Brivanib, a novel dual VEGF-R2/bFGF-R inhibitor. Anticancer Res. 2010;30:4477–83.

    PubMed  CAS  Google Scholar 

  107. Garrett CR, Siu LL, El-Khoueiry A, Buter J, Rocha-Lima CM, Marshall J, et al. Phase I dose-escalation study to determine the safety, pharmacokinetics and pharmacodynamics of brivanib alaninate in combination with full-dose cetuximab in patients with advanced gastrointestinal malignancies who have failed prior therapy. Br J Cancer. 2011;105:44–52.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  108. Mekhail T, Masson E, Fischer BS, Gong J, Iyer R, Pursley J, et al. Metabolism, excretion, and pharmacokinetics of oral brivanib in patients with advanced or metastatic solid tumors. Drug Metab Dispos. 2010;38:1962–6.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  109. Jonker DJ, Rosen LS, Sawyer MB, de Braud F, Wilding G, Sweeney CJ, et al. A phase I study to determine the safety, pharmacokinetics and pharmacodynamics of a dual VEGFR and FGFR inhibitor, brivanib, in patients with advanced or metastatic solid tumors. Ann Oncol. 2011;22:1413–9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  110. LoRusso P, Shapiro GI, Hurwitz H, Pilat MJ, Chemidlin J, Kollia G, et al. Lack of food effect on single-dose pharmacokinetics of brivanib, and safety and efficacy following multiple doses in subjects with advanced or metastatic solid tumors. Cancer Chemother Pharmacol. 2011;68:1377–8.

    Article  PubMed  CAS  Google Scholar 

  111. Gong J, Gan J, Caceres-Cortes J, Christopher LJ, Arora V, Masson E, et al. Metabolism and disposition of [14C]brivanib alaninate after oral administration to rats, monkeys, and humans. Drug Metab Dispos. 2011;39:891–903.

    Article  PubMed  CAS  Google Scholar 

  112. Gong J, Gan J, Masson E, Syed S, Xia YQ, Williams D, et al. Metabolic chiral inversion of brivanib and its relevance to safety and pharmacology. Drug Metab Dispos. 2012;40:2374–80.

    Article  PubMed  CAS  Google Scholar 

  113. El-Khoueiry A, Posey JA, Castillo Ferrando JR, Krishnamurthi SS, Syed S, Kollia G, et al. The effects of liver impairment on the pharmacokinetics of brivanib, a dual inhibitor of fibroblast growth factor receptor and vascular endothelial growth factor receptor tyrosine kinases. Cancer Chemother Pharmacol. 2013;72:53–64.

    Article  PubMed  CAS  Google Scholar 

  114. U.S. National Institute of Health. ClinicalTrials.gov. Search results for brivanib studies. https://clinicaltrials.gov/ct2/results?term=brivanib&Search=Search. Accessed Jan 2015.

  115. Wedge SR, Kendrew J, Hennequin LF, Valentine PJ, Barry ST, Brave SR, et al. AZD2171: a highly potent, orally bioavailable, vascular endothelial growth factor receptor-2 tyrosine kinase inhibitor for the treatment of cancer. Cancer Res. 2005;65:4389–400.

    Article  PubMed  CAS  Google Scholar 

  116. Drevs J, Siegert P, Medinger M, Mross K, Strecker R, Zirrgiebel U, et al. Phase I clinical study of AZD2171, an oral vascular endothelial growth factor signaling inhibitor, in patients with advanced solid tumors. J Clin Oncol. 2007;25:3045–54.

    Article  PubMed  CAS  Google Scholar 

  117. Nikolinakos P, Heymach JV. The tyrosine kinase inhibitor cediranib for non-small cell lung cancer and other thoracic malignancies. J Thorac Oncol. 2008;3:S131–4.

    Article  PubMed  Google Scholar 

  118. Cunningham D, Wong RP, D’Haens G, Douillard JY, Robertson J, Stone AM, et al. HORIZON I study group. Cediranib with mFOLFOX6 vs bevacizumab with mFOLFOX6 in previously treated metastatic colorectal cancer. Br J Cancer. 2013;108:493–502.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  119. Batchelor TT, Mulholland P, Neyns B, Nabors LB, Campone M, Wick A, et al. Phase III randomized trial comparing the efficacy of cediranib as monotherapy, and in combination with lomustine, versus lomustine alone in patients with recurrent glioblastoma. J Clin Oncol. 2013;31:3212–8.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  120. Sridhar SS, Mackenzie MJ, Hotte SJ, Mukherjee SD, Tannock IF, Murray N, et al. A phase II study of cediranib (AZD 2171) in treatment naive patients with progressive unresectable recurrent or metastatic renal cell carcinoma. A trial of the PMH phase 2 consortium. Invest New Drugs. 2013;31:1008–15.

    Article  PubMed  CAS  Google Scholar 

  121. Mulders P, Hawkins R, Nathan P, de Jong I, Osanto S, Porfiri E, et al. Cediranib monotherapy in patients with advanced renal cell carcinoma: results of a randomised phase II study. Eur J Cancer. 2012;48:527–37.

    Article  PubMed  CAS  Google Scholar 

  122. Liu JF, Barry WT, Birrer M, Lee JM, Buckanovich RJ, Fleming GF, et al. Combination cediranib and olaparib versus olaparib alone for women with recurrent platinum-sensitive ovarian cancer: a randomised phase 2 study. Lancet Oncol. 2014;15:1207–14.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  123. Ryan CJ, Stadler WM, Roth B, Hutcheon D, Conry S, Puchalski T, et al. Phase I dose escalation and pharmacokinetic study of AZD2171, an inhibitor of the vascular endothelial growth factor receptor tyrosine kinase, in patients with hormone refractory prostate cancer (HRPC). Invest New Drugs. 2007;25:445–51.

    Article  PubMed  CAS  Google Scholar 

  124. van Cruijsen H, Voest EE, Punt CJ, Hoekman K, Witteveen PO, Meijerink MR, et al. Phase I evaluation of cediranib, a selective VEGFR signalling inhibitor, in combination with gefitinib in patients with advanced tumours. Eur J Cancer. 2010;46:901–11.

    Article  PubMed  CAS  Google Scholar 

  125. Yamamoto N, Tamura T, Yamada K, Yamamoto N, Yamada K, Yamada Y, et al. Phase I, dose escalation and pharmacokinetic study of cediranib (RECENTIN), a highly potent and selective VEGFR signaling inhibitor, in Japanese patients with advanced solid tumors. Cancer Chemother Pharmacol. 2009;64:1165–72.

    Article  PubMed  CAS  Google Scholar 

  126. Chen E, Jonker D, Gauthier I, MacLean M, Wells J, Powers J, et al. Phase I study of cediranib in combination with oxaliplatin and infusional 5-fluorouracil in patients with advanced colorectal cancer. Clin Cancer Res. 2009;15:1481–6.

    Article  PubMed  CAS  Google Scholar 

  127. Goss G, Shepherd FA, Laurie S, Gauthier I, Leighl N, Chen E, et al. A phase I and pharmacokinetic study of daily oral cediranib, an inhibitor of vascular endothelial growth factor tyrosine kinases, in combination with cisplatin and gemcitabine in patients with advanced non-small cell lung cancer: a study of the National Cancer Institute of Canada Clinical Trials Group. Eur J Cancer. 2009;45:782–8.

    Article  PubMed  CAS  Google Scholar 

  128. Laurie SA, Gauthier I, Arnold A, Shepherd FA, Ellis PM, Chen E, et al. Phase I and pharmacokinetic study of daily oral AZD2171, an inhibitor of vascular endothelial growth factor tyrosine kinases, in combination with carboplatin and paclitaxel in patients with advanced non-small-cell lung cancer: the National Cancer Institute of Canada clinical trials group. J Clin Oncol. 2008;26:1871–8.

    Article  PubMed  CAS  Google Scholar 

  129. Tao LY, Liang YJ, Wang F, Chen LM, Yan YY, Dai CL, et al. Cediranib (recentin, AZD2171) reverses ABCB1- and ABCC1-mediated multidrug resistance by inhibition of their transport function. Cancer Chemother Pharmacol. 2009;64:961–9.

    Article  PubMed  CAS  Google Scholar 

  130. Hyams DM, Chan A, de Oliveira C, Snyder R, Vinholes J, Audeh MW, et al. Cediranib in combination with fulvestrant in hormone-sensitive metastatic breast cancer: a randomized phase II study. Invest New Drugs. 2013;31:1345–54.

    Article  PubMed  CAS  Google Scholar 

  131. Hong DS, Garrido-Laguna I, Ekmekcioglu S, Falchook GS, Naing A, Wheler JJ, et al. Dual inhibition of the vascular endothelial growth factor pathway: a phase 1 trial evaluating bevacizumab and AZD2171 (cediranib) in patients with advanced solid tumors. Cancer. 2014;120:2164–73.

    Article  PubMed  CAS  Google Scholar 

  132. U.S. National Institute of Health. ClinicalTrials.gov. Search results for dovitinib studies. https://clinicaltrials.gov/ct2/results?term=dovitinib&pg=1. Accessed Jan 2015.

  133. Sarker D, Molife R, Evans TR, Hardie M, Marriott C, Butzberger-Zimmerli P, et al. A phase I pharmacokinetic and pharmacodynamic study of TKI258, an oral, multitargeted receptor tyrosine kinase inhibitor in patients with advanced solid tumors. Clin Cancer Res. 2008;14:2075–81.

    Article  PubMed  CAS  Google Scholar 

  134. Kim KB, Chesney J, Robinson D, Gardner H, Shi MM, Kirkwood JM. Phase I/II and pharmacodynamic study of dovitinib (TKI258), an inhibitor of fibroblast growth factor receptors and VEGF receptors, in patients with advanced melanoma. Clin Cancer Res. 2011;17:7451–61.

    Article  PubMed  CAS  Google Scholar 

  135. Angevin E, Lopez-Martin JA, Lin CC, Gschwend JE, Harzstark A, Castellano D, et al. Phase I study of dovitinib (TKI258), an oral FGFR, VEGFR, and PDGFR inhibitor, in advanced or metastatic renal cell carcinoma. Clin Cancer Res. 2013;19:1257–68.

    Article  PubMed  CAS  Google Scholar 

  136. Wang X, Kay A, Anak O, Angevin E, Escudier B, Zhou W, et al. Population pharmacokinetic/pharmacodynamic modeling to assist dosing schedule selection for dovitinib. J Clin Pharmacol. 2013;53:14–20.

    Article  PubMed  CAS  Google Scholar 

  137. Dubbelman AC, Upthagrove A, Beijnen JH, Marchetti S, Tan E, Krone K, et al. Disposition and metabolism of 14C-dovitinib (TKI258), an inhibitor of FGFR and VEGFR, after oral administration in patients with advanced solid tumors. Cancer Chemother Pharmacol. 2012;70:653–63.

    Article  PubMed  CAS  Google Scholar 

  138. Sharma S, Britten CD, Mortimer J, Kulkarni S, Quinlan M, Liu A, et al. The effect of formulation and food consumption on the bioavailability of dovitinib (TKI258) in patients with advanced solid tumors. Cancer Chemother Pharmacol. 2014;74:867–74.

    Article  PubMed  CAS  Google Scholar 

  139. Powles T, Foreshew SJ, Shamash J, Sarwar N, Crabb S, Sahdev A, et al. A phase Ib study investigating the combination of everolimus and dovitinib in vascular endothelial growth factor refractory clear cell renal cancer. Eur J Cancer. 2014;50:2057–64.

    Article  PubMed  CAS  Google Scholar 

  140. Galsky MD, Posner M, Holcombe RF, Lee KM, Misiukiewicz K, Tsao CK, et al. Phase Ib study of dovitinib in combination with gemcitabine plus cisplatin or gemcitabine plus carboplatin in patients with advanced solid tumors. Cancer Chemother Pharmacol. 2014;74:465–71.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  141. U.S. National Institute of Health. ClinicalTrials.gov. Search results for foretinib studies. https://clinicaltrials.gov/ct2/results?term=foretinib. Accessed Jan 2015.

  142. Qian F, Engst S, Yamaguchi K, Yu P, Won KA, Mock L, et al. Inhibition of tumor cell growth, invasion, and metastasis by EXEL-2880 (XL880, GSK1363089), a novel inhibitor of HGF and VEGF receptor tyrosine kinases. Cancer Res. 2009;69:8009–16.

    Article  PubMed  CAS  Google Scholar 

  143. Eder JP, Shapiro GI, Appleman LJ, Zhu AX, Miles D, Keer H, et al. A phase I study of foretinib, a multi-targeted inhibitor of c-Met and vascular endothelial growth factor receptor 2. Clin Cancer Res. 2010;16:3507–16.

    Article  PubMed  CAS  Google Scholar 

  144. Dufies M, Jacquel A, Robert G, Cluzeau T, Puissant A, Fenouille N, et al. Mechanism of action of the multikinase inhibitor foretinib. Cell Cycle. 2011;10:4138–48.

    Article  PubMed  CAS  Google Scholar 

  145. Naing A, Kurzrock R, Adams LM, Kleha JF, Laubscher KH, Bonate PL, et al. A comparison of the pharmacokinetics of the anticancer MET inhibitor foretinib free base tablet formulation to bisphosphate salt capsule formulation in patients with solid tumors. Invest New Drugs. 2012;30:327–34.

    Article  PubMed  CAS  Google Scholar 

  146. Shapiro GI, McCallum S, Adams LM, Sherman L, Weller S, Swann S, et al. A phase 1 dose-escalation study of the safety and pharmacokinetics of once-daily oral foretinib, a multi-kinase inhibitor, in patients with solid tumors. Invest New Drugs. 2013;31:742–50.

    Article  PubMed  CAS  Google Scholar 

  147. De Luca A, Normanno N. Tivozanib, a pan-VEGFR tyrosine kinase inhibitor for the potential treatment of solid tumors. IDrugs. 2010;13:636–45.

    PubMed  Google Scholar 

  148. U.S. National Institute of Health. ClinicalTrials.gov. Search results for tivozanib studies. https://clinicaltrials.gov/ct2/results?term=tivozanib. Accessed Jan 2015.

  149. Niwakawa M, Yamaguchi R, Onozawa Y, Yasui H, Taku K, Naito T, et al. Phase I study of highly selective inhibitor of VEGFR tyrosine kinase, tivozanib, in Japanese patients with solid tumors. Cancer Sci. 2013;104:1039–44.

    Article  PubMed  CAS  Google Scholar 

  150. Nosov DA, Esteves B, Lipatov ON, Lyulko AA, Anischenko AA, Chacko RT, et al. Antitumor activity and safety of tivozanib (AV-951) in a phase II randomized discontinuation trial in patients with renal cell carcinoma. J Clin Oncol. 2012;30:1678–85.

    Article  PubMed  CAS  Google Scholar 

  151. Mayer EL, Scheulen ME, Beckman J, Richly H, Duarte A, Cotreau MM, et al. A phase I dose-escalation study of the VEGFR inhibitor tivozanib hydrochloride with weekly paclitaxel in metastatic breast cancer. Breast Cancer Res Treat. 2013;140:331–9.

    Article  PubMed  CAS  Google Scholar 

  152. Fishman MN, Srinivas S, Hauke RJ, Amato RJ, Esteves B, Cotreau MM, et al. Phase Ib study of tivozanib (AV-951) in combination with temsirolimus in patients with renal cell carcinoma. Eur J Cancer. 2013;49:2841–50.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  153. Pytel D, Sliwinski T, Poplawski T, Ferriola D, Majsterek I. Tyrosine kinase blockers: new hope for successful cancer therapy. Anticancer Agents Med Chem. 2009;9:66–76.

    Article  PubMed  CAS  Google Scholar 

  154. Morgan B, Thomas AL, Drevs J, Hennig J, Buchert M, Jivan A, et al. Dynamic contrast-enhanced magnetic resonance imaging as a biomarker for the pharmacological response of PTK787/ZK 222584, an inhibitor of the vascular endothelial growth factor receptor tyrosine kinases, in patients with advanced colorectal cancer and liver metastases: results from two phase I studies. J Clin Oncol. 2003;21:3955–64.

    Article  PubMed  CAS  Google Scholar 

  155. Mross K, Drevs J, Müller M, Medinger M, Marmé D, Hennig J, et al. Phase I clinical and pharmacokinetic study of PTK/ZK, a multiple VEGF receptor inhibitor, in patients with liver metastases from solid tumours. Eur J Cancer. 2005;41:1291–9.

    Article  PubMed  CAS  Google Scholar 

  156. Lee L, Sharma S, Morgan B, Allegrini P, Schnell C, Brueggen J, et al. Biomarkers for assessment of pharmacologic activity for a vascular endothelial growth factor (VEGF) receptor inhibitor, PTK787/ZK 222584 (PTK/ZK): translation of biological activity in a mouse melanoma metastasis model to phase I studies in patients with advanced colorectal cancer with liver metastases. Cancer Chemother Pharmacol. 2006;57:761–71.

    Article  PubMed  CAS  Google Scholar 

  157. Scott EN, Meinhardt G, Jacques C, Laurent D, Thomas AL. Vatalanib: the clinical development of a tyrosine kinase inhibitor of angiogenesis in solid tumours. Expert Opin Investig Drugs. 2007;16:367–79.

    Article  PubMed  CAS  Google Scholar 

  158. Jost LM, Gschwind HP, Jalava T, Wang Y, Guenther C, Souppart C, et al. Metabolism and disposition of vatalanib (PTK787/ZK-222584) in cancer patients. Drug Metab Dispos. 2006;34:1817–28.

    Article  PubMed  CAS  Google Scholar 

  159. Thomas AL, Trarbach T, Bartel C, Laurent D, Henry A, Poethig M, et al. A phase IB, open-label dose-escalating study of the oral angiogenesis inhibitor PTK787/ZK 222584 (PTK/ZK), in combination with FOLFOX4 chemotherapy in patients with advanced colorectal cancer. Ann Oncol. 2007;18:782–8.

    Article  PubMed  CAS  Google Scholar 

  160. Sharma S, Freeman B, Turner J, Symanowski J, Manno P, Berg W, et al. A phase I trial of PTK787/ZK222584 in combination with pemetrexed and cisplatin in patients with advanced solid tumors. Invest New Drugs. 2009;27:63–5.

    Article  PubMed  CAS  Google Scholar 

  161. Chiorean EG, Malireddy S, Younger AE, Jones DR, Waddell MJ, Sloop MI, et al. A phase I dose escalation and pharmacokinetic study of vatalanib (PTK787/ZK 222584) in combination with paclitaxel in patients with advanced solid tumors. Cancer Chemother Pharmacol. 2010;66:441–8.

    Article  PubMed  CAS  Google Scholar 

  162. International Transporter Consortium, Giacomini KM, Huang SM, Tweedie DJ, Benet LZ, Brouwer KL, Chu X, et al. Membrane transporters in drug development. Nat Rev Drug Discov. 2010;9:215–36.

    Article  CAS  Google Scholar 

  163. Wulkersdorfer B, Wanek T, Bauer M, Zeitlinger M, Müller M, Langer O. Using positron emission tomography to study transporter-mediated drug-drug interactions in tissues. Clin Pharmacol Ther. 2014;96:206–13.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Markus Zeitlinger.

Ethics declarations

Funding

No source of funding was used to assist in the preparation of this review.

Conflict of interest

In adherence to the guidelines of the International Committee of Medical Journal Editors, none of the authors working on this manuscript, namely Beatrix Wulkersdorfer, Markus Zeitlinger and Monika Schmid, declare a conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wulkersdorfer, B., Zeitlinger, M. & Schmid, M. Pharmacokinetic Aspects of Vascular Endothelial Growth Factor Tyrosine Kinase Inhibitors. Clin Pharmacokinet 55, 47–77 (2016). https://doi.org/10.1007/s40262-015-0302-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40262-015-0302-2

Keywords

Navigation