Skip to main content
Log in

Placental Transfer of Antidepressant Medications: Implications for Postnatal Adaptation Syndrome

  • Review Article
  • Published:
Clinical Pharmacokinetics Aims and scope Submit manuscript

Abstract

Seven to thirteen percent of women are either prescribed or taking (depending on the study) an antidepressant during pregnancy. Because antidepressants freely cross into the intrauterine environment, we aim to summarize the current findings on placental transfer of antidepressants. Although generally low risk, antidepressants have been associated with postnatal adaptation syndrome (PNAS). Specifically, we explore whether the antidepressants most closely associated with PNAS (paroxetine, fluoxetine, venlafaxine) cross the placenta to a greater extent than other antidepressants. We review research on antidepressants in the context of placental anatomy, placental transport mechanisms, placental metabolism, pharmacokinetics, as well as non-placental maternal and fetal factors. This provides insight into the complexity involved in understanding how placental transfer of antidepressants may relate to adverse perinatal outcomes. Ultimately, from this data there is no pattern in which PNAS is related to placental transfer of antidepressant medications. In general, there is large interindividual variability for each type of antidepressant. To make the most clinically informed decisions about the use of antidepressants in pregnancy, studies that link maternal, placental and fetal genetic polymorphisms, placental transfer rates and infant outcomes are needed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bennett HA, Einarson A, Taddio A, Koren G, Einarson TR. Prevalence of depression during pregnancy: systematic review. Obstet Gynecol. 2004;103:698–709.

    Article  PubMed  Google Scholar 

  2. O’Hara MW, Wisner KL. Perinatal mental illness: definition, description and aetiology. Best Pract Res Clin Obstet Gynaecol. 2014;28:3–12.

    Article  PubMed  Google Scholar 

  3. Andrade SE, Raebel MA, Brown J, Lane K, Livingston J, Boudreau D, Rolnick SJ, Roblin D, Smith DH, Willy ME, Staffa JA, Platt R (2008) Use of antidepressant medications during pregnancy: a multisite study. Am J Obstet Gynecol 198:194.e1–5.

    Article  Google Scholar 

  4. Cooper WO, Willy ME, Pont SJ, Ray WA (2007) Increasing use of antidepressants in pregnancy. Am J Obstet Gynecol. 196:544.e1–5.

    Google Scholar 

  5. Ververs T, Kaasenbrood H, Visser G, Schobben F, de Jong-van den Berg L, Egberts T. Prevalence and patterns of antidepressant drug use during pregnancy. Eur J Clin Pharmacol. 2006;62:863–70.

    Article  CAS  PubMed  Google Scholar 

  6. Hendrick V, Stowe ZN, Altshuler LL, Hwang S, Lee E, Haynes D. Placental passage of antidepressant medications. Am J Psychiatry. 2003;160:993–6.

    Article  PubMed  Google Scholar 

  7. Byatt N, Deligiannidis KM, Freeman MP. Antidepressant use in pregnancy: a critical review focused on risks and controversies. Acta Psychiatr Scand. 2013;127:94–114.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  8. Forsberg L, Naver L, Gustafsson LL, Wide K. Neonatal adaptation in infants prenatally exposed to antidepressants—clinical monitoring using neonatal abstinence score. PLoS One. 2014;9:e111327.

    Article  PubMed Central  PubMed  Google Scholar 

  9. Moses-Kolko EL, Bogen D, Perel J, Bregar A, Uhl K, Levin B, Wisner KL. Neonatal signs after late in utero exposure to serotonin reuptake inhibitors: literature review and implications for clinical applications. JAMA. 2005;293:2372–83.

    Article  CAS  PubMed  Google Scholar 

  10. Ray S, Stowe ZN. The use of antidepressant medication in pregnancy. Best Pract Res Clin Obstet Gynaecol. 2014;28:71–83.

    Article  PubMed  Google Scholar 

  11. Giaginis C, Theocharis S, Tsantili-Kakoulidou A. Current toxicological aspects on drug and chemical transport and metabolism across the human placental barrier. Expert Opin Drug Metab Toxicol. 2012;8:1263–75.

    Article  CAS  PubMed  Google Scholar 

  12. Evseenko D, Paxton JW, Keelan JA. Active transport across the human placenta: impact on drug efficacy and toxicity. Expert Opin Drug Metab Toxicol. 2006;2:51–69.

    Article  CAS  PubMed  Google Scholar 

  13. Syme MR, Paxton JW, Keelan JA. Drug transfer and metabolism by the human placenta. Clin Pharmacokinet. 2004;43:487–514.

    Article  CAS  PubMed  Google Scholar 

  14. Wang JS, Newport DJ, Stowe ZN, Donovan JL, Pennell PB, DeVane CL. The emerging importance of transporter proteins in the psychopharmacological treatment of the pregnant patient. Drug Metab Rev. 2007;39:723–46.

    Article  CAS  PubMed  Google Scholar 

  15. DeVane CL, Stowe ZN, Donovan JL, Newport DJ, Pennell PB, Ritchie JC, et al. Therapeutic drug monitoring of psychoactive drugs during pregnancy in the genomic era: challenges and opportunities. J Psychopharmacol. 2006;20:54–9.

    Article  PubMed  Google Scholar 

  16. Bhuiyan M, Petropoulos S, Gibb W, Matthews SG. Sertraline alters multidrug resistance phosphoglycoprotein activity in the mouse placenta and fetal blood–brain barrier. Reprod Sci. 2012;19:407–15.

    Article  CAS  PubMed  Google Scholar 

  17. DeVane L, Goetzl LM, Ramamoorthy S. Exposing fetal drug exposure. Clin Pharmacol Ther. 2011;89:786–8.

    Article  CAS  PubMed  Google Scholar 

  18. Prouillac C, Lecoeur S. The role of the placenta in fetal exposure to xenobiotics: importance of membrane transporters and human models for transfer studies. Drug Metab Dispos. 2010;38:1623–35.

    Article  CAS  PubMed  Google Scholar 

  19. Hakkola J, Raunio H, Purkunen R, Pelkonen O, Saarikoski S, Cresteil T, et al. Detection of cytochrome P450 gene expression in human placenta in first trimester of pregnancy. Biochem Pharmacol. 1996;52:379–83.

    Article  CAS  PubMed  Google Scholar 

  20. Hakkola J, Pasanen M, Hukkanen J, Pelkonen O, Maenpaa J, Edwards RJ, et al. Expression of xenobiotic-metabolizing cytochrome P450 forms in human full-term placenta. Biochem Pharmacol. 1996;51:403–11.

    Article  CAS  PubMed  Google Scholar 

  21. Nishimura M, Yaguti H, Yoshitsugu H, Naito S, Satoh T. Tissue distribution of mRNA expression of human cytochrome P450 isoforms assessed by high-sensitivity real-time reverse transcription PCR. Yakugaku Zasshi. 2003;123:369–75.

    Article  CAS  PubMed  Google Scholar 

  22. Pasanen M. The expression and regulation of drug metabolism in human placenta. Adv Drug Deliv Rev. 1999;38:81–97.

    Article  CAS  PubMed  Google Scholar 

  23. Rytting E, Wang X, Vernikovskaya DI, Zhan Y, Bauer C, Abdel-Rahman SM, et al. Metabolism and disposition of bupropion in pregnant baboons (Papio cynocephalus). Drug Metab Dispos. 2014;42:1773–9.

    Article  CAS  PubMed  Google Scholar 

  24. Wang X, Abdelrahman DR, Zharikova OL, Patrikeeva SL, Hankins GD, Ahmed MS, et al. Bupropion metabolism by human placenta. Biochem Pharmacol. 2010;79:1684–90.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  25. Mattison D. Clinical pharmacology during pregnancy. San Diego: Academic Press; 2013.

    Google Scholar 

  26. Heikkinen T, Ekblad U, Palo P, Laine K. Pharmacokinetics of fluoxetine and norfluoxetine in pregnancy and lactation. Clin Pharmacol Ther. 2003;73:330–7.

    Article  CAS  PubMed  Google Scholar 

  27. Hiemke C, Hartter S. Pharmacokinetics of selective serotonin reuptake inhibitors. Pharmacol Ther. 2000;85:11–28.

    Article  CAS  PubMed  Google Scholar 

  28. DeVane CL, Simpkins JW. Pharmacokinetics of imipramine and its major metabolites in pregnant rats and their fetuses following a single dose. Drug Metab Dispos. 1985;13:438–42.

    CAS  PubMed  Google Scholar 

  29. Sit DK, Perel JM, Helsel JC, Wisner KL. Changes in antidepressant metabolism and dosing across pregnancy and early postpartum. J Clin Psychiatry. 2008;69:652–8.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  30. Shea AK, Oberlander TF, Rurak D. Fetal serotonin reuptake inhibitor antidepressant exposure: maternal and fetal factors. Can J Psychiatry. 2012;57:523–9.

    PubMed  Google Scholar 

  31. Olesen OV, Linnet K. Metabolism of the tricyclic antidepressant amitriptyline by cDNA-expressed human cytochrome P450 enzymes. Pharmacology. 1997;55:235–43.

    Article  CAS  PubMed  Google Scholar 

  32. Jornil J, Jensen KG, Larsen F, Linnet K. Risk assessment of accidental nortriptyline poisoning: the importance of cytochrome P450 for nortriptyline elimination investigated using a population-based pharmacokinetic simulator. Eur J Pharm Sci. 2011;44:265–72.

    Article  CAS  PubMed  Google Scholar 

  33. Tsai MH, Lin KM, Hsiao MC, Shen WW, Lu ML, Tang HS, et al. Genetic polymorphisms of cytochrome P450 enzymes influence metabolism of the antidepressant escitalopram and treatment response. Pharmacogenomics. 2010;11:537–46.

    Article  CAS  PubMed  Google Scholar 

  34. Hesse LM, He P, Krishnaswamy S, Hao Q, Hogan K, von Moltke LL, et al. Pharmacogenetic determinants of interindividual variability in bupropion hydroxylation by cytochrome P450 2B6 in human liver microsomes. Pharmacogenetics. 2004;14:225–38.

    Article  CAS  PubMed  Google Scholar 

  35. Rotzinger S, Fang J, Baker GB. Trazodone is metabolized to m-chlorophenylpiperazine by CYP3A4 from human sources. Drug Metab Dispos. 1998;26:572–5.

    CAS  PubMed  Google Scholar 

  36. Nielsen KK, Flinois JP, Beaune P, Brosen K. The biotransformation of clomipramine in vitro, identification of the cytochrome P450s responsible for the separate metabolic pathways. J Pharmacol Exp Ther. 1996;277:1659–64.

    CAS  PubMed  Google Scholar 

  37. McLeod HL, Evans WE. Pharmacogenomics: unlocking the human genome for better drug therapy. Annu Rev Pharmacol Toxicol. 2001;41:101–21.

    Article  CAS  PubMed  Google Scholar 

  38. Hutson JR, Garcia-Bournissen F, Davis A, Koren G. The human placental perfusion model: a systematic review and development of a model to predict in vivo transfer of therapeutic drugs. Clin Pharmacol Ther. 2011;90:67–76.

    Article  CAS  PubMed  Google Scholar 

  39. Houston ML. The development of the baboon (Papio sp.) placenta during the fetal period of gestation. Am J Anat. 1969;126:17–29.

    Article  CAS  PubMed  Google Scholar 

  40. DeVane CL, Boulton DW, Miller LF, Miller RL. Pharmacokinetics of trazodone and its major metabolite m-chlorophenylpiperazine in plasma and brain of rats. Int J Neuropsychopharmacol. 1999;2:17–23.

    Article  CAS  PubMed  Google Scholar 

  41. DeVane CL. Pharmacokinetic correlates of fetal drug exposure. NIDA Res Monogr. 1991;114:18–36.

    CAS  PubMed  Google Scholar 

  42. Loughhead AM, Fisher AD, Newport DJ, Ritchie JC, Owens MJ, DeVane CL, Stowe ZN. Antidepressants in amniotic fluid: another route of fetal exposure. Am J Psychiatry. 2006;163:145–7.

    Article  PubMed  Google Scholar 

  43. Hostetter A, Ritchie JC, Stowe ZN. Amniotic fluid and umbilical cord blood concentrations of antidepressants in three women. Biol Psychiatry. 2000;48:1032–4.

    Article  CAS  PubMed  Google Scholar 

  44. Kim J, Riggs KW, Rurak DW. Stereoselective pharmacokinetics of fluoxetine and norfluoxetine enantiomers in pregnant sheep. Drug Metab Dispos. 2004;32:212–21.

    Article  CAS  PubMed  Google Scholar 

  45. Olivier JD, Valles A, van Heesch F, Afrasiab-Middelman A, Roelofs JJ, Jonkers M, et al. Fluoxetine administration to pregnant rats increases anxiety-related behavior in the offspring. Psychopharmacology (Berl). 2011;217:419–32.

    Article  CAS  Google Scholar 

  46. Pohland RC, Byrd TK, Hamilton M, Koons JR. Placental transfer and fetal distribution of fluoxetine in the rat. Toxicol Appl Pharmacol. 1989;98:198–205.

    Article  CAS  PubMed  Google Scholar 

  47. Noorlander CW, Ververs FF, Nikkels PG, van Echteld CJ, Visser GH, Smidt MP. Modulation of serotonin transporter function during fetal development causes dilated heart cardiomyopathy and lifelong behavioral abnormalities. PLoS One. 2008;3:e2782.

    Article  PubMed Central  PubMed  Google Scholar 

  48. Contrera JF, Matthews EJ, Kruhlak NL, Benz RD. Estimating the safe starting dose in phase I clinical trials and no observed effect level based on QSAR modeling of the human maximum recommended daily dose. Regul Toxicol Pharmacol. 2004;40:185–206.

    Article  CAS  PubMed  Google Scholar 

  49. Heikkine T, Ekblad U, Laine K. Transplacental transfer of citalopram, fluoxetine and their primary demethylated metabolites in isolated perfused human placenta. BJOG. 2002;109:1003–8.

    Article  PubMed  Google Scholar 

  50. Mhanna MJ, Bennet JB 2nd, Izatt SD. Potential fluoxetine chloride (Prozac) toxicity in a newborn. Pediatrics. 1997;100:158–9.

    Article  CAS  PubMed  Google Scholar 

  51. Spencer MJ. Fluoxetine hydrochloride (Prozac) toxicity in a neonate. Pediatrics. 1993;92:721–2.

    CAS  PubMed  Google Scholar 

  52. Heikkinen T, Ekblad U, Kero P, Ekblad S, Laine K. Citalopram in pregnancy and lactation. Clin Pharmacol Ther. 2002;72:184–91.

    Article  PubMed  Google Scholar 

  53. Rampono J, Proud S, Hackett LP, Kristensen JH, Ilett KF. A pilot study of newer antidepressant concentrations in cord and maternal serum and possible effects in the neonate. Int J Neuropsychopharmacol. 2004;7:329–34.

    Article  CAS  PubMed  Google Scholar 

  54. Sit D, Perel JM, Wisniewski SR, Helsel JC, Luther JF, Wisner KL. Mother–infant antidepressant concentrations, maternal depression, and perinatal events. J Clin Psychiatry. 2011;72:994–1001.

    Article  PubMed Central  PubMed  Google Scholar 

  55. Devane CL. Pharmacogenetics and drug metabolism of newer antidepressant agents. J Clin Psychiatry. 1994;55(Suppl):38–45 (discussion 46–7).

    PubMed  Google Scholar 

  56. Rampono J, Simmer K, Ilett KF, Hackett LP, Doherty DA, Elliot R, et al. Placental transfer of SSRI and SNRI antidepressants and effects on the neonate. Pharmacopsychiatry. 2009;42:95–100.

    Article  CAS  PubMed  Google Scholar 

  57. Briggs GG, Ambrose PJ, Ilett KF, Hackett LP, Nageotte MP, Padilla G. Use of duloxetine in pregnancy and lactation. Ann Pharmacother. 2009;43:1898–902.

    Article  PubMed  Google Scholar 

  58. Boyce PM, Hackett LP, Ilett KF. Duloxetine transfer across the placenta during pregnancy and into milk during lactation. Arch Womens Ment Health. 2011;14:169–72.

    Article  PubMed  Google Scholar 

  59. Earhart AD, Patrikeeva S, Wang X, Abdelrahman DR, Hankins GD, Ahmed MS, et al. Transplacental transfer and metabolism of bupropion. J Matern Fetal Neonatal Med. 2010;23:409–16.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  60. Douglas BH, Hume AS. Placental transfer of imipramine, a basic, lipid-soluble drug. Am J Obstet Gynecol. 1967;99:573–5.

    CAS  PubMed  Google Scholar 

  61. Hume AS, Douglas BH. Placental transfer of desmethylimipramine. Am J Obstet Gynecol. 1968;101:915–7.

    CAS  PubMed  Google Scholar 

  62. Heikkinen T, Ekblad U, Laine K. Transplacental transfer of amitriptyline and nortriptyline in isolated perfused human placenta. Psychopharmacology (Berl). 2001;153:450–4.

    Article  CAS  Google Scholar 

  63. Sjoqvist F, Bergfors PG, Borga O, Lind M, Ygge H. Plasma disappearance of nortriptyline in a newborn infant following placental transfer from an intoxicated mother: evidence for drug metabolism. J Pediatr. 1972;80:496–500.

    Article  CAS  PubMed  Google Scholar 

  64. Loughhead AM, Stowe ZN, Newport DJ, Ritchie JC, DeVane CL, Owens MJ. Placental passage of tricyclic antidepressants. Biol Psychiatry. 2006;59:287–90.

    Article  CAS  PubMed  Google Scholar 

  65. Hale T. Medication and mothers’ milk. Amarillo: Hale Publishing; 2010.

    Google Scholar 

  66. Davanzo R, Copertino M, De Cunto A, Minen F, Amaddeo A. Antidepressant drugs and breastfeeding: a review of the literature. Breastfeed Med. 2011;6:89–98.

    Article  PubMed  Google Scholar 

  67. Rao N. The clinical pharmacokinetics of escitalopram. Clin Pharmacokinet. 2007;46:281–90.

    Article  CAS  PubMed  Google Scholar 

  68. Knadler MP, Lobo E, Chappell J, Bergstrom R. Duloxetine: clinical pharmacokinetics and drug interactions. Clin Pharmacokinet. 2011;50:281–94.

    Article  CAS  PubMed  Google Scholar 

  69. Bryant SG, Ereshefsky L. Antidepressant properties of trazodone. Clin Pharm. 1982;1:406–17.

    CAS  PubMed  Google Scholar 

  70. Satoh T, Yamamoto S, Moroi K. The metabolism and placental transfer of isocarboxazid in pregnant rats. Jpn J Pharmacol. 1972;22(5):629–33.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

No authors have any conflicts of interest. This review was funded by National Institute of Mental Health Grant K23 MH092399 (principal investigator Deborah Kim) and funded by National Institute of Mental Health Grant P50 MH099910 (principal investigator C. Neill Epperson).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Grace Ewing.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ewing, G., Tatarchuk, Y., Appleby, D. et al. Placental Transfer of Antidepressant Medications: Implications for Postnatal Adaptation Syndrome. Clin Pharmacokinet 54, 359–370 (2015). https://doi.org/10.1007/s40262-014-0233-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40262-014-0233-3

Keywords

Navigation