Skip to main content
Log in

Tramadol and O-Desmethyl Tramadol Clearance Maturation and Disposition in Humans: A Pooled Pharmacokinetic Study

  • Original Research Article
  • Published:
Clinical Pharmacokinetics Aims and scope Submit manuscript

Abstract

Background and Objectives

We aimed to study the impact of size, maturation and cytochrome P450 2D6 (CYP2D6) genotype activity score as predictors of intravenous tramadol disposition.

Methods

Tramadol and O-desmethyl tramadol (M1) observations in 295 human subjects (postmenstrual age 25 weeks to 84.8 years, weight 0.5–186 kg) were pooled. A population pharmacokinetic analysis was performed using a two-compartment model for tramadol and two additional M1 compartments. Covariate analysis included weight, age, sex, disease characteristics (healthy subject or patient) and CYP2D6 genotype activity. A sigmoid maturation model was used to describe age-related changes in tramadol clearance (CLPO), M1 formation clearance (CLPM) and M1 elimination clearance (CLMO). A phenotype-based mixture model was used to identify CLPM polymorphism.

Results

Differences in clearances were largely accounted for by maturation and size. The time to reach 50 % of adult clearance (TM50) values was used to describe maturation. CLPM (TM50 39.8 weeks) and CLPO (TM50 39.1 weeks) displayed fast maturation, while CLMO matured slower, similar to glomerular filtration rate (TM50 47 weeks). The phenotype-based mixture model identified a slow and a faster metabolizer group. Slow metabolizers comprised 9.8 % of subjects with 19.4 % of faster metabolizer CLPM. Low CYP2D6 genotype activity was associated with lower (25 %) than faster metabolizer CLPM, but only 32 % of those with low genotype activity were in the slow metabolizer group.

Conclusions

Maturation and size are key predictors of variability. A two-group polymorphism was identified based on phenotypic M1 formation clearance. Maturation of tramadol elimination occurs early (50 % of adult value at term gestation).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Grond S, Sablotzki A. Clinical pharmacology of tramadol. Clin Pharmacokinet. 2004;43(13):879–923.

    Article  CAS  PubMed  Google Scholar 

  2. Reeves RR, Burke RS. Tramadol: basic pharmacology and emerging concepts. Drugs Today. 2008;44(11):827–36.

    Article  CAS  PubMed  Google Scholar 

  3. Ardakani YH, Rouini MR. Pharmacokinetics of tramadol and its three main metabolites in healthy male and female volunteers. Biopharm Drug Dispos. 2007;28(9):527–34.

    Article  CAS  PubMed  Google Scholar 

  4. Gong L, Stamer UM, Tzvetkov MV, et al. PharmGKB summary: tramadol pathway. Pharmacogenet Genomics. 2014;24(7):374–80.

    Article  CAS  PubMed  Google Scholar 

  5. Allegaert K, Anderson BJ, Verbesselt R, et al. Tramadol disposition in the very young: an attempt to assess in vivo cytochrome P-450 2D6 activity. Br J Anaesth. 2005;95(2):231–9.

    Article  CAS  PubMed  Google Scholar 

  6. Allegaert K, van den Anker JN, de Hoon JN, et al. Covariates of tramadol disposition in the first months of life. Br J Anaesth. 2008;100(4):525–32.

    Article  CAS  PubMed  Google Scholar 

  7. Pedersen RS, Damkier P, Brosen K. Enantioselective pharmacokinetics of tramadol in CYP2D6 extensive and poor metabolizers. Eur J Clin Pharmacol. 2006;62(7):513–21.

    Article  CAS  PubMed  Google Scholar 

  8. Stamer UM, Lehnen K, Höthker F, et al. Impact of CYP2D6 genotype on postoperative tramadol analgesia. Pain. 2003;105(1–2):231–8.

    Article  CAS  PubMed  Google Scholar 

  9. Murthy BV, Pandya KS, Booker PD, et al. Pharmacokinetics of tramadol in children after i.v. or caudal epidural administration. Br J Anaesth. 2000;84(3):346–9.

    Article  CAS  PubMed  Google Scholar 

  10. Garrido MJ, Habre W, Rombout F, et al. Population pharmacokinetic/pharmacodynamic modelling of the analgesic effects of tramadol in pediatrics. Pharm Res. 2006;23(9):2014–23.

    Article  CAS  PubMed  Google Scholar 

  11. Bressolle F, Rochette A, Khier S, et al. Population pharmacokinetics of the two enantiomers of tramadol and O-demethyl tramadol after surgery in children. Br J Anaesth. 2009;102(3):390–9.

    Article  CAS  PubMed  Google Scholar 

  12. Lintz W, Barth H, Osterloh G, et al. Bioavailability of enteral tramadol formulations. 1st communication: capsules. Arzneimittelforschung. 1986;36(8):1278–83.

    CAS  PubMed  Google Scholar 

  13. Lintz W, Barth H, Becker R, et al. Pharmacokinetics of tramadol and bioavailability of enteral tramadol formulations. 2nd communication: drops with ethanol. Arzneimittelforschung. 1998;48(5):436–45.

    CAS  PubMed  Google Scholar 

  14. Lintz W, Barth H, Osterloh G, et al. Pharmacokinetics of tramadol and bioavailability of enteral tramadol formulations. 3rd communication: suppositories. Arzneimittelforschung. 1998;48(9):889–99.

    CAS  PubMed  Google Scholar 

  15. Lintz W, Beier H, Gerloff J. Bioavailability of tramadol after i.m. injection in comparison to i.v. infusion. Int J Clin Pharmacol Ther. 1999;37(4):175–83.

    CAS  PubMed  Google Scholar 

  16. Lintz W, Becker R, Gerloff J, et al. Pharmacokinetics of tramadol and bioavailability of enteral tramadol formulations. 4th communication: drops (without ethanol). Arzneimittelforschung. 2000;50(2):99–108.

    CAS  PubMed  Google Scholar 

  17. Stamer UM, Musshoff F, Kobilay M, et al. Concentrations of tramadol and O-desmethyltramadol enantiomers in different CYP2D6 genotypes. Clin Pharmacol Ther. 2007;82(1):41–7.

    Article  CAS  PubMed  Google Scholar 

  18. Abdel-Rahman SM, Leeder JS, Wilson JT, et al. Concordance between tramadol and dextromethorphan parent/metabolite ratios: the influence of CYP2D6 and non-CYP2D6 pathways on biotransformation. J Clin Pharmacol. 2002;42(1):24–9.

    Article  CAS  PubMed  Google Scholar 

  19. Blake MJ, Gaedigk A, Pearce RE, et al. Ontogeny of dextromethorphan O- and i-demethylation in the first year of life. Clin Pharmacol Ther. 2007;81(4):510–6.

    Article  CAS  PubMed  Google Scholar 

  20. Becker R, Lintz W. Determination of tramadol in human serum by capillary gas chromatography with nitrogen-selective detection. J Chromatogr. 1986;377:213–20.

    Article  CAS  PubMed  Google Scholar 

  21. Gan SH, Ismail R. Validation of a high-performance liquid chromatography method for tramadol and O-desmethyltramadol in human plasma using solid-phase extraction. J Chromatogr B. 2001;759(2):325–35.

    Article  CAS  Google Scholar 

  22. Nobilis M, Kopecky J, Kvetina J, et al. High-performance liquid chromatographic determination of tramadol and its O-desmethylated metabolite in blood plasma: application to a bioequivalence study in humans. J Chromatogr A. 2002;949(1–2):11–22.

    Article  CAS  PubMed  Google Scholar 

  23. KuKanich B, Papich MG. Pharmacokinetics of tramadol and the metabolite O-desmethyltramadol in dogs. J Vet Pharmacol Ther. 2004;27(4):239–46.

    Article  CAS  PubMed  Google Scholar 

  24. Giorgi M, Del Carlo S, Saccomanni G, et al. Pharmacokinetics of tramadol and its major metabolites following rectal and intravenous administration in dogs. N Z Vet J. 2009;57(3):146–52.

    Article  CAS  PubMed  Google Scholar 

  25. Giorgi M, Soldani G, Manera C, et al. Pharmacokinetics of tramadol and its metabolites M1, M2 and M4 in horses following intravenous, immediate release (fasted/fed) and sustained release single dose administration. J Equine Vet Sci. 2007;27(11):481–8.

    Article  Google Scholar 

  26. Holford S, Allegaert K, Anderson BJ, et al. Parent-metabolite pharmacokinetic models for tramadol: tests of assumptions and predictions. J Pharmacol Clin Toxicol. 2014;2(1):1023.

    Google Scholar 

  27. Parke J, Holford NH, Charles BG. A procedure for generating bootstrap samples for the validation of nonlinear mixed-effects population models. Comput Methods Programs Biomed. 1999;59(1):19–29.

    Article  CAS  PubMed  Google Scholar 

  28. Holford NH. The visual predictive check: superiority to standard diagnostic (Rorschach) plots (http://www.page-meeting.org/?abstract=972). PAGE 2005;14:972.

  29. Bergstrand M, Hooker AC, Wallin JE, et al. Prediction-corrected visual predictive checks for diagnosing nonlinear mixed-effects models. AAPS J. 2011;13(2):143–51.

    Article  PubMed Central  PubMed  Google Scholar 

  30. Anderson BJ, Holford NH. Mechanism-based concepts of size and maturity in pharmacokinetics. Annu Rev Pharmacol Toxicol. 2008;48:303–32.

    Article  CAS  PubMed  Google Scholar 

  31. West GB, Brown JH, Enquist BJ. A general model for the origin of allometric scaling laws in biology. Science. 1997;276(5309):122.

    Article  CAS  PubMed  Google Scholar 

  32. Tod M, Lokiec F, Bidault R, et al. Pharmacokinetics of oral acyclovir in neonates and in infants: a population analysis. Antimicrob Agents Chemother. 2001;45(1):150–7.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  33. Anderson BJ, Allegaert K, Holford NH. Population clinical pharmacology of children: general principles. Eur J Pediatr. 2006;165(11):741–6.

    Article  PubMed  Google Scholar 

  34. Tod M, Jullien V, Pons G. Facilitation of drug evaluation in children by population methods and modelling. Clin Pharmacokinet. 2008;47(4):231–43.

    Article  CAS  PubMed  Google Scholar 

  35. Karlsson MO, Jonsson NE, Wiltse CG, et al. Assumption testing in population pharmacokinetic models: illustrated with an analysis of moxonidine data from congestive heart failure patients. J Pharmacokinet Biopharm. 1998;26(2):207–46.

    Article  CAS  PubMed  Google Scholar 

  36. Rhodin MM, Anderson BJ, Peters AM, et al. Human renal function maturation: a quantitative description using weight and postmenstrual age. Pediatr Nephrol. 2009;24(1):67–76.

    Article  PubMed  Google Scholar 

  37. Allegaert K, Rochette A, Veyckemans F. Developmental pharmacology of tramadol during infancy: ontogeny, pharmacogenetics and elimination clearance. Paediatr Anaesth. 2011;21(3):266–73.

    Article  PubMed  Google Scholar 

  38. Anderson BJ, Holford NH. Mechanistic basis of using body size and maturation to predict clearance in humans. Drug Metab Pharmacokinet. 2009;24(1):25–36.

    Article  CAS  PubMed  Google Scholar 

  39. Alvan G, Bechtel P, Iselius L, et al. Hydroxylation polymorphisms of debrisoquine and mephenytoin in European populations. Eur J Clin Pharmacol. 1990;39(6):533–7.

    Article  CAS  PubMed  Google Scholar 

  40. Sachse C, Brockmoller J, Bauer S, et al. Cytochrome P450 2D6 variants in a Caucasian population: allele frequencies and phenotypic consequences. Am J Hum Genet. 1997;60(2):284–95.

    CAS  PubMed Central  PubMed  Google Scholar 

  41. Caraco Y. Genes and the response to drugs. N Engl J Med. 2004;351(27):2867–9.

    Article  CAS  PubMed  Google Scholar 

  42. Stamer UM, Stüber F, Muders T, et al. Respiratory depression with tramadol in a patient with renal impairment and CYP2D6 gene duplication. Anesth Analg. 2008;107(3):926–9.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The clinical research of Karel Allegaert is supported by the Fund for Scientific Research, Flanders (Belgium) (FWO Vlaanderen, 1800,214N). The clinical research of U. Stamer was supported in part by a grant of the R. Sackler Research Foundation (Germany). We are grateful to Dr. B. Kukanich and Dr. M. Giorgi for access to the data from their studies in dogs, which was essential for us to distinguish the different elimination pathways of tramadol. Horst Beier, co-author of this paper is an employee of Grünenthal, Aachen, Germany, one the manufacturers of tramadol. All other authors have no conflicts of interest to disclose.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karel Allegaert.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 842 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Allegaert, K., Holford, N., Anderson, B.J. et al. Tramadol and O-Desmethyl Tramadol Clearance Maturation and Disposition in Humans: A Pooled Pharmacokinetic Study. Clin Pharmacokinet 54, 167–178 (2015). https://doi.org/10.1007/s40262-014-0191-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40262-014-0191-9

Keywords

Navigation