Skip to main content
Log in

A Physiologically Based Pharmacokinetic Model for Voriconazole Disposition Predicts Intestinal First-pass Metabolism in Children

  • Original Research Article
  • Published:
Clinical Pharmacokinetics Aims and scope Submit manuscript

Abstract

Background and Objectives

The effect of ontogeny in drug-metabolizing enzymes on pediatric pharmacokinetics is poorly predicted. Voriconazole, a potent antifungal, is cleared predominantly via oxidative metabolism and exhibits vastly different pharmacokinetics between adults and children. A physiologically based pharmacokinetic (PBPK) model was developed integrating hepatic in vitro metabolism data with physiologic parameters to predict pharmacokinetic parameters of voriconazole in adult and pediatric populations.

Methods

Adult and pediatric PBPK models integrated voriconazole physicochemical properties with hepatic in vitro data into the models. Simulated populations contained 100 patients (10 trials with 10 patients each). Trial design and dosing was based on published clinical trials. Simulations yielded pharmacokinetic parameters that were compared against published values and visual predictive checks were employed to validate models.

Results

All adult models and the pediatric intravenous model predicted pharmacokinetic parameters that corresponded with observed values within a 20 % prediction error, whereas the pediatric oral model predicted an oral bioavailability twofold higher than observed ranges. After incorporating intestinal first-pass metabolism into the model, the prediction of oral bioavailability improved substantially, suggesting that voriconazole is subject to intestinal first-pass metabolism in children, but not in adults.

Conclusions

The PBPK approach used in this study suggests a mechanistic reason for differences in bioavailability between adults and children. If verified, this would be the first example of differential first-pass metabolism in children and adults.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Steinbach WJ, Benjamin DK. New antifungal agents under development in children and neonates. Curr Opin Infect Dis. 2005;18(6):484–9.

    Article  PubMed  Google Scholar 

  2. Herbrecht R, Denning DW, Patterson TF, Bennett JE, Greene RE, Oestmann JW, et al. Voriconazole versus amphotericin B for primary therapy of invasive aspergillosis. N Engl J Med. 2002;347(6):408–15. doi:10.1056/NEJMoa020191.

    Article  CAS  PubMed  Google Scholar 

  3. Driscoll TA, Yu LC, Frangoul H, Krance RA, Nemecek E, Blumer J, et al. Comparison of pharmacokinetics and safety of voriconazole intravenous-to-oral switch in immunocompromised children and healthy adults. Antimicrob Agents Chemother. 2011;55(12):5770–9. doi:10.1128/AAC.00531-11.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  4. Karlsson MO, Lutsar I, Milligan PA. Population pharmacokinetic analysis of voriconazole plasma concentration data from pediatric studies. Antimicrob Agents Chemother. 2009;53(3):935–44. doi:10.1128/AAC.00751-08.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  5. Walsh TJ, Driscoll T, Milligan PA, Wood ND, Schlamm H, Groll AH, et al. Pharmacokinetics, safety, and tolerability of voriconazole in immunocompromised children. Antimicrob Agents Chemother. 2010;54(10):4116–23. doi:10.1128/AAC.00896-10.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  6. Walsh TJ, Karlsson MO, Driscoll T, Arguedas AG, Adamson P, Saez-Llorens X, et al. Pharmacokinetics and safety of intravenous voriconazole in children after single- or multiple-dose administration. Antimicrob Agents Chemother. 2004;48(6):2166–72. doi:10.1128/AAC.48.6.2166-2172.2004.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. Leveque D, Nivoix Y, Jehl F, Herbrecht R. Clinical pharmacokinetics of voriconazole. Int J Antimicrob Agents. 2006;27(4):274–84. doi:10.1016/j.ijantimicag.2006.01.003.

    Article  CAS  PubMed  Google Scholar 

  8. Blake MJ, Castro L, Leeder JS, Kearns GL. Ontogeny of drug metabolizing enzymes in the neonate. Semin Fetal Neonatal Med. 2005;10(2):123–38. doi:10.1016/j.siny.2004.11.001.

    Article  PubMed  Google Scholar 

  9. Kearns GL, Abdel-Rahman SM, Alander SW, Blowey DL, Leeder JS, Kauffman RE. Developmental pharmacology: drug disposition, action, and therapy in infants and children. N Engl J Med. 2003;349(12):1157–67. doi:10.1056/NEJMra035092.

    Article  CAS  PubMed  Google Scholar 

  10. Koukouritaki SB, Manro JR, Marsh SA, Stevens JC, Rettie AE, McCarver DG, et al. Developmental expression of human hepatic CYP2C9 and CYP2C19. J Pharmacol Exp Ther. 2004;308(3):965–74. doi:10.1124/jpet.103.060137.

    Article  CAS  PubMed  Google Scholar 

  11. Stevens JC, Hines RN, Gu C, Koukouritaki SB, Manro JR, Tandler PJ, et al. Developmental expression of the major human hepatic CYP3A enzymes. J Pharmacol Exp Ther. 2003;307(2):573–82. doi:10.1124/jpet.103.054841.

    Article  CAS  PubMed  Google Scholar 

  12. Yanni SB, Annaert PP, Augustijns P, Ibrahim JG, Benjamin DK Jr, Thakker DR. In vitro hepatic metabolism explains higher clearance of voriconazole in children versus adults: role of CYP2C19 and flavin-containing monooxygenase 3. Drug Metab Dispos. 2010;38(1):25–31. doi:10.1124/dmd.109.029769.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Weiler S, Fiegl D, MacFarland R, Stienecke E, Bellmann-Weiler R, Dunzendorfer S, et al. Human tissue distribution of voriconazole. Antimicrob Agents Chemother. 2011;55(2):925–8. doi:10.1128/AAC.00949-10.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. Basic anatomical and physiological data for use in radiological protection: reference values. A report of age- and gender-related differences in the anatomical and physiological characteristics of reference individuals. ICRP Publication 89. Annal ICRP. 2002;32(3–4):5–265.

  15. Bjorkman S. Prediction of drug disposition in infants and children by means of physiologically based pharmacokinetic (PBPK) modelling: theophylline and midazolam as model drugs. Br J Clin Pharmacol. 2005;59(6):691–704. doi:10.1111/j.1365-2125.2004.02225.x.

    Article  PubMed Central  PubMed  Google Scholar 

  16. Purkins L, Wood N, Ghahramani P, Greenhalgh K, Allen MJ, Kleinermans D. Pharmacokinetics and safety of voriconazole following intravenous- to oral-dose escalation regimens. Antimicrob Agents Chemother. 2002;46(8):2546–53.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Purkins L, Wood N, Kleinermans D, Greenhalgh K, Nichols D. Effect of food on the pharmacokinetics of multiple-dose oral voriconazole. Br J Clin Pharmacol. 2003;56(Suppl 1):17–23.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Jones HM, Gardner IB, Watson KJ. Modelling and PBPK simulation in drug discovery. AAPS J. 2009;11(1):155–66. doi:10.1208/s12248-009-9088-1.

    Article  PubMed Central  PubMed  Google Scholar 

  19. Poulin P, Theil FP. Prediction of pharmacokinetics prior to in vivo studies: 1. Mechanism-based prediction of volume of distribution. J Pharm Sci. 2002;91(1):129–56.

    Article  CAS  PubMed  Google Scholar 

  20. Damle B, Varma MV, Wood N. Pharmacokinetics of voriconazole administered concomitantly with fluconazole and population-based simulation for sequential use. Antimicrob Agents Chemother. 2011;55(11):5172–7. doi:10.1128/AAC.00423-11.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Kethireddy S, Andes D. CNS pharmacokinetics of antifungal agents. Expert Opin Drug Metab Toxicol. 2007;3(4):573–81. doi:10.1517/17425225.3.4.573.

    Article  CAS  PubMed  Google Scholar 

  22. Cheeti S, Budha NR, Rajan S, Dresser MJ, Jin JY. A physiologically based pharmacokinetic (PBPK) approach to evaluate pharmacokinetics in patients with cancer. Biopharm Drug Dispos. 2012. doi:10.1002/bdd.1830.

  23. Lee S, Kim BH, Nam WS, Yoon SH, Cho JY, Shin SG, et al. Effect of CYP2c19 polymorphism on the pharmacokinetics of voriconazole after single and multiple doses in healthy volunteers. J Clin Pharmacol. 2011. doi:10.1177/0091270010395510.

  24. Scholz I, Oberwittler H, Riedel KD, Burhenne J, Weiss J, Haefeli WE, et al. Pharmacokinetics, metabolism and bioavailability of the triazole antifungal agent voriconazole in relation to CYP2C19 genotype. Br J Clin Pharmacol. 2009;68(6):906–15. doi:10.1111/j.1365-2125.2009.03534.x.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  25. Weiss J, Ten Hoevel MM, Burhenne J, Walter-Sack I, Hoffmann MM, Rengelshausen J, et al. CYP2C19 genotype is a major factor contributing to the highly variable pharmacokinetics of voriconazole. J Clin Pharmacol. 2009;49(2):196–204. doi:10.1177/0091270008327537.

    Article  CAS  PubMed  Google Scholar 

  26. van den Anker JN, Schwab M, Kearns GL. Developmental pharmacokinetics. Handbook Exp Pharmacol. 2011;205:51–75. doi:10.1007/978-3-642-20195-0_2.

    Article  Google Scholar 

  27. Bartelink IH, Wolfs T, Jonker M, de Waal M, Egberts TC, Ververs TT, et al. Highly variable plasma concentrations of voriconazole in pediatric hematopoietic stem cell transplantation patients. Antimicrob Agents Chemother. 2013;57(1):235–40. doi:10.1128/AAC.01540-12.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  28. Doby EH, Benjamin DK Jr, Blaschke AJ, Ward RM, Pavia AT, Martin PL, et al. Therapeutic monitoring of voriconazole in children less than three years of age: a case report and summary of voriconazole concentrations for ten children. Pediatr Infect Dis J. 2012;31(6):632–5. doi:10.1097/INF.0b013e31824acc33.

    Article  PubMed Central  PubMed  Google Scholar 

  29. Hyland R, Jones BC, Smith DA. Identification of the cytochrome P450 enzymes involved in the N-oxidation of voriconazole. Drug Metabol Dispos. 2003;31(5):540–7.

    Article  CAS  Google Scholar 

  30. Roffey SJ, Cole S, Comby P, Gibson D, Jezequel SG, Nedderman AN, et al. The disposition of voriconazole in mouse, rat, rabbit, guinea pig, dog, and human. Drug Metabol Dispos. 2003;31(6):731–41.

    Article  CAS  Google Scholar 

  31. Yanni SB, Annaert PP, Augustijns P, Bridges A, Gao Y, Benjamin DK Jr, et al. Role of flavin-containing monooxygenase in oxidative metabolism of voriconazole by human liver microsomes. Drug Metabol Dispos. 2008;36(6):1119–25. doi:10.1124/dmd.107.019646.

    Article  CAS  Google Scholar 

  32. Kolars JC, Awni WM, Merion RM, Watkins PB. First-pass metabolism of cyclosporin by the gut. Lancet. 1991;338(8781):1488–90.

    Article  CAS  PubMed  Google Scholar 

  33. Fakhoury M, Litalien C, Medard Y, Cave H, Ezzahir N, Peuchmaur M, et al. Localization and mRNA expression of CYP3A and P-glycoprotein in human duodenum as a function of age. Drug Metabol Dispos. 2005;33(11):1603–7. doi:10.1124/dmd.105.005611.

    Article  CAS  Google Scholar 

  34. Paine MF, Hart HL, Ludington SS, Haining RL, Rettie AE, Zeldin DC. The human intestinal cytochrome P450 “pie”. Drug Metabol Dispos. 2006;34(5):880–6. doi:10.1124/dmd.105.008672.

    Article  CAS  Google Scholar 

  35. Johnson TN, Tanner MS, Taylor CJ, Tucker GT. Enterocytic CYP3A4 in a paediatric population: developmental changes and the effect of coeliac disease and cystic fibrosis. Br J Clin Pharmacol. 2001;51(5):451–60.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  36. Berseth CL. Gestational evolution of small intestine motility in preterm and term infants. J Pediatr. 1989;115(4):646–51.

    Article  CAS  PubMed  Google Scholar 

  37. Bisset WM, Watt JB, Rivers RP, Milla PJ. Ontogeny of fasting small intestinal motor activity in the human infant. Gut. 1988;29(4):483–8.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  38. Gupta M, Brans YW. Gastric retention in neonates. Pediatrics. 1978;62(1):26–9.

    CAS  PubMed  Google Scholar 

  39. Heimann G. Enteral absorption and bioavailability in children in relation to age. Eur J Clin Pharmacol. 1980;18(1):43–50.

    Article  CAS  PubMed  Google Scholar 

  40. Friberg LE, Ravva P, Karlsson MO, Liu P. Integrated population pharmacokinetic analysis of voriconazole in children, adolescents, and adults. Antimicrob Agents Chemother. 2012;56(6):3032–42. doi:10.1128/AAC.05761-11.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  41. Rostami-Hodjegan A. Physiologically based pharmacokinetics joined with in vitro-in vivo extrapolation of ADME: a marriage under the arch of systems pharmacology. Clin Pharmacol Ther. 2012;92(1):50–61. doi:10.1038/clpt.2012.65.

    Article  CAS  PubMed  Google Scholar 

  42. Benjamin DK Jr, Smith PB, Jadhav P, Gobburu JV, Murphy MD, Hasselblad V, et al. Pediatric antihypertensive trial failures: analysis of end points and dose range. Hypertension. 2008;51(4):834–40. doi:10.1161/HYPERTENSIONAHA.107.108886.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  43. Jadhav PR, Zhang J, Gobburu JV. Leveraging prior quantitative knowledge in guiding pediatric drug development: a case study. Pharm Stat. 2009;8(3):216–24. doi:10.1002/pst.394.

    Article  PubMed  Google Scholar 

  44. Salazar DE, Song SH, Shi J, Rohatagi S, Heyrman R, Wada DR, et al. The use of modeling and simulation to guide clinical development of olmesartan medoxomil in pediatric subjects. Clin Pharmacol Ther. 2012;91(2):250–6. doi:10.1038/clpt.2011.220.

    Article  CAS  PubMed  Google Scholar 

  45. Ke AB, Nallani SC, Zhao P, Rostami-Hodjegan A, Unadkat JD, et al. A PBPK model to predict disposition of CYP3A-metabolized drugs in pregnant women: verification and discerning the site of CYP3A induction. CPT: Pharmacomet Syst Pharmacol. 2012;1:e3–256. doi:10.1038/psp.2012.2.

    CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by PhRMA and AFPE Pre-Doctoral Fellowships.

Conflict of interest

The authors declare no conflict of interest.

Author contributions

N.R.Z. designed and performed the studies, analyzed the data, and prepared the manuscript. D.R.T. conceived and supervised the study, and prepared the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dhiren R. Thakker.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 473 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zane, N.R., Thakker, D.R. A Physiologically Based Pharmacokinetic Model for Voriconazole Disposition Predicts Intestinal First-pass Metabolism in Children. Clin Pharmacokinet 53, 1171–1182 (2014). https://doi.org/10.1007/s40262-014-0181-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40262-014-0181-y

Keywords

Navigation