Skip to main content
Log in

Laser Tattoo Removal: An Update

  • Review Article
  • Published:
American Journal of Clinical Dermatology Aims and scope Submit manuscript

Abstract

Tattoo art has been around for thousands of years in every culture and is currently flourishing in all age groups, social classes, and occupations. Despite the rising popularity of tattoos, demand for their removal has also increased. While various treatments, including surgical excision, dermabrasion, and chemical destruction have historically been applied, over the past 2 decades, lasers have revolutionized the way tattoos are treated and have become the gold standard of treatment. To achieve optimal cosmetic outcome of treatment, lasers emitting high energies and short pulses are required to adequately destroy tattoo ink. We review the history of laser tattoo removal, outlining the challenges inherent in developing lasers that can most effectively remove tattoo particles while safely protecting skin from unwanted injury.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Larry S. Tattoo takeover: Three in ten Americans have tattoos, and most don’t stop at just one. Health & Life. The Harris Poll. http://www.theharrispoll.com/health-and-life/Tattoo_Takeover.html. Accessed 31 Mar 2016.

  2. Anderson RR, Parrish JA. Selective photothermolysis: precise microsurgery by selective absorption of pulsed radiation. Science. 1983;220:524–7.

    Article  CAS  PubMed  Google Scholar 

  3. Armstrong ML, Roberts AE, Koch JR, Saunders JC, et al. Motivation for contemporary tattoo removal: a shift in identity. Arch Dermatol. 2008;144:879–84.

    PubMed  Google Scholar 

  4. Ortiz AE, Alster TS. Rising concern over cosmetic tattoos. Dermatol Surg. 2012;38:424–9.

    Article  CAS  PubMed  Google Scholar 

  5. Kent KM, Graber EM. Laser tattoo removal: a review. Dermatol Surg. 2012;38:1–13.

    Article  CAS  PubMed  Google Scholar 

  6. Doukas A, Flotte T. Physical characteristics and biological effects of laser-induced stress waves. Ultrasound Med Biol. 1996;22:1–9.

    Article  Google Scholar 

  7. Bernstein E. Laser tattoo removal. Semin Plast Surg. 2007;21:175–92.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Reid WH, Miller ID, Murphy MJ, Paul JP, Evans JH. Q-switched ruby laser treatment of black tattoos. Br J Plast Surg. 1983;36:455–9.

    Article  CAS  PubMed  Google Scholar 

  9. Keaney TC, Alster TS. Tattoos and beyond: the clinical evolution of picosecond laser technology. Curr Derm Rep; 2016. doi:10.1007/S13671-016-0149-2 (epub 13 July 2016).

  10. Luebberding S, Alexiades-Armenakas M. New tattoo approaches in dermatology. Dermatol Clin. 2014;32:91–6.

    Article  CAS  PubMed  Google Scholar 

  11. Chen H, Diebold G. Chemical generation of acoustic waves: a giant photoacoustic effect. Science. 1995;270:963–6.

    Article  CAS  Google Scholar 

  12. Freedman JR, Kaufman J, Metelitsa AI, et al. Picosecond lasers: the next generation of short-pulsed lasers. Semin Cutan Med Surg. 2014;33(4):164–8.

    Article  PubMed  Google Scholar 

  13. Ho DDM, London R, Zimmerman GB, Young DA. Laser-tattoo removal—a study of the mechanism and the optimal treatment strategy via computer simulations. Lasers Surg Med. 2002;30:389–97.

    Article  PubMed  Google Scholar 

  14. Izikson L, Farinelli W, Sakamoto F, Tannous Z, Anderson RR. Safety and effectiveness of black tattoo clearance in a pig model after a single treatment with a novel 758 nm 500 picosecond laser: a pilot study. Lasers Surg Med. 2010;42:640–6.

    Article  PubMed  Google Scholar 

  15. Alster TS. Laser treatment of tattoos. In: Alster TS, editor. Manual of Cutaneous Laser Techniques. Philadelphia: Lippincott Williams & Wilkins; 2000. p. 77–87.

    Google Scholar 

  16. Kirby W, Desai A, Desai T, Kartono F, Geeta P. The Kirby-Desai scale: a proposed scale to assess tattoo removal treatments. J Clin Aesth Dermatol. 2009;2(3):32–7.

    Google Scholar 

  17. Leuenberger ML, Mulas MW, Hata TR, Goldman MP, et al. Comparison of the Q-switched alexandrite, Nd:YAG, and ruby lasers in treating blue-black tattoos. Dermatol Surg. 1999;25:10–4.

    Article  CAS  PubMed  Google Scholar 

  18. Levine VJ, Geronemus RG. Tattoo removal with the Q-switched ruby laser and the Q-switched Nd: YAG laser: a comparative study. Cutis. 1995;55:291–6.

    CAS  PubMed  Google Scholar 

  19. Kilmer SL, Anderson R. Clinical use of the Q-switched ruby and the Q-switched Nd: YAG (1064 nm and 532 nm) lasers for treatment of tattoos. J Dermatol Surg Oncol. 1993;19:330–8.

    Article  CAS  PubMed  Google Scholar 

  20. Jones A, Roddy P, Orengo I, Rosen T. The Q-switched Nd: YAG laser effectively treats tattoos in darkly pigmented skin. Dermatol Surg. 1996;22:999–1001.

    CAS  PubMed  Google Scholar 

  21. Zelickson BD, Mehregan D, Zarrin A, Coles C, et al. Clinical, histologic, and ultrastructural evaluation of tattoos treated with three laser systems. Lasers Surg Med. 1994;15:364–72.

    Article  CAS  PubMed  Google Scholar 

  22. Brauer JA, Reddy KK, Anolik R, et al. Successful and rapid treatment of blue and green tattoo pigment with a novel picosecond laser. Arch Dermatol. 2012;148:820–3.

    Article  PubMed  Google Scholar 

  23. Saedi N, Metelitsa A, Petrell K, Arndt KA, Dover JS. Treatment of tattoos with a picosecond alexandrite laser: a prospective trial. Arch Dermatol. 2012;148:1360–3.

    Article  PubMed  Google Scholar 

  24. Alster TS. Q-switched alexandrite laser treatment (755 nm) of professional and amateur tattoos. J Am Acad Dermatol. 1995;33:69–73.

    Article  CAS  PubMed  Google Scholar 

  25. Alster TS. Successful elimination of traumatic tattoos by the Q-switched alexandrite (755-nm) laser. Ann Plast Surg. 1995;34:542–5.

    Article  CAS  PubMed  Google Scholar 

  26. Fitzpatrick RE, Goldman MP. Tattoo removal using the alexandrite laser. Arch Dermatol. 1994;130:1508–14.

    Article  CAS  PubMed  Google Scholar 

  27. Herd RM, Alora MB, Smoller B, Arndt KA, Dover JS. A clinical and histologic prospective controlled comparative study of the picosecond titanium: sapphire (795 nm) laser versus the Q-switched alexandrite (752 nm) laser for removing tattoo pigment. J Am Acad Dermatol. 1999;40:603–6.

    Article  CAS  PubMed  Google Scholar 

  28. Ross EV, Naseef G, Lin C, Kelly M, et al. Comparison of responses of tattoos to picosecond and nanosecond Q-switched neodymium:YAG lasers. Arch Dermatol. 1998;134:167–71.

    Article  CAS  PubMed  Google Scholar 

  29. Bernstein EF, Schomacker KT, Basilavecchio D, et al. A novel dual-wavelength, Nd: YAG, picosecond-domain laser safely and effectively removes multicolor tattoos. Lasers Surg Med. 2015;47:542–8.

    Article  PubMed Central  Google Scholar 

  30. Alabdulrazzaq H, Brauer JA, Bae YS, Geronemus RG. Clearance of yellow tattoo ink with a novel 532-nm picosecond laser. Lasers Surg Med. 2015;47:285–8.

    Article  PubMed  Google Scholar 

  31. Gómez C, Martin V, Sastre R, Costela A, et al. In vitro and in vivo laser treatments of tattoos: high efficiency and low fluences. Arch Dermatol. 2010;146:39–45.

    Article  PubMed  Google Scholar 

  32. Beute TC, Miller C, Timko A, Ross E. In vitro spectral analysis of tattoo pigments. Dermatol Surg. 2008;34:508–16.

    CAS  PubMed  Google Scholar 

  33. Holzer AM, Burgin S, Levine VJ. Adverse effects of Q-switched laser treatment of tattoos. Dermatol Surg. 2008;34:118–22.

    Article  CAS  PubMed  Google Scholar 

  34. Anderson RR, Geronemus R, Kilmer SL, Farinelli W, Fitzpatrick RE. Cosmetic tattoo ink darkening: a complication of Q-switched and pulsed-laser treatment. Arch Dermatol. 1993;129:1010–4.

    Article  CAS  PubMed  Google Scholar 

  35. Hamzavi I, Lui H. Surgical pearl: removing skin-colored cosmetic tattoos with carbon dioxide resurfacing lasers. J Am Acad Dermatol. 2002;46:764–5.

    Article  PubMed  Google Scholar 

  36. Grevelink JM, Duke D, Van Leeuwen RL, Gonzalez E, et al. Laser treatment of tattoos in darkly pigmented patients: efficacy and side effects. J Am Acad Dermatol. 1996;34:653–6.

    Article  CAS  PubMed  Google Scholar 

  37. Taylor CR. Laser ignition of traumatically embedded firework debris. Lasers Surg Med. 1998;22:157–8.

    Article  CAS  PubMed  Google Scholar 

  38. Kossida T, Rigopoulos D, Katsambas A, Anderson RR. Optimal tattoo removal in a single laser session based on the method of repeated exposures. J Am Acad Dermatol. 2012;66:271–7.

    Article  PubMed  Google Scholar 

  39. Reddy KK, Brauer JA, Anolik R, Benstein L, et al. Topical perfluorodecalin resolves immediate whitening reactions and allows rapid effective multiple pass treatment of tattoos. Lasers Surg Med. 2013;45:76–80.

    Article  PubMed  Google Scholar 

  40. Ricotti CA, Colaco SM, Shamma HN, Trevino J, et al. Laser-assisted tattoo removal with topical 5 % imiquimod cream. Dermatol Surg. 2007;33:1082–91.

    CAS  PubMed  Google Scholar 

  41. Seitz AT, et al. Fractional CO2 laser is as effective as Q-switched ruby laser for the initial treatment of a traumatic tattoo. J Cosmet Laser Ther. 2014;16:303–5.

    Article  PubMed  Google Scholar 

  42. Weiss ET, Geronemus RG. Combining fractional resurfacing and Q-switched ruby laser for tattoo removal. Dermatol Surg. 2011;37:97–9.

    Article  CAS  PubMed  Google Scholar 

  43. Au S, Liolios AM, Goldman MP. Analysis of incidence of bulla formation after tattoo treatment using the combination of the picosecond alexandrite laser and fractionated CO2 ablation. Dermatol Surg. 2015;41:242–5.

    Article  CAS  PubMed  Google Scholar 

  44. Ibrahimi OA, Syed Z, Sakamoto FH, Avram MM, et al. Treatment of tattoo allergy with ablative fractional resurfacing: a novel paradigm for tattoo removal. J Am Acad Dermatol. 2011;64:1111–4.

    Article  PubMed  Google Scholar 

  45. Wang CC, Huang CL, Sue YM, Lee SC, Leu FJ. Treatment of cosmetic tattoos using carbon dioxide ablative fractional resurfacing in an animal model: a novel method confirmed histopathologically. Dermatol Surg. 2013;39:571–7.

    Article  CAS  PubMed  Google Scholar 

  46. Wang CC, et al. Treatment of cosmetic tattoos with nonablative fractional laser in an animal model: a novel method with histopathologic evidence. Lasers Surg Med. 2013;45:116–22.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tina S. Alster.

Ethics declarations

Funding

No funding was received for the preparation of this review.

Conflict of interest

Dr. Alster and Dr. Naga have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Naga, L.I., Alster, T.S. Laser Tattoo Removal: An Update. Am J Clin Dermatol 18, 59–65 (2017). https://doi.org/10.1007/s40257-016-0227-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40257-016-0227-z

Keywords

Navigation