Skip to main content
Log in

Impact of Ezetimibe Alone or in Addition to a Statin on Plasma PCSK9 Concentrations in Patients with Type 2 Diabetes and Hypercholesterolemia: A Pilot Study

  • Short Communication
  • Published:
American Journal of Cardiovascular Drugs Aims and scope Submit manuscript

Abstract

Background and Aim

The increase in proprotein convertase subtilisin/kexin type 9 (PCSK9) leads to low-density lipoprotein (LDL) receptor degradation. Statins significantly reduce LDL-cholesterol levels, but upregulate PCSK9. This study evaluated the effect of ezetimibe monotherapy or ezetimibe in combination with a statin on serum levels of PCSK9 in patients with type 2 diabetes and hypercholesterolemia.

Methods

Ezetimibe treatment was given to ten patients with diabetes without statin therapy and ten patients with statin therapy. Plasma levels of PCSK9 were examined at baseline and 24 weeks after treatment.

Results

At baseline, PCSK9 concentrations in patients with statin therapy were significantly higher than those in patients without statin use and in control subjects [median (25th–75th percentile) 411 (272–467) and 382 (356–453) ng/mL, respectively, p < 0.01]. After ezetimibe treatment for 24 weeks, LDL-cholesterol, triglyceride and remnant-like lipoprotein cholesterol were significantly decreased in both groups. However, PCSK9 concentration did not change compared with baseline measurements in both groups. The percentage change in LDL-cholesterol after ezetimibe therapy for 24 weeks was not correlated with the percentage change in PCSK9 concentration.

Conclusion

Ezetimibe may reduce LDL-cholesterol levels without affecting PCSK9 in patients with type 2 diabetes and hypercholesterolemia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

References

  1. Seidah NG, Prat A. The biology and therapeutic targeting of the proprotein convertases. Nat Rev Drug Discov. 2012;11(5):367–83.

    Article  CAS  PubMed  Google Scholar 

  2. Abifadel M, Varret M, Rabes JP, Allard D, Ouguerram K, Devillers M, et al. Mutations in PCSK9 cause autosomal dominant hypercholesterolemia. Nat Genet. 2003;34(2):154–6.

    Article  CAS  PubMed  Google Scholar 

  3. Cohen JC, Boerwinkle E, Mosley TH Jr, Hobbs HH. Sequence variations in PCSK9, low LDL, and protection against coronary heart disease. N Engl J Med. 2006;354(12):1264–72.

    Article  CAS  PubMed  Google Scholar 

  4. Kathiresan S. A PCSK9 missense variant associated with a reduced risk of early-onset myocardial infarction. N Engl J Med. 2008;358(21):2299–300.

    Article  CAS  PubMed  Google Scholar 

  5. Lan H, Pang L, Smith MM, Levitan D, Ding W, Liu L, et al. Proprotein convertase subtilisin/kexin type 9 (PCSK9) affects gene expression pathways beyond cholesterol metabolism in liver cells. J Cell Physiol. 2010;224(1):273–81.

    CAS  PubMed  Google Scholar 

  6. Janis MT, Tarasov K, Ta HX, Suoniemi M, Ekroos K, Hurme R, et al. Beyond LDL-C lowering: distinct molecular sphingolipids are good indicators of proprotein convertase subtilisin/kexin type 9 (PCSK9) deficiency. Atherosclerosis. 2013;228(2):380–5.

    Article  CAS  PubMed  Google Scholar 

  7. Morris PB, Ballantyne CM, Birtcher KK, Dunn SP, Urbina EM. Review of clinical practice guidelines for the management of LDL-related risk. J Am Coll Cardiol. 2014;64(2):196–206.

    Article  PubMed  Google Scholar 

  8. Yunoki K, Nakamura K, Miyoshi T, Enko K, Kubo M, Murakami M, et al. Impact of hypertriglyceridemia on endothelial dysfunction during statin +/− ezetimibe therapy in patients with coronary heart disease. Am J Cardiol. 2011;108(3):333–9.

    Article  CAS  PubMed  Google Scholar 

  9. Nakamura T, Hirano M, Kitta Y, Fujioka D, Saito Y, Kawabata K, et al. A comparison of the efficacy of combined ezetimibe and statin therapy with doubling of statin dose in patients with remnant lipoproteinemia on previous statin therapy. J Cardiol. 2012;60(1):12–7.

    Article  PubMed  Google Scholar 

  10. Uemura Y, Watarai M, Ishii H, Koyasu M, Takemoto K, Yoshikawa D, et al. Atorvastatin 10 mg plus ezetimibe 10 mg compared with atorvastatin 20 mg: impact on the lipid profile in Japanese patients with abnormal glucose tolerance and coronary artery disease. J Cardiol. 2012;59(1):50–6.

    Article  PubMed  Google Scholar 

  11. Awan Z, Seidah NG, MacFadyen JG, Benjannet S, Chasman DI, Ridker PM, et al. Rosuvastatin, proprotein convertase subtilisin/kexin type 9 concentrations, and LDL cholesterol response: the JUPITER trial. Clin Chem. 2012;58(1):183–9.

    Article  CAS  PubMed  Google Scholar 

  12. Tibolla G, Norata GD, Artali R, Meneghetti F, Catapano AL. Proprotein convertase subtilisin/kexin type 9 (PCSK9): from structure-function relation to therapeutic inhibition. Nutr Metab Cardiovasc Dis NMCD. 2011;21(11):835–43.

    Article  CAS  Google Scholar 

  13. Welder G, Zineh I, Pacanowski MA, Troutt JS, Cao G, Konrad RJ. High-dose atorvastatin causes a rapid sustained increase in human serum PCSK9 and disrupts its correlation with LDL cholesterol. J Lipid Res. 2010;51(9):2714–21.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  14. Careskey HE, Davis RA, Alborn WE, Troutt JS, Cao G, Konrad RJ. Atorvastatin increases human serum levels of proprotein convertase subtilisin/kexin type 9. J Lipid Res. 2008;49(2):394–8.

    Article  CAS  PubMed  Google Scholar 

  15. Li S, Jun Li J. PCSK9: a key factor modulating atherosclerosis. J Atheroscler Thromb. 2015;22(3):221–30.

  16. Berthold HK, Seidah NG, Benjannet S, Gouni-Berthold I. Evidence from a randomized trial that simvastatin, but not ezetimibe, upregulates circulating PCSK9 levels. PLoS One. 2013;8(3):e60095.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  17. Hentze H, Jensen KK, Chia SM, Johns DG, Shaw RJ, Davis HR Jr, et al. Inverse relationship between LDL cholesterol and PCSK9 plasma levels in dyslipidemic cynomolgus monkeys: effects of LDL lowering by ezetimibe in the absence of statins. Atherosclerosis. 2013;231(1):84–90.

    Article  CAS  PubMed  Google Scholar 

  18. Berneis K, Rizzo M, Berthold HK, Spinas GA, Krone W, Gouni-Berthold I. Ezetimibe alone or in combination with simvastatin increases small dense low-density lipoproteins in healthy men: a randomized trial. Eur Heart J. 2010;31(13):1633–9.

    Article  CAS  PubMed  Google Scholar 

  19. Kubo M, Miyoshi T, Kimura T, Noda Y, Kohno K, Nakamura K, et al. Add-on ezetimibe reduces small dense low-density lipoprotein cholesterol levels without affecting absorption of eicosapentaenoic acid in patients with coronary artery disease: a pilot study. Am J Cardiovasc Drugs Drugs Devices Other Interv. 2014;14(5):387–92.

    Article  CAS  Google Scholar 

  20. Teramoto T, Sasaki J, Ishibashi S, Birou S, Daida H, Dohi S, et al. Executive summary of the Japan Atherosclerosis Society (JAS) guidelines for the diagnosis and prevention of atherosclerotic cardiovascular diseases in Japan—2012 version. J Atheroscler Thromb. 2013;20(6):517–23.

    Article  PubMed  Google Scholar 

  21. Friedewald WT, Levy RI, Fredrickson DS. Estimation of the concentration of low-density lipoprotein cholesterol in plasma, without use of the preparative ultracentrifuge. Clin Chem. 1972;18(6):499–502.

    CAS  PubMed  Google Scholar 

  22. Schectman G, Patsches M, Sasse EA. Variability in cholesterol measurements: comparison of calculated and direct LDL cholesterol determinations. Clin Chem. 1996;42(5):732–7.

    CAS  PubMed  Google Scholar 

  23. Nozue T, Hattori H, Ishihara M, Iwasaki T, Hirano T, Kawashiri MA, et al. Comparison of effects of pitavastatin versus pravastatin on serum proprotein convertase subtilisin/kexin type 9 levels in statin-naive patients with coronary artery disease. Am J Cardiol. 2013;111(10):1415–9.

    Article  CAS  PubMed  Google Scholar 

  24. Zhang Y, Liu J, Li S, Xu RX, Sun J, Li JJ. Impact of currently prescribed lipid-lowering drugs on plasma PCSK9 concentration: single or in combination study in rats. Lipids Health Dis. 2014;13:35.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  25. Huijgen R, Boekholdt SM, Arsenault BJ, Bao W, Davaine JM, Tabet F, et al. Plasma PCSK9 levels and clinical outcomes in the TNT (Treating to New Targets) trial: a nested case-control study. J Am Coll Cardiol. 2012;59(20):1778–84.

    Article  CAS  PubMed  Google Scholar 

  26. Lakoski SG, Xu F, Vega GL, Grundy SM, Chandalia M, Lam C, et al. Indices of cholesterol metabolism and relative responsiveness to ezetimibe and simvastatin. J Clin Endocrinol Metab. 2010;95(2):800–9.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  27. Han L, Li M, Liu Y, Han C, Ye P. Atorvastatin may delay cardiac aging by upregulating peroxisome proliferator-activated receptors in rats. Pharmacology. 2012;89(1–2):74–82.

    Article  CAS  PubMed  Google Scholar 

  28. Sanderson LM, Boekschoten MV, Desvergne B, Muller M, Kersten S. Transcriptional profiling reveals divergent roles of PPARalpha and PPARbeta/delta in regulation of gene expression in mouse liver. Physiol Genomics. 2010;41(1):42–52.

    Article  CAS  PubMed  Google Scholar 

  29. Alagona P Jr. Beyond LDL cholesterol: the role of elevated triglycerides and low HDL cholesterol in residual CVD risk remaining after statin therapy. Am J Manag Care. 2009;15(3 Suppl):S65–73.

    PubMed  Google Scholar 

  30. Nakamura T, Obata JE, Hirano M, Kitta Y, Fujioka D, Saito Y, et al. Predictive value of remnant lipoprotein for cardiovascular events in patients with coronary artery disease after achievement of LDL-cholesterol goals. Atherosclerosis. 2011;218(1):163–7.

    Article  CAS  PubMed  Google Scholar 

  31. Austin MA, King MC, Vranizan KM, Krauss RM. Atherogenic lipoprotein phenotype. A proposed genetic marker for coronary heart disease risk. Circulation. 1990;82(2):495–506.

    Article  CAS  PubMed  Google Scholar 

  32. Christopher P Cannon on behalf of the IMPROVE IT Investigators. IMPROVE-IT Trial: a comparison of ezetimibe/simvastatin versus simvastatin monotherapy on cardiovascular outcomes after acute coronary syndromes. Circulation. 2014;130:2105–26 doi:10.1161/01.cir.0000457464.79076.2c.

  33. Dadu RT, Ballantyne CM. Lipid lowering with PCSK9 inhibitors. Nat Rev Cardiol. 2014;11(10):563–75.

    Article  CAS  PubMed  Google Scholar 

  34. Stein EA, Swergold GD. Potential of proprotein convertase subtilisin/kexin type 9 based therapeutics. Curr Atheroscler Rep. 2013;15(3):310.

  35. Robinson JG, Nedergaard BS, Rogers WJ, Fialkow J, Neutel JM, Ramstad D, et al. Effect of evolocumab or ezetimibe added to moderate- or high-intensity statin therapy on LDL-C lowering in patients with hypercholesterolemia: the LAPLACE-2 randomized clinical trial. JAMA. 2014;311(18):1870–82.

    Article  PubMed  Google Scholar 

  36. Sabatine MS, Giugliano RP, Wiviott SD, Raal FJ, Blom DJ, Robinson J, et al. Efficacy and safety of evolocumab in reducing lipids and cardiovascular events. N Engl J Med. 2015. doi:10.1056/NEJMoa1500858.

Download references

Acknowledgments

This work was supported by a Grant-in-Aid for Scientific Research (C), Grant Number 24591053. HI has received honoraria from Merck & Co. in the past. None of the other authors have any potential conflicts of interest that might be relevant to this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Toru Miyoshi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Miyoshi, T., Nakamura, K., Doi, M. et al. Impact of Ezetimibe Alone or in Addition to a Statin on Plasma PCSK9 Concentrations in Patients with Type 2 Diabetes and Hypercholesterolemia: A Pilot Study. Am J Cardiovasc Drugs 15, 213–219 (2015). https://doi.org/10.1007/s40256-015-0119-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40256-015-0119-2

Keywords

Navigation