Skip to main content
Log in

Selective adsorption performance of H6P2Mo15W3O62-based Cu3(BTC)2 composite in treatment of simulated cationic dye wastewater

  • Published:
Chemical Research in Chinese Universities Aims and scope

Abstract

Removal of methylene blue(MB) from aqueous solution by a new polyoxometalate-based metal-organic framework composite(POM@MOF) was systematically explored in batch tests. The chemical structure and surface properties of the composite were characterized by means of FTIR, XRD, EDS, N2 adsorption-desorption isotherms and zeta potential measurements. The results showed that MB adsorption onto H6P2Mo15W3O62@Cu3(BTC)2 highly depended on initial solution pH, which was mainly related to the electrostatic attraction between negatively charged composite surface and positively charged MB molecules. Thus, the improved adsorption performance of H6P2Mo15W3O62@Cu3(BTC)2 can be attributed to the modification of H6P2Mo15W3O62 resulting in its higher electronegative charge than Cu3(BTC)2. The thermodynamic parameters indicated that the adsorption was spontaneous and exothermic process. The isotherm obtained fitted the Langmuir model and the maximum adsorption capacity of the composite at 30 ºC was 77.22 mg/g. All the results illustrated that H6P2Mo15W3O62@Cu3(BTC)2 composite can effectively and selectively remove cationic organic pollutants, represented by MB, implying the promising application of designing a novel adsorbent polyoxometalate-based metal-organic frameworks in treatment of dye wastewater.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Zhao G., Liu L., Li J., Liu Q., J. Alloy Compd., 2016, 664, 169

    Article  CAS  Google Scholar 

  2. Mei J., Zhang L., Niu Y., Mater. Res. Bull., 2015, 70, 82

    Article  CAS  Google Scholar 

  3. Fan Y., Liu H., Zhang Y., Chen Y., J. Hazard. Mater., 2015, 283, 321

    Article  CAS  Google Scholar 

  4. Madrakian T., Afkhami A., Mahmood-Kashani H., Ahmadi M., J. Iran. Chem. Soc., 2013, 10, 481

    Article  CAS  Google Scholar 

  5. Yao L., Zhang L., Dong Z., Chou S., Dong Z., J. Hazard. Mater., 2016, 301, 462

    Article  CAS  Google Scholar 

  6. Gomes R. F., Neto de Azevedo A. C., Pereira A. G. B., Muniz E. C., Fajardo A. R., Rodrigues F. H. A., J. Colloid Interf. Sci., 2015, 454, 200

    Article  CAS  Google Scholar 

  7. Sheng S., Han Y., Wang B., Zhao C., Yang F., Zhao M. J., Xie Y. B., Li J. R., J. Solid State Chem., 2016, 233, 143

    Article  CAS  Google Scholar 

  8. Salima A., Ounissa K. S., Lynda M., Mohamed B., Procedia Engineering, 2012, 33, 38

    Article  CAS  Google Scholar 

  9. Yuan W., Yuan P., Liu D., Yu W. B., Deng L. L., Chen F. R., J. Colloid Interf. Sci., 2015, 462, 191

    Article  Google Scholar 

  10. Liu D., Yuan W., Yuan P., Yu W. B., Tan D. Y., Liu H. M., He H. P., Appl. Surf. Sci., 2013, 282, 838

    Article  CAS  Google Scholar 

  11. Wong K. T., Eu N. C., Ibrahim S., Kim H., Yoon Y., Jang M., J. Clean. Prod., 2015, 115, 337

    Article  Google Scholar 

  12. Yang S. T., Chen S., Chang Y. L., Cao A., Liu Y., Wang H., J. Colloid Interface Sci., 2011, 359, 24

    Article  CAS  Google Scholar 

  13. Xie Y., Yan B., Xu H., Chen J., Liu Q. X., Deng Y. H., Zeng H. B., ACS Appl. Mater. Interfaces, 2014, 6, 8845

    Article  CAS  Google Scholar 

  14. Zhang C., Li P., Huang W., Cao B., Chem. Eng. Res. Des., 2016, 109, 76

    Article  CAS  Google Scholar 

  15. Yi F., Zhu W., Dang S., Li J. P., Wu D., Chem. Commun., 2015, 51, 3336

    Article  CAS  Google Scholar 

  16. Hu X., Lu Y., Dai F., Liu C. G., Liu Y. Q., Micropor. Mesopor. Mater., 2013, 170, 36

    Article  CAS  Google Scholar 

  17. Yang H., Liu T., Cao M., Li H., Gao S., Chem. Commun., 2010, 46, 2429

    Article  CAS  Google Scholar 

  18. Wee L. H., Bajpe S. R., Janssens N., Hermans I., Houthoofd K., Chem. Commun., 2010, 46, 8186

    Article  CAS  Google Scholar 

  19. Park D. R., Song J. H., Lee S. H., Song S. H., Kim H., Jung J. C., Song I. K., Appl. Catal. A: Gen., 2008, 349, 222

    Article  CAS  Google Scholar 

  20. Klaus S., Tobias K., Stefan. K., Microporous Mesoporous Mater., 2004, 73, 81

    Article  Google Scholar 

  21. Bielanski A., Lubanska A., J. Mol. Catal. A: Chem., 2004, 224, 179

    Article  CAS  Google Scholar 

  22. Sun C. Y., Liu S. X., Liang D. D., Shao K. Z., Ren Y. H., Su Z. M., J. Am. Chem. Soc., 2009, 131, 1883

    Article  CAS  Google Scholar 

  23. Uemura T., Kadowaki Y., Kim C. R., Fukushima T., Hiramatsu D., Kitagawa S., Chem. Mater., 2011, 23, 1736

    Article  CAS  Google Scholar 

  24. Ke F., Qiu L., Zhu J., Peng F. M., Jiang X., Xie A. J., Shen Y. H., Zhu J. F., J. Hazard. Mater., 2011, 196, 36

    Article  CAS  Google Scholar 

  25. Yan A. X., Yao S., Wang E. B., Zhang Z. M., Lu Y., Chen W. L., Wang E. B., Chem. Eur. J., 2014, 20, 6927

    Article  CAS  Google Scholar 

  26. Lin S., Song Z., Che G., Ren A., Li P., Liu C. B., Zhang J. S., Micropor. Mesopor. Mater., 2014, 193, 27

    Article  CAS  Google Scholar 

  27. Li L., Chen L., Shi H., Chen X., Lin W., J. Environ. Chem. Eng., 2016, 4, 1451

    Article  CAS  Google Scholar 

  28. Yang Y., Zhao Y., Sun S., Zhang X. Y., Duan L. F, Ge X., Lü W., Mater. Res. Bull., 2016, 73, 401

    Article  CAS  Google Scholar 

  29. Liu F., Zou H., Huo Y., Liu H. B., Peng J. B., Chen Y. W., Lu F. H., Huo Y. P., Chem. Eng. J., 2016, 287, 410

    Article  CAS  Google Scholar 

  30. Wang H. L., Zhao Y., Ma L. K., Fan P. H., Xu C. B., Jiao C. L., Lin A. J., Chem. J. Chinese Universities, 2016, 37(2), 335

    CAS  Google Scholar 

  31. Gong W. P., Tian C. Q., Du X. G., Yang S. J., Chem. J. Chinese Universities, 2016, 37(9), 1596

    CAS  Google Scholar 

  32. Chen X., Lv S., Liu S., Zhang P., Zhang A., Sun J., Sep. Sci. Technol., 2012, 47, 147

    Article  CAS  Google Scholar 

  33. Chandra T. S., Mudliar S.N., Vidyashankar S., Mukherji S., Sarada R., Krishnamurthi K., Chauhan V. S., Bioresour. Technol., 2015, 184, 395

    Article  Google Scholar 

  34. Cherifi H., Fatiha B., Salah H., Appl. Surf. Sci., 2013, 282, 52

    Article  CAS  Google Scholar 

  35. Shah B.A., Shah A.V., Patel H. D., Int. J. Environ. Waste Manag., 2010, 7, 192

    Article  Google Scholar 

  36. Woolard C., Strong J., Erasmus C., Appl. Geochem., 2002, 17, 1159

    Article  CAS  Google Scholar 

  37. Xie J., Li C., Chi L., Wu D., Fuel, 2013, 103, 480

    Article  CAS  Google Scholar 

  38. Zhang F., Song W., Lan J., Appl. Surf. Sci., 2015, 326, 195

    Article  CAS  Google Scholar 

  39. Mashhadi S., Sohrabi R., Gupta V. K., J. Mol. Liq., 2016, 215, 144

    Article  CAS  Google Scholar 

  40. Li X. X., Gong W. P., Yang S. J., Appl. Surf. Sci., 2016, 362, 517

    Article  Google Scholar 

  41. Salem A. M., Ahmed M. A., El-Shahat M. F., J. Mol. Liq., 2016, 219, 780

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shuijin Yang.

Additional information

Supported by the National Natural Science Foundation of China(No.21171053), the Natural Science Foundation of Hubei Province, China(No.2014CFA131), the Graduate Student Innovation Research Fund of Hubei Normal University, China (No.20160107).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, X., Luo, J., Chen, X. et al. Selective adsorption performance of H6P2Mo15W3O62-based Cu3(BTC)2 composite in treatment of simulated cationic dye wastewater. Chem. Res. Chin. Univ. 33, 268–273 (2017). https://doi.org/10.1007/s40242-017-6350-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40242-017-6350-4

Keywords

Navigation