Skip to main content

Advertisement

Log in

Molecular dynamics simulation for the impact of external electric fields on CaCl2 aqueous solution

  • Published:
Chemical Research in Chinese Universities Aims and scope

Abstract

Non-equilibrium molecular dynamics(MD) simulations were performed according to the electronic anti-fouling technology, and some structural parameters and dynamic parameters of CaCl2 aqueous solution were taken as indicators to compare the different effect on the anti-fouling performance by applying different electric fields. The results show that electric fields can effectively decrease the viscosity of CaCl2 aqueous solution and enhance the ionic activity by enlarging the self-diffusion coefficient. In addition, with the same electric field strength, the electrostatic field is more effective at decreasing the viscosity of CaCl2 aqueous solution and increasing the self-diffusion coefficient of water molecules, while the alternating electric field is more effective at increasing the self-diffusion coefficient of Ca2+. Furthermore, an alternating electric field with different frequencies was applied; the results show that an 800 kHz frequency is most effective to decrease the viscosity, and a 700 kHz frequency is most effective to enhance the self-diffusion coefficient of water molecule. Otherwise, 400 kHz is most effective to enhance the self-diffusion coefficient of Ca2+. Additionally, by studying the change of structure parameters, it was concluded that an external electric field can enhance the hydration between Ca2+ and coordinated water molecules, and the alternating electric field is more effective in this respect.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Steinhagen R., Müller-Steinhagen H., Maani K., Heat. Transfer. Eng., 1993, 14(1), 811

    Article  Google Scholar 

  2. Chen C., Liu R., Science Technology and Engineering, 2009, 15(9), 4567

    Google Scholar 

  3. Ge H., Wei C., Acta Chimica Sinica, 2011, 69(19), 2313

    CAS  Google Scholar 

  4. Xing X., Jing D., Journal of Engineering for Thermal Energy and Power, 2007, 22(3), 336

    CAS  Google Scholar 

  5. Cho Y. I., Liu R., Int. J. Heat. Transfer. Eng., 1999, 42, 3037

    Article  Google Scholar 

  6. Xing X., Ma C., Chen Y., Chem. Eng. Technol., 2005, 28(12), 1540

    Article  CAS  Google Scholar 

  7. Zhao G., Liu J., Zhou L., Han K., J. Phys. Chem. B, 2007, 111(30), 8940

    Article  CAS  Google Scholar 

  8. Zhao G., Han K., Accounts, Chem. Res., 2012, 45(3), 404

    Article  CAS  Google Scholar 

  9. Chen J., Yuan M., Wang J., Yang Y., Chu T., J. Phys. Chem. A, 2014, 118(39), 8986

    Article  CAS  Google Scholar 

  10. Yamaguchi T., Hayashi S., Ohtaki H., Inorg. Chem., 1989, 28(12), 2434

    Article  CAS  Google Scholar 

  11. Probst M. M., Radnai T., Heinzinger K., Bopp P., Rode B. M., J. Phys. Chem., 1985, 89(5), 753

    Article  CAS  Google Scholar 

  12. Hewish N. A., Neilson G. W., Enderby J. E., Nature, 1982, 297, 138

    Article  CAS  Google Scholar 

  13. Fulton J. L., Chen Y., Heald S. M., Balasubramanian M., J. Chem. Phys., 2006, 125(9), 094507

    Article  Google Scholar 

  14. Licheri G., Piccaluga G., Pinna G., J. Chem. Phys., 1976, 64, 2437

    Article  CAS  Google Scholar 

  15. Marcus Y., Chem. Rev., 1998, 88, 1475

    Article  Google Scholar 

  16. Hess B., Kutzner C., van der Spoel D., Lindahl E., J. Chem. Theory Comput., 2008, 4(3), 435

    Article  CAS  Google Scholar 

  17. Chialvo A. A., Simonson J. M., J. Chem. Phys., 2003, 119(15), 8052

    Article  CAS  Google Scholar 

  18. Li M., Duan Z., Zhang Z., Zhang C., Weare J., Mol. Phys., 2008, 106(24), 2685

    Article  CAS  Google Scholar 

  19. Gunsteren W. F. V., Biomolecular Simulation: the GROMOS96 Manual and User Guide, Zürich, Groningen, 1996

    Google Scholar 

  20. Allen M. P., Tildesley D. J., Computer Simulation of Liquids, Clarendon Press, Oxford, 1989

    Google Scholar 

  21. Han Y., Zhao Y., Chai X., Liu X., Electr. Mach. Contrl., 2011, 15(9), 31

    CAS  Google Scholar 

  22. Hertz H. G., Mills R., J. Phys. Chem., 1978, 82(8), 952

    Article  CAS  Google Scholar 

  23. Han Y., Zhao Y., Int. J. Electrochem. Sci., 2012, 7(10), 10008

    CAS  Google Scholar 

  24. Hess B., J. Chem. Phys., 2002, 116, 209

    Article  CAS  Google Scholar 

  25. Ding K., Journal of Hebei University of Engineering(Natural Science Edition), 2010, 27(3), 14

    Google Scholar 

  26. Darden T., York D., Pedersen L., J. Chem. Phys., 1993, 98, 10089

    Article  CAS  Google Scholar 

  27. Le D. T., Ren F., Zhang M., J. Heat. Mass. Transf., 2010, 53(s7/8), 1426

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong Han.

Additional information

Supported by the National Natural Science Foundation of China(No.51408525).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Han, Y., Zhu, L. & Zhang, Y. Molecular dynamics simulation for the impact of external electric fields on CaCl2 aqueous solution. Chem. Res. Chin. Univ. 32, 641–646 (2016). https://doi.org/10.1007/s40242-016-6106-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40242-016-6106-6

Keywords

Navigation