Skip to main content
Log in

Gold and silver nanoparticles supported on metal-organic frameworks: a highly active catalyst for three-component coupling reaction

  • Published:
Chemical Research in Chinese Universities Aims and scope

Abstract

Engineering metal-organic frameworks(MOF) for heterogeneous catalysts have been of extreme interest since they have large pore size within the crystalline framework and well defined pore architecture. Ni-containing MOF Ni2(3,5-Pydc)2(H2O)8·2H2O(1·H2O) was prepared by solvothermal method from 3,5-pyridinedicarboxylic acid, D-camphoric acid and Ni(NO3)2·6H2O in dimethylformamide(DMF)/water(volume ratio 2:1). And two gold and silver functionalized 1·H2O catalysts were prepared by impregnation method. Catalysts 2.53%Au/MOF and 4.23%Ag/MOF were in-depth characterized by single crystal X-ray diffraction, powder X-ray diffraction(PXRD), thermogravimetric analysis(TGA), transmission electron microscopy(TEM), and inductively coupled plasma-atomic emission spectroscopy(ICP-AES). Their catalytic performance was examined in one-pot synthesis of structurally divergent propargylamines via three component coupling of aldehyde, alkyne, and amine(A3) in 1,4-dioxane. The results show that the catalysts all displayed high reactivities, and a selectivity of 100% for propargylamines. Catalysts 2.53%Au/MOF and 4.23%Ag/MOF have proved to be applicable to a wide range of substrates. Catalysts 2.53%Au/MOF and 4.23%Ag/MOF can be easily recycled and used repetitively at least 3 times with a slight drop in activity. These features render the catalysts particularly attractive in the practice of propargylamines synthesis in an environmentally friendly manner.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Liu L. L., Zhang X., Gao J. S., Xu C. M., Green Chem., 2012, 14, 1710

    Article  CAS  Google Scholar 

  2. Li P., Wang L., Tetrahedron, 2007, 63, 5455

    Article  CAS  Google Scholar 

  3. Dyker G., Angew. Chem. Int. Ed., 1999, 38, 1698

    Article  Google Scholar 

  4. Bloch R., Chem. Rev., 1998, 98, 1407

    Article  CAS  Google Scholar 

  5. Jung M. E., Huang A., Org. Lett., 2000, 2, 2659

    Article  CAS  Google Scholar 

  6. Shabbir S., Lee Y., Rhee H., J. Catal., 2015, 322, 104

    Article  CAS  Google Scholar 

  7. Bhuyan D., Saikia M., Saikia L., Catal. Commun., 2015, 58, 158

    Article  CAS  Google Scholar 

  8. Srinivas V., Koketsu M., Tetrahedron, 2013, 69, 8025

    Article  CAS  Google Scholar 

  9. Grirrane A., Alvarez E., García H., Corma A., Angew. Chem. Int. Ed., 2014, 53, 7253

    Article  CAS  Google Scholar 

  10. Chen T. T., Cai C., Catal. Commun., 2015, 65, 102

    Article  CAS  Google Scholar 

  11. Castelló L. M., Nájera C., Sansano J. M., Larrañaga O., de Cózar A., Cossío F. P., Synthesis, 2015, 47(7), 934

    Article  Google Scholar 

  12. Li Z., Wei C., Chen L., Varmab S., Li R. C. J., Tetrahedron Lett., 2004, 45, 2443

    Article  CAS  Google Scholar 

  13. Borah B. J., Borah S. J., Saikia K., Dutta D. K., Catal. Sci. Technol., 2014, 4, 4001

    Article  CAS  Google Scholar 

  14. Huang J. L., Gray D. G., Li C. J., J. Org. Chem., 2013, 9, 1388

    Google Scholar 

  15. Tian D., Adv. Mater. Res., 2012, 550―553, 336

    Article  Google Scholar 

  16. Yong G.P., Tian D., Tong H. W., Liu S. M., J. Mol. Catal. A: Chem., 2010, 323, 40

    Article  CAS  Google Scholar 

  17. Zhang X., Corma A., Angew. Chem. Int. Ed., 2008, 47, 4358

    Article  Google Scholar 

  18. Layek K., Chakravarti R., Kantam M. L., Maheswaran H., Vinu A., Green Chem., 2011, 13, 2878

    Article  CAS  Google Scholar 

  19. Yan W. J., Wang R., Xu Z. Q., Xu J. K., Lin L., Shen Z. Q., Zhou Y. F., J. Mol. Catal. A: Chem., 2006, 255, 81

    Article  CAS  Google Scholar 

  20. Datta K. K. R., Reddy B. V. S., Ariga K., Vinu A., Angew. Chem. Int. Ed., 2010, 49, 5961

    Article  CAS  Google Scholar 

  21. Zhang W. J., Jiang P. P., Wang Y., Zhang J., Zheng J. W., Zhang P. B., Chem. Eng. J., 2014, 257, 28

    Article  CAS  Google Scholar 

  22. Horike S., Dincă M., Tamaki K., Long G. R., J. Am. Chem. Soc., 2008, 130, 5854

    Article  CAS  Google Scholar 

  23. Liu L. L., Zhang X., Rang S. M., Yang Y., Dai X. P., Gao J. S., Xu C. M., He J., RSC Adv., 2014, 4, 13093

    Article  CAS  Google Scholar 

  24. Wu X. F., Bao Z. B., Yuan B., Wang J., Sun Y. Q., Luo H. M., Deng S. G., Micropor. Mesopor. Mat., 2013, 180, 114

    Article  CAS  Google Scholar 

  25. Li B., Wen H. M., Zhou W., Chen B. L., J. Phys. Chem. Lett., 2014, 5, 3468

    Article  CAS  Google Scholar 

  26. Banerjee M., Das S., Yoon M., Choi H. J., Hyun M. H., Park S. M., Seo G., Kim K., J. Am. Chem. Soc., 2009, 131, 7524

    Article  CAS  Google Scholar 

  27. Schlichte K., Kratzke T., Kaskel S., Micropor. Mesopor. Mat., 2004, 73, 81

    Article  CAS  Google Scholar 

  28. Farrusseng D., Schlichte K., Spliethoff B., Wingen A., Kaskel S., Bradley J. S., Schüth F., Angew. Chem. Int. Ed., 2001, 40, 4204

    Article  CAS  Google Scholar 

  29. Dhakshinamoorthy A., Alvaro M., Corma A., Garcia H., Dalton Trans., 2011, 40(24), 6344

    Article  CAS  Google Scholar 

  30. Phan N. T. S., Nguyen T. T., Nguyen C. V., Nguyen T. T., Appl. Catal. A: Gen., 2013, 457, 69

    Article  CAS  Google Scholar 

  31. Dhakshinamoorthy A., Alvaro M., Garcia H., ACS Catal., 2011, 1(1), 48

    Article  CAS  Google Scholar 

  32. Wang W. X., Li Y. W., Zhang R. J., He D. H., Liu H. L., Liao S. J., Catal. Commun., 2011, 12, 875

    Article  CAS  Google Scholar 

  33. Kim J., Kim S. N., Jang H. G., Seo G., Ahn W. S., Appl. Catal. A: Gen., 2013, 453, 175

    Article  CAS  Google Scholar 

  34. Yang D. A., Cho H. Y., Kim J., Yang S. T., Ahn W. S., Energy Environ. Sci., 2012, 5(4), 6465

    Article  CAS  Google Scholar 

  35. Opelt S., Turk S., Dietzsch E., Henschel A., Kaskel S., Klemm E., Catal. Commun., 2008, 9, 1286

    Article  CAS  Google Scholar 

  36. Zhao X. M., Jin Y., Zhang F. M., Zhong Y. J., Zhu W. D., Chem. Eng. J., 2014, 239, 33

    Article  CAS  Google Scholar 

  37. Zhang F. M., Jin Y., Fu Y. H., Zhong Y. J., Zhu W. D., Ibrahim A. A., EI-Shall M. S., J. Mater. Chem. A, 2015, 3, 17008

    Article  CAS  Google Scholar 

  38. Reihaneh K., Shahram T., Valiollah M., Majid M., Iraj M. B., Ahmad R. K., Farnaz Z., J. Org. Chem., 2014, 761, 127

    Article  Google Scholar 

  39. Gao S., Zhao N., Shu M., Che S., Appl. Catal. A: Gen., 2010, 388, 196

    Article  CAS  Google Scholar 

  40. Zhou Y. X., Song J. L., Liang S. G., Hu S. Q., Liu H. Z., Jiang T., Han B. X., J. Mol. Catal. A: Chem., 2009, 308(1/2), 68

    Article  CAS  Google Scholar 

  41. Gascon J., Aktay U., Hernandez-Alonso M. D., van Klink G. P. M., Kapteijn F., J. Catal., 2009, 261, 75

    Article  CAS  Google Scholar 

  42. Oxford G. A. E., Dubbeldam D., Broadbelt L. J., Snurr R. Q., J. Mol. Catal. A: Chem., 2011, 334, 89

    Article  CAS  Google Scholar 

  43. Vermoortele F., Ameloot R., Vimont A., Serre C., Vos D. D., Chem. Commun., 2011, 47(5), 1521

    Article  CAS  Google Scholar 

  44. Sheldrick G. M., SHELXS 97, Program for Crystal Structure Refinement, University of Göttingen, Göttingen, 1997

    Google Scholar 

  45. Jin Q., Zhao J., Shi X., Chem. J. Chinese Universities, 2010, 31(8), 1496

    CAS  Google Scholar 

  46. Hareesh K., Joshi R. P., Dahiwale S. S., Bhoraskar V. N., Dhole S. D., Vacuum, 2016, 124, 40

    Article  CAS  Google Scholar 

  47. Kidwai M., Bansal V., Kumar A., Mozumder S., Green Chem., 2007, 9, 742

    Article  CAS  Google Scholar 

  48. Reddy K. M., Babu N. S., Suryanarayana I., Prasad P. S. S., Lingaiah N., Tetrahedron Lett., 2006, 47(6), 7563

    Article  CAS  Google Scholar 

  49. Lo V. K. L., Liu Y., Wong M. K., Che C. M., Org. Lett., 2006, 8, 1529

    Article  CAS  Google Scholar 

  50. Li C. J., Wei C., Chem. Commun., 2002, (3), 268

    Article  Google Scholar 

  51. Huma H. Z. S., Halder R., Karla S. S., Das J., Iqbal J., Tetrahedron Lett., 2002, 43(48), 6485

    Article  Google Scholar 

  52. Wei C., Li C. J., J. Am. Chem. Soc., 2003, 125, 9584

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Lili Liu or Xishi Tai.

Additional information

Supported by the Promotive Research Fund for Young and Middle-aged Scientists of Shandong Province, China (Nos.BS2014CL021, BS2015CL012), the Natural Science Foundation of Shandong Province, China(Nos.ZR2014BL003, ZR2015BM005), the Project of Shandong Province Higher Educational Science and Technology Program, China(Nos.J14LC01, J15LA09) and the Technology Research and Development Program of Weifang, China(No.201301035).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, L., Tai, X., Yu, G. et al. Gold and silver nanoparticles supported on metal-organic frameworks: a highly active catalyst for three-component coupling reaction. Chem. Res. Chin. Univ. 32, 443–450 (2016). https://doi.org/10.1007/s40242-016-5435-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40242-016-5435-9

Keywords

Navigation