Skip to main content
Log in

Structure and dynamics of confined polymer melts from attractive interaction to repulsive interaction between polymer and smooth wall

  • Published:
Chemical Research in Chinese Universities Aims and scope

Abstract

We studied the static and dynamic properties of unentangled polymer chains which have a variable strength of interaction with the confining smooth walls by means of the lattice Monte Carlo simulation based on the bond-fluctuation model, that is, investigated the wall-polymer interactions which systematically vary from attraction to repulsion. A critical value of attractive potential(εwc) is found to be–0.6k B T, and only below it can the adsorption layer of monomers be formed near the wall. At the critical point of attraction εwc, attractive interaction counterbalances the wall-polymer excluded volume effect, which minimizes the confinement effects on both chain dimension and mobility. Influences on both chain dimension and mobility increase with the increasing of either attraction or repulsion imposed by the walls. Despite of the nature and strength of the wall-polymer interaction, with the decrease of film thickness, configurations more parallelly aligned and flattened are adopted by confined chains, and a systematic trend of deceleration is found. Variations of chain dynamics with both film thickness and wall-polymer interaction can be well explained by the corresponding changes in the confinement of the nearest-neighboring particles that surround the chains. Besides, the thickness of the interfacial layer inside polymer films, where chains adopt a flattened “pancake” shape, is about two times the bulk radius of gyration and independent of the wall-polymer interaction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Mai Y., Yu Z., Polymer Nanocomposites, CRC Press, Boca Raton, 2006, 337

    Book  Google Scholar 

  2. Myers D., Surfaces, Interfaces, and Colloids: Principles and Applications, 2nd Ed, Wiley-VCH, New York, 1999, 415

    Book  Google Scholar 

  3. Long Y., Palmer J. C., Coasne B., Sliwinska-Bartkowiak M., Jackson G., Mueller E. A., Gubbins K. E., J. Chem. Phys., 2013, 139, 144701

    Article  Google Scholar 

  4. Hoda N., Kumar S., Langmuir, 2007, 23, 11747

    Article  CAS  Google Scholar 

  5. Freed K. F., Dudowicz J., Stukalin E. B., Douglas J. F., J. Chem. Phys., 2010, 133, 094901

    Article  Google Scholar 

  6. Erber M., Tress M., Mapesa E. U., Serghei A., Eichhorn K. J., Voit B., Kremer F., Macromolecules, 2010, 43, 7729

    Article  CAS  Google Scholar 

  7. Desai T., Keblinski P., Kumar S. K., J. Chem. Phys., 2005, 122, 134910

    Article  Google Scholar 

  8. Karatrantos A., Composto R. J., Winey K. I., Clarke N., Macromolecules, 2011, 44, 9830

    Article  CAS  Google Scholar 

  9. Karatrantos A., Composto R. J., Winey K. I., Kroeger M., Clarke N., Macromolecules, 2012, 45, 7274

    Article  CAS  Google Scholar 

  10. Sikorski A., Zukowska I., Colloids Surf., A, 2008, 321, 244

    Article  CAS  Google Scholar 

  11. Sevink G. J. A., Zvelindovsky A. V., Macromolecules, 2009, 42, 8500

    Article  CAS  Google Scholar 

  12. Egorov S. A., Paturej J., Likos C. N., Milchev A., Macromolecules, 2013, 46, 3648

    Article  CAS  Google Scholar 

  13. Erber M., Khalyavina A., Eichhorn K. J., Voit B. I., Polymer, 2010, 51, 129

    Article  CAS  Google Scholar 

  14. Higuchi Y., Yoshikawa K., Iwaki T., Phys. Rev. E, 2011, 84, 021924

    Article  Google Scholar 

  15. Hsu H. P., Binder K., Macromolecules, 2013, 46, 8017

    Article  CAS  Google Scholar 

  16. Aoyagi T., Takimoto J., Doi M., J. Chem. Phys., 2001, 115, 552

    Article  CAS  Google Scholar 

  17. Batistakis C., Lyulin A. V., Michels M. A. J., Macromolecules, 2012, 45, 7282

    Article  CAS  Google Scholar 

  18. Batistakis C., Michels M. A. J., Lyulin A. V., Macromolecules, 2014, 47, 4690

    Article  CAS  Google Scholar 

  19. Lin C. C., Gam S., Meth J. S., Clarke N., Winey K. I., Composto R. J., Macromolecules, 2013, 46, 4502

    Article  CAS  Google Scholar 

  20. van Zanten J. H., Wallace W. E., Wu W. L., Phys. Rev. E, 1996, 53, R2053

    Article  Google Scholar 

  21. Forrest J. A., Dalnoki-Veress K., Adv. Colloid Interface Sci., 2001, 94, 167

    Article  CAS  Google Scholar 

  22. Roth C. B., Dutcher J. R., J. Electroanal. Chem., 2005, 584, 13

    Article  CAS  Google Scholar 

  23. Alcoutlabi M., McKenna G. B., J. Phys. Condens. Matter, 2005, 17, R461

    Article  CAS  Google Scholar 

  24. Keddie J. L., Jones R. A. L., Cory R. A., Faraday Discuss., 1994, 98, 219

    Article  CAS  Google Scholar 

  25. Reiter G., Macromolecules, 1994, 27, 3046

    Article  CAS  Google Scholar 

  26. Forrest J. A., Dalnoki-Veress K., Stevens J. R., Dutcher J. R., Phys. Rev. Lett., 1996, 77, 2002

    Article  CAS  Google Scholar 

  27. Bitsanis I., Hadziioannou G., J. Chem. Phys., 1990, 92, 3827

    Article  CAS  Google Scholar 

  28. Muller M., J. Chem. Phys., 2002, 116, 9930

    Article  CAS  Google Scholar 

  29. Mischler C., Baschnagel J., Dasgupta S., Binder K., Polymer, 2002, 43, 467

    Article  CAS  Google Scholar 

  30. Li Y. J., Wei D. S., Han C. C., Liao Q., J. Chem. Phys., 2007, 126, 204907

    Article  Google Scholar 

  31. Shaffer J. S., J. Chem. Phys., 1994, 101, 4205

    Article  CAS  Google Scholar 

  32. Shaffer J. S., J. Chem. Phys., 1995, 103, 761

    Article  CAS  Google Scholar 

  33. Yang Y. B., Sun Z. Y., An L. J., Acta Polym. Sin., 2011, 5, 554

    Article  Google Scholar 

  34. Shaffer J. S., Macromolecules, 1996, 29, 1010

    Article  CAS  Google Scholar 

  35. Mischler C., Baschnagel J., Binder K., Adv. Colloid Interface Sci., 2001, 94, 197

    Article  CAS  Google Scholar 

  36. Paul W., Binder K., Heermann D. W., Kremer K., J. Chem. Phys., 1991, 95, 7726

    Article  CAS  Google Scholar 

  37. Yang Y. B., Sun Z. Y., Fu C. L., An L. J., Wang Z. G., J. Chem. Phys., 2010, 133, 064901

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Weiguo Yao or Tongfei Shi.

Additional information

Supported by the National Natural Science Foundation of China(Nos.51473168, 21234007), the Science and Technology Development Program of Jilin Province, China(No.20120319) and the Program of the Key Technology Research for the Slush Process of Automotive Interior Product, China(No.2012362).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, S., Zhang, W., Yao, W. et al. Structure and dynamics of confined polymer melts from attractive interaction to repulsive interaction between polymer and smooth wall. Chem. Res. Chin. Univ. 31, 477–483 (2015). https://doi.org/10.1007/s40242-015-4455-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40242-015-4455-1

Keywords

Navigation