Skip to main content
Log in

Facile chemical conversion synthesis and luminescence properties of uniform YF3 nanowires

  • Published:
Chemical Research in Chinese Universities Aims and scope

Abstract

Well-dispersed YF3 nanowires were synthesized by a designed hydrothermal conversion method with Y(OH)3 nanowires as precursor. Various equipments were used to characterize the samples. The results show that Y(OH)3 nanowires precursor was prepared through a simple hydrothermal process, which then served as the precursor for the fabrication of YF3 nanowires by a hydrothermal process. The whole process was carried out under aqueous conditions without any organic solvent, surfactant or catalyst. The conversion process from Y(OH)3 precursor to YF3 nanowires was investigated by time-dependent experiments. The possible formation mechanism of YF3 nanowires was presented in detail. Under UV excitation, 5%(mass fraction) Eu3+ or 5%(mass fraction) Tb3+ doped YF3 samples exhibit strong red or green emission, corresponding to the characteristic lines of Eu3+ and Tb3+, respectively. Moreover, the luminescence colors of the Eu3+ and Tb3+ codoped YF3 samples can be tuned from red, yellow and green-yellow to green by simply adjusting the relative doping concentrations of the activator ions under a single wavelength excitation, which might find potential applications in the fields of, such as, light display systems and optoelectronic devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alivisatos A. P., Science, 1996, 271, 933

    Article  CAS  Google Scholar 

  2. Guo L., Yuan H. M. Huang K. K. Yuan L., Liu S. K. Feng S. H., Chem. Res. Chinese Universities, 2011, 27(5), 715

    CAS  Google Scholar 

  3. Zhu L. L. Chen Y., Huang K. K. Zhang G. H. Hu W. W. Yuan H. M. Chang H. B. Feng S. H., Chem. Res. Chinese Universities, 2010, 26(5), 707

    CAS  Google Scholar 

  4. Xu Z. H. Ma P. A. Li C. X. Hou Z. Y. Zhai X. F. Huang S. S. Lin J., Biomaterials, 2011, 32, 4161

    Article  CAS  Google Scholar 

  5. Jin R. C. Cao Y. W. Mirkin C. A. Kelly K. L. Schatz G. C. Zheng J., Science, 2001, 294, 1901

    Article  CAS  Google Scholar 

  6. Feng W., Zhao G. Y. Sun L. D. Yan C. H., Chem. J. Chinese Universities, 2011, 32(3), 635

    CAS  Google Scholar 

  7. Wang F. D. Tang R. W. Buhro E., Nano Lett., 2008, 8, 3521

    Article  CAS  Google Scholar 

  8. Mu Q. Y. Chen T., Wang Y. D., Nanotechnology, 2009, 20, 345602

    Article  Google Scholar 

  9. Hu C. G. Liu H., Dong W. T. Zhang Y. Y. Bao G., Lao C. S. Wang Z. L., Adv. Mater., 2007, 19, 470

    Article  CAS  Google Scholar 

  10. Hou Z. Y. Yang P. P. Li C. X. Wang L. L. Lian H. Z. Quan Z. W., Lin J., Chem. Mater., 2008, 20, 6686

    Article  CAS  Google Scholar 

  11. Li C. X. Yang J., Quan Z. W. Yang P. P. Kong D. Y. Lin J., Chem. Mater., 2007, 19, 4933

    Article  CAS  Google Scholar 

  12. Xu Z. H. Li C. X. Yang D. M. Wang W. X. Kang X. J. Shang M. M. Lin J., Phys. Chem. Chem. Phys., 2010, 12, 11315

    Article  CAS  Google Scholar 

  13. Song S. Y. Han W. Q. Zhang H. J., Chem. J. Chinese Universities, 2011, 32(3), 508

    CAS  Google Scholar 

  14. Fang Y. P. Xu A. W. Song R. Q. Zhang H. X. You L. P. Yu J. C. Liu H. Q., J. Am. Chem. Soc., 2003, 125, 16025

    Article  CAS  Google Scholar 

  15. Xu Z. H. Li C. X. Yang P. P. Zhang C. M. Huang S. S. Lin J., Cryst. Growth Des., 2009, 9, 4752

    Article  CAS  Google Scholar 

  16. Xu Z. H. Cao Y., Li C. X. Ma P. A. Zhai X. F. Huang S. S. Kang X. J. Shang M. M. Yang D. M. Dai Y. L., Lin J., J. Mater. Chem., 2011, 21, 3686

    Article  CAS  Google Scholar 

  17. Zhu L., Meng J., Cao X. Q., Eur. J. Inorg. Chem., 2007, 24, 3863

    Article  Google Scholar 

  18. Jia G., You H. P. Song Y. H. Jia J. J. Zheng Y. H. Zhang L. H. Liu K., Zhang H. J., Inorg. Chem., 2009, 48, 10193

    Article  CAS  Google Scholar 

  19. Xu Z. H. Li C. X. Yang D. M. Wang W. X. Kang X. J. Shang M. M. Lin J., Phys. Chem. Chem. Phys., 2009, 11, 3623

    Article  Google Scholar 

  20. Zhang F., Zhao D. Y., ACS Nano., 2009, 3, 159

    Article  CAS  Google Scholar 

  21. Deshazer L. G. Dieke G. H., J. Chem. Phys., 1963, 38, 2190

    Article  CAS  Google Scholar 

  22. Judd B. R., Phys. Rev., 1962, 127, 750

    Article  CAS  Google Scholar 

  23. Thomas K. S. Singh S., Dieke G. H. J., Chem. Phys., 1963, 38, 2180

    CAS  Google Scholar 

  24. Robbins D. J. Cockayne B., Chang N. C. Clasper J. L., Solid State Commun., 1976, 20, 673

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhen-he Xu or Xin Ge.

Additional information

Supported by the National Natural Science Foundation of China(No.21071100), the Scientific Research Foundation for the Returned Overseas Chinese Scholars of Ministry of Education of China and the BaiQianWan Talents Program and the Doctor Foundation of Liaoning Province of China(No.20071016).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xu, Zh., Gao, Y., Ge, X. et al. Facile chemical conversion synthesis and luminescence properties of uniform YF3 nanowires. Chem. Res. Chin. Univ. 29, 1–5 (2013). https://doi.org/10.1007/s40242-013-2311-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40242-013-2311-8

Keywords

Navigation