Skip to main content
Log in

Preparation, structure and magnetic properties of lithium substituted NiO by molten salt method

  • Articles
  • Published:
Chemical Research in Chinese Universities Aims and scope

Abstract

A typical Li+ substituted NiO compound, Li0.29Ni0.71O, was synthesized by molten nitrate method. The effects of Li+ substitution on the structure and magnetic properties of NiO were investigated. X-Ray diffraction(XRD), scanning electron microscope(SEM) and high-resolution transmission electron microscope(HRTEM) analyses confirm the cubic structure of Li0.29Ni0.71O, with a primary particle size of 150 nm. Analysis of the Ni X-ray photoelectron spectroscopy(XPS) shows the transformation from Ni2+ to Ni3+ induced by Li+ substitution. Two magnetic transitions were observed at 225 and 55 K which were assigned to the ferrimagnetic ordering and spin glass transition, respectively. The different magnetic behavior with respect to that of NiO was attributed to the break of superexchange interaction Ni2+-O-Ni2+ and the formation of different spin clusters after non-magnetic Li+ doping.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kanno R., Kubo H., Kawamoto Y., Kamiyama T., Izumi F., Takeda Y., Takano M., J. Solid State Chem., 1994, 110, 216

    Article  CAS  Google Scholar 

  2. Nagasaka Y., Ohta H., Kawakami K., Ueda A., Ono S., Ikeuchi Y., Nanba T., Hirano A., Kanno R., J. Phys. Chem. Solid, 2003, 64, 1949

    Article  CAS  Google Scholar 

  3. Morales J., Perez V. C., Tirado J. L., Mater. Res. Bull., 1990, 25, 623

    Article  CAS  Google Scholar 

  4. Li W., Reimers J. N., Dahn J. R., Phys. Rev. B, 1992, 46, 3236

    Article  CAS  Google Scholar 

  5. Wang C. W., Ma X. L., Li Z. C., Liang Y. G., Sun J. T., Zhou Y. H., Electrochem. Commun., 2006, 8, 289

    Article  CAS  Google Scholar 

  6. Huang X. H., Tu J. P., Zhang B., Zhang C. Q., Li Y., Yuan Y. F., Wu H. M., J. Power Sources, 2006, 161, 541

    Article  CAS  Google Scholar 

  7. Huang X. H., Tu J. P., Zhang C. Q., Xiang J. Y., Electrochem. Commun., 2007, 9, 1180

    Article  CAS  Google Scholar 

  8. Sung W. O., Hyun J. B., Young C. B., Yang K. S., J. Power Sources, 2007, 173, 502

    Article  Google Scholar 

  9. Rahman M. M., Chou S. L., Zhong C., Wang J. Z., Wexler D., Liu H. K., Solid State Ionics, 2010, 180, 1646

    Article  CAS  Google Scholar 

  10. Belhomme C., Cassir M., Devynck J., Gregoire G., J. Mater. Sci., 2000, 35, 2683

    Article  CAS  Google Scholar 

  11. Bajpai A., Banerjee A., J. Phys.: Condens. Matter, 2001, 13, 637

    Article  CAS  Google Scholar 

  12. Seehra M. S., Phys. Rev. B, 1988, 38, 11898

    Article  CAS  Google Scholar 

  13. Manna S., De S. K., Sol. Stat. Commun., 2009, 149, 297

    Article  CAS  Google Scholar 

  14. van Elp J., Eskes H., Kuiper P., Sawatzky G. A., Phys. Rev. B, 1992, 45, 1612

    Article  Google Scholar 

  15. Wu J., Nan C. W., Lin Y. H., Deng Y., Phys. Rev. Letts., 2002, 89, 217601

    Article  Google Scholar 

  16. Antolini E., Mater. Chem. Phys., 2003, 82, 937

    Article  CAS  Google Scholar 

  17. Arai H., Tsuda M., Saito K., Hayashi M., Takei H., Sakurai Y., J. Solid State Chem., 2002, 163, 340

    Article  CAS  Google Scholar 

  18. Soriano L., Preda I., Gutierrez A., Palacin S., Abbate M., Phys. Rev. B, 2007, 75, 233417

    Article  Google Scholar 

  19. Liu H. S., Li J., Zhang Z. R., Gong Z. L., Yang Y., Electrochem. Acta, 2004, 49, 1151

    Article  CAS  Google Scholar 

  20. Kim H. J., Lee J. B., Kim Y. M., Jung M. H., Jaglicic Z., Umek P., Dolinsek J., Nanoscale Res. Lett., 2007, 2, 81

    Article  CAS  Google Scholar 

  21. Pena O., Guilloux V. M., Antunes A. B., Peng W., Ma Y. W., Gao Z. S., Moure C., J. Magn. Magn. Mater., 2009, 321, 1723

    Article  CAS  Google Scholar 

  22. Auslous M., Elliot R. J., Magnetic Phase Transitions, Springer-Verlag, Berlin, 1983, 99

    Google Scholar 

  23. Wang D. P., Chen. H., Du F., Bie X. F., Liu L. N., Wei Y. J., Chen G., Wang C. Z., Chem. Res. Chinese Universities, 2010, 26(2), 283

    Google Scholar 

  24. Liu N., Yan G. Q., Xu S. J., Chem. Res. Chinese Universities, 2005, 21(6), 707

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ying-jin Wei.

Additional information

Supported by the Special Funds for Major National Basic Research Project of China(No.2009CB220104), the National Natural Science Foundation of China(No.11004073) and the Research Fund for the Doctoral Program of Higher Education of China(New Teacher)(No.20090061120020) and Partially Supported by the Development Program of Science and Technology of Jilin Province, China(No.201205035).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Du, F., Bie, Xf., Bian, Xf. et al. Preparation, structure and magnetic properties of lithium substituted NiO by molten salt method. Chem. Res. Chin. Univ. 29, 210–213 (2013). https://doi.org/10.1007/s40242-013-2159-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40242-013-2159-y

Keywords

Navigation