Skip to main content
Log in

Numerical study on thermal non-equilibrium of arc plasmas in TIG welding processes using a two-temperature model

  • Research Paper
  • Published:
Welding in the World Aims and scope Submit manuscript

Abstract

A two-temperature (2-T) model for tungsten inert gas (TIG) welding process is developed to investigate the arc phenomena of the pure argon and helium plasmas. The model considers the energy conservations of the heavy particles and the electrons separately. Compared with the 1-T model, the 2-T model obtains the plasma shapes more similar to the arc appearances. Furthermore, the heavy particle temperature of the 2-T model shows good agreement with the experimental results. For a pure helium arc, the electron temperature is much higher than the heavy particle temperature, whereas both temperatures are almost identical for a pure argon arc. Thermal non-equilibrium of a pure helium arc is discussed in terms of the energy exchange between heavy particles and electrons. It is found that ions and atoms of a pure helium arc cannot exchange their energy sufficiently with electrons because the plasma has a small number of electrons and consequently the collision rate between plasma species is relatively low. The simulation results show that when a welding current is lower, thermal non-equilibrium of an arc plasma is stronger. In a low welding current condition, not only the pure helium arc but also the pure argon arc shows thermal non-equilibrium.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Lowke JJ, Kovitya P, Schmidt HP (1992) Theory of free-burning arc columns including the influence of the cathode. J Phys D Appl Phys 25(11):1600–1606

    Article  Google Scholar 

  2. Yamamoto K, Tanaka M, Tashiro S, Nakata K, Yamazaki K, Yamamoto E, Suzuki K, Murphy AB (2008) Numerical simulation of metal vapor behavior in arc plasma. Surf Coat Technol 202(22):5302–5305

    Article  Google Scholar 

  3. Lowke JJ, Morrow R, Haidar J (1997) A simplified unified theory of arcs and their electrodes. J Phys D Appl Phys 30(14):2033–2042

    Article  Google Scholar 

  4. Hsu KC, Etemadi K, Pfender E (1983) Study of the free-burning high-intensity argon arc. J Appl Phys 54(3):1293–1301

    Article  Google Scholar 

  5. Haidar J (1995) Local thermodynamic equilibrium in the cathode region of free burning arc in argon. J Phys D Appl Phys 28(12):2494–2504

    Article  Google Scholar 

  6. Haidar J (1997) Departures from local thermodynamic equilibrium in high-current free burning arcs in argon. J Phys D Appl Phys 30(19):2737–2743

    Article  Google Scholar 

  7. Snyder SC, Lassahn GD, Reynolds LD (1993) Direct evidence of departure from local thermodynamic equilibrium in a free-burning arc-discharge plasma. Phys Rev E 48(5):4124–4127

    Article  Google Scholar 

  8. Haidar J (1999) Non-equilibrium modelling of transferred arcs. J Phys D Appl Phys 32(3):263–272

    Article  Google Scholar 

  9. He-Ping L, Benilov MS (2007) Effect of a near-cathode sheath on heat transfer in high-pressure arc plasmas. J Phys D Appl Phys 40(7):2010–2017

    Article  Google Scholar 

  10. Konishi K, Shigeta M, Tanaka M, Murata A, Murata T, Murphy AB (2015) Reliability evaluation of Fowler-Milne method in a temperature measurement of gas tungsten arc. Q J Jpn Weld Soc 33(1):42–48

    Article  Google Scholar 

  11. Murphy AB, Tanaka M, Yamamoto K, Tashiro S, Sato T, Lowke JJ (2009) Modelling of thermal plasmas for arc welding: the role of the shielding gas properties and of metal vapour. J Phys D Appl Phys 42:194006

    Article  Google Scholar 

  12. Kalikhman LE (1967) Elements of magnetogasdynamics. W. B. Saunder Company, Philadelphia

    Google Scholar 

  13. Mitchner M, Kruger CH Jr (1973) Partially ionized gases, vol 8. Wiley, New York

    Google Scholar 

  14. Hutchinson IH (2002) Principles of plasma diagnostics. Cambridge University Press, Cambridge

    Book  Google Scholar 

  15. Milloy HB, Crompton RW, Rees JA, Robertson AG (1977) The momentum transfer cross section for electrons in argon in the energy range 0–4 eV. Aust J Phys 30(1):61–72

    Article  Google Scholar 

  16. Nesbet RK (1979) Variational calculations of accurate e-He cross sections below 19 eV. Phys Rev A 20(1):58–70

    Article  Google Scholar 

  17. Devoto RS (1967) Transport coefficients of partially ionized argon. Phys Fluids 10(2):354–364

    Article  Google Scholar 

  18. Devoto RS (1967) Simplified expressions for the transport properties of ionized monatomic gases. Phys Fluids 10(10):2105–2112

    Article  Google Scholar 

  19. Hoffert MI, Lien H (1967) Quasi-one-dimensional, nonequilibrium gas dynamics of partially ionized two-temperature argon. Phys Fluids 10(8):1769–1777

    Article  Google Scholar 

  20. Hinnov E, Hirschberg JG (1962) Electron-ion recombination in dense plasmas. Phys Rev 125(3):795–801

    Article  Google Scholar 

  21. The Japan Institute of Metals and Materials (1993) Metal Data Book. Maruzen, Tokyo, in Japanese

    Google Scholar 

  22. Van Doormaal JP, Raithby GD (1984) Enhancements of the simple method for predicting incompressible fluid flow. Numer Heat Transfer 7(2):147–163

    Google Scholar 

  23. Yamamoto K, Tanaka M, Tashiro S, Nakata K, Yamazaki K, Yamamoto E, Suzuki K, Murphy AB (2009) Numerical analysis of metal vapor behavior with multi-diffusion system in TIG welding of stainless steel. Q J Jpn Weld Soc 27(2):4–7

    Article  Google Scholar 

  24. Yuan X (1999) Master’s thesis. Osaka University

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Konishi.

Additional information

Recommended for publication by Study Group 212 - The Physics of Welding

Appendix

Appendix

Table 2 Boundary conditions

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Konishi, K., Shigeta, M., Tanaka, M. et al. Numerical study on thermal non-equilibrium of arc plasmas in TIG welding processes using a two-temperature model. Weld World 61, 197–207 (2017). https://doi.org/10.1007/s40194-016-0391-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40194-016-0391-z

Keywords (IIW Thesaurus)

Navigation