Skip to main content
Log in

Development of processing windows for diffusion bonding of aluminium/magnesium dissimilar materials

  • Research Paper
  • Published:
Welding in the World Aims and scope Submit manuscript

Abstract

This paper presents the procedures involved in constructing the diffusion bonding windows such as temperature–time and pressure–time diagrams for effective diffusion bonding of aluminium alloy and magnesium alloys. Empirical relationships were developed to predict the lap shear strength of diffusion bonded joints of aluminium (Al) alloy (AA6061) and magnesium (Mg) alloys (AZ31B, AZ61A, AZ80), incorporating diffusion bonding parameters such as bonding temperature, bonding pressure, holding time and surface roughness of the materials to be joined. Response surface methodology was applied to optimise the diffusion bonding parameters to attain the maximum shear strength of the joint. Relationship was established between weight percentage of Al content in Mg alloys and optimised diffusion bonding parameters. The developed processing windows can be used as reference maps to the design and welding engineers for selecting appropriate diffusion bonding parameters to get good quality bonds for Al and Mg alloys.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Sun DQ, Gu XY, Liu WH (2005) Transient liquid phase bonding of magnesium alloy (Mg–3Al–1Zn) using aluminium interlayer. Mater Sci Eng A A391:29–33. doi:10.1016/j.msea.2004.06.008

    CAS  Google Scholar 

  2. Juan W, Li Y, Peng L, Haoran G (2008) Microstructure and XRD analysis in the interface zone of Mg/Al diffusion bonding. J Mat Proc Tech 205:146–150. doi:10.1016/j.jmatprotec.2007.11.096

    Article  Google Scholar 

  3. Munitz A, Cotler C, Shaham H, Kohn G (2000) Electron beam welding of magnesium AZ91D plates. Weld J 79(7):202–208. doi:10.1016/S0921-5093(00)01356-3

    Google Scholar 

  4. Somekawa H, Watanabe H, Mukai T, Higashi K (2009) Low temp diffusion bounding in a super plastic AZ31 magnesium alloy. Scr Mater 48:1249–1254. doi:10.1016/S1359-6462(03)00054-X

    Article  Google Scholar 

  5. Somekawa H, Watanabe H, Mukai T, Higashi K (2003) Diffusion bonding in super plastic Mg alloys. Mat Sci Engg A A339:328–333. doi:10.1016/S0921-5093(02)00127-2

    Article  CAS  Google Scholar 

  6. Atasoy E, Kahraman N (2008) Diffusion bonding of commercially pure titanium to low carbon steel using a silver interlayer. Mater Charact 59:1481–1490. doi:10.1016/j.matchar.2008.01.015

    Article  CAS  Google Scholar 

  7. Ozdemir N, Aksoy M, Orhan N (2003) Effect of graphite shape in vacuum-free diffusion bonding of nodular cast iron with gray cast iron. J Mat Proc Tech 141(2):228–233. doi:10.1016/S0924-0136(03)00154-7

    Article  CAS  Google Scholar 

  8. Kundu S, Chatterjee S (2006) Interfacial microstructure and mechanical properties of diffusion-bonded titanium-stainless steel joints using a nickel interlayer 425(1–2):107–113. doi:10.1016/j.msea.2006.03.034

    Google Scholar 

  9. Ghosh M, Bhanumurthy K, Kale GB, Krishnan J, Chatterjee S (2003) Diffusion bonding of titanium to 304 stainless steel. J Nuc Mat 322(2–3):235–241. doi:10.1016/j.jnucmat.2003.07.004

    Article  CAS  Google Scholar 

  10. Yeh MS, Chuang TS (1995) Low pressure diffusion bonding of SAE 316 stainless steel by inserting a super plastic interlayer. Scr Met Mat 33(8):1277–1281. doi:10.1016/0956-716X(95)00364-2

    Article  CAS  Google Scholar 

  11. Feng JC, Zhang BG, Qian YY, He P (2002) Microstructure and strength of diffusion bonded joints of Ti Al base alloy to steel. Mat char 48:401–406. doi:10.1016/S1044-5803(02)00319-4

    Article  Google Scholar 

  12. Peterson KA, Dutta I, Chenb M (2004) Processing and characterization of diffusion-bonded Al–Si interfaces. J of Mat Proc Tech 145:99–108. doi:10.1016/S0924-0136(03)00877-X

    Article  CAS  Google Scholar 

  13. Liu P, Li Y, Haoran G, Juan W (2006) Investigation of interfacial structure of Mg/Al vacuum diffusion-bonded joint. Vac 80:395–399. doi:10.1016/j.vacuum.2005.07.002

    Article  Google Scholar 

  14. Li Y, Liu P, Wang J, Ma H (2008) XRD and SEM analysis near the diffusion bonding interface of Mg/Al dissimilar materials. Vac 82:15–19. doi:10.1016/j.vacuum.2007.01.073

    Article  Google Scholar 

  15. Liu P, Li Y, Haoran G, Juan W (2005) A study of phase constitution near the interface of Mg/Al Vacuum diffusion bonding. Mat Let 59:2001–2005. doi:10.1016/j.matlet.2005.02.038

    Article  CAS  Google Scholar 

  16. Huang Y, Humphreys FJ, Ridley N, Wang ZC (1988) Diffusion bonding of hot rolled aluminium alloy. Mat Sci Tec 14:405–410. doi:10.1179/026708398790301250

    Article  Google Scholar 

  17. Mahendran G, Balasubramanian V, Senthilvelan T (2009) Developing diffusion bonding windows for joining AZ31B magnesium–AA2024 aluminium alloys. Mat Des 30:1240–1244. doi:10.1016/j.matdes.2008.06.015

    Article  CAS  Google Scholar 

  18. Mahendran G, Balasubramanian V, Senthilvelan T (2010) Influences of diffusion bonding process parameters on bond characteristics of Mg–Cu dissimilar joints. Trans of Non-Fer Met Soc of China 20:997–1005. doi:10.1016/S1003-6326(09)60248-X

    Article  CAS  Google Scholar 

  19. Mahendran G, Balasubramanian V, Babu S (2010) Optimising diffusion bonding process parameters to attain maximum strength in Al–Cu dissimilar joints using response surface methodology. Int J of Man Res 5:181–198. doi:10.1504/IJMR.2010.031631

    Article  Google Scholar 

  20. Grum J, Slabe JM (2004) The use of factorial design and response surface methodology for fast determination of optimal heat treatment conditions of different Ni–Co–Mo surfaced layers. J Mat Proc Tech 155:2026–2032. doi:10.1016/j.jmatprotec.2004.04.220

    Article  Google Scholar 

  21. Mahendran G, Babu S, Balasubramanian V (2010) Analyzing the effect of diffusion bonding process parameters on bond characteristics of Mg–Al dissimilar joints. J of Mat Engg Perf 19:657–665. doi:10.1007/s11665-009-9531-6

    Article  CAS  Google Scholar 

  22. Zhao LM, Zhang ZD (2008) Effect of Zn alloy interlayer on interface microstructure and strength of diffusion-bonded Mg-Al joints. Scri Mat 58:283–286. doi:10.1016/j.scriptamat.2007.10.006

    Article  CAS  Google Scholar 

  23. Tien CL, Lin SW (2006) Optimization of process parameters of titanium dioxide films by response surface methodology. Opt Com 266:574–581. doi:10.1016/j.optcom.2006.05.044

    Article  CAS  Google Scholar 

  24. Gunaraj V, Murugan N (1999) Application of response surface methodology for predicting weld bead quality in submerged arc welding of pipes. J Mat Proc Tech 88:266–275. doi:10.1016/S0924-0136(98)00405-1

    Article  Google Scholar 

  25. Lakshminarayanan AK, Balasubramaian V (2009) Comparison of RSM with ANN in predicting tensile strength of friction stir welded AA7039 aluminium alloy joints. Tran of Non-Fer Met Soc of China 19: 9–18. doi:10.1016/S1003-6326(08)60221-6

Download references

Acknowledgments

The authors are grateful to the Department of Manufacturing Engineering, Annamalai University, Annamalai Nagar, India for extending the facilities of metal joining and Material Testing to carry out this investigation. The authors also wish to express their sincere thanks to Dr. S. Rajakumar, Assistant Professor, Dept. of Manufacturing Engineering, Annamalai University for helping in statistical analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Balasubramanian.

Additional information

Doc. IIW-2366, recommended for publication by Commission XVII “Brazing, Soldering, and Diffusion Bonding.”

Rights and permissions

Reprints and permissions

About this article

Cite this article

Balasubramanian, V., Fernandus, M.J. & Senthilkumar, T. Development of processing windows for diffusion bonding of aluminium/magnesium dissimilar materials. Weld World 57, 523–539 (2013). https://doi.org/10.1007/s40194-013-0048-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40194-013-0048-0

Keywords

Navigation