Skip to main content

Advertisement

Log in

Influence of aluminum content on the characterization of microstructure and inclusions in high-strength steel welds

  • Research Paper
  • Published:
Welding in the World Aims and scope Submit manuscript

Abstract

The present study describes the methods for the characterization of the microstructure of welded joints from test welds. This comprises the analysis of the solidification microstructure (primary and secondary dendrite arm spacing) as well as the former austenite grain size and the final phase distribution. The main focus is the characterization of nonmetallic inclusions by means of SEM/EDX and light microscopy. Based on already-developed prototypes with a weld yield strength of more than 800 MPa, different kinds of inclusions and precipitates have been assessed with respect to grain refinement and the resulting impact on strength and ductility. The effect of aluminum, in the range 90 to 800 ppm, on the microstructure and the mechanical properties of high-strength steel weld metals has been studied and it has been found that at low aluminum contents good values for the tensile strength and the toughness could be obtained. The results of metallographic investigations of test welds with different alloy compositions are presented. The results indicate a significant change of the size distribution, the morphology, and the composition of the inclusions. These results are finally compared with results from literature and discussed with respect to the expected influence on the mechanical properties of the welded joint.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Belyakov A, Sakai Y, Hara T, Kimura Y, Tsuzaki K (2001) Thermal stability of ultra fine-grained steel containing dispersed oxides. Scr Mater 45(10):1213–1219

    Article  CAS  Google Scholar 

  2. Takaki S, Kawasaki K, Kimura Y (2001) Mechanical properties of ultra fine grained steels. J Mater Process Technol 117(3):359–363

    Article  CAS  Google Scholar 

  3. Caballero FG, Bhadeshia HKDH, Mawella KJA, Jones DG, Brown P (2002) Very strong low temperature bainite. Mater Sci Technol 18(3):279–284

    Article  CAS  Google Scholar 

  4. Ouchi C (2001) Development of steel plates by intensive use of TMCP and direct quenching processes. ISIJ Int 41(6):542–553

    Article  CAS  Google Scholar 

  5. Ali A, Bhadeshia HKDH (1991) Microstructure of high strength steel refined with intragranularly nucleated Widmanstätten ferrite. Mater Sci Technol 7(10):895–903

    CAS  Google Scholar 

  6. Grong Ø (1997) Metallurgical modelling of welding, 2nd edn. The Institute of Materials, Minerals and Mining, Cambridge

    Google Scholar 

  7. Frederikson H (1976) The mechanism of the peritectic reaction in iron-base alloys. Mater Sci Technol 10(3):77–86

    Google Scholar 

  8. Frederikson H, Stjerndahl J (1982) Solidification of iron-base alloys. Mater Sci Technol 10(12):575–585

    Google Scholar 

  9. Babu SS 1991 Acicular ferrite and bainite in Fe-Cr-C weld deposits. Ph.D. Thesis, University of Cambridge

  10. Babu SS, David SA (2002) Inclusion formation and microstructure evolution in low alloy steel welds. ISIJ Int 42(12):1344–1353

    Article  CAS  Google Scholar 

  11. Pottore NS, Garcia CI, Hiejlen J (1991) Interrupted and isothermal solidification studies of low and medium carbon steels. Metall Mater Trans A 22(8):1871–1880

    Article  Google Scholar 

  12. Widgery DJ 1974 Deoxidation practice and the toughness of mild steel weld metal. Ph.D. Thesis, University of Cambridge

  13. Sugden AAB, Bhadeishia HKDK (1988) The nonuniform distribution of inclusions in low-alloy steel weld deposits. Metall Mater Trans A 19(3):669–674

    Article  Google Scholar 

  14. Kluken AO, Grong Ø, Hjielen J (1991) The origin of transformation textures in steel weld metals containing acicular ferrite. Metall Mater Trans A 22(3):657–663

    Article  Google Scholar 

  15. Bhadeshia HKDH (2001) Bainite in steels, 2nd edn. The Institute of Materials, Minerals and Mining, Cambridge

    Google Scholar 

  16. Dantzig JA, Rappaz M (2009) Solidification, 1st edn. EPLF Press, Lausanne

    Book  Google Scholar 

  17. Kiviö M, Holappa L, Iung T (2010) Addition of dispersoid titanium oxide inclusions in steel and their influence on grain refinement. Metall Mater Trans B 41(6):1194–1204

    Article  Google Scholar 

  18. Kikuchi N, Nabeshima S, Kishimoto Y, Matsushita T, Sridhar S (2002) Effect of Ti de-oxidation on solidification and post-solidification microstructure in low carbon high manganese steel. ISIJ Int 47(9):1255–1264

    Article  Google Scholar 

  19. Evans GM (1993) Microstructure and properties of ferritic steel welds containing Al and Ti. IIW Doc. II-A-901-93

  20. Ovtchinnikov S 2002 Kontrollierte Erstarrung und Einschlussbildung bei der Desoxidation von hochreinen Stahlschmelzen (Controlled solidification and inclusion formation during deoxidation of high purity steel melts). Ph.D. Thesis, University of Freiberg (in German)

  21. Plöckinger E, Straube H 1964 Die Desoxidation, Die physikalische Chemie der Eisen und Stahlerzeugung (The deoxidation, the physical chemistry of iron and steel production). Verlag Stahleisen, Düsseldorf pp. 303–349. (in German)

  22. Javoiskij VI 1969 Theorie der Stahlerzeugung (Theory of steel production). Deutscher Verlag für Grundstoffindustrie, Leipzig (in German)

  23. Kurz W, Fisher DJ (1998) Fundamentals of solidification, 4th edn. Trans Tech Publications Ltd, Zürich

    Google Scholar 

  24. Glicksman ME, Voorhees PW (1984) Ostwald ripening and relaxation in dendritic structures. Metall Mater Trans A 15(6):995–1001

    Article  Google Scholar 

  25. Keehan E (2004) Effect of microstucture mechanical properties of high strength steel weld metals. Ph.D. Thesis, Göteborg University

  26. Svensson LE (1994) Control of microstructure and properties in steel arc welds. CRC Press, Inc

    Google Scholar 

  27. Bhadeshia HKDH, Svensson LE, Gretoft B (1986) The austenite grain structure of low-alloy steel weld deposits. J Mater Sci 21(11):3947–3951

    Article  CAS  Google Scholar 

  28. Quintina MA, McLaine J, Babu SS, and David SA (2001) Inclusion formation in self-shielded flux cored arc welds. Welding Research Supplement pp. 98–105

  29. Cabrera-Marrero JM, Carreño-Galindo V, Morales RD, Chávez-Alcalá F (1998) Macro–micro modeling of the dentritic microstructure of steel billets processed by continuous casting. ISIJ Int 38(8):812–821

    Article  CAS  Google Scholar 

  30. Miettinen J (1992) Mathematical simulation of interdendritic solidification of low-alloyed and stainless steels. Metall Mater Trans A 23(4):1155–1170

    Article  Google Scholar 

Download references

Acknowledgments

The investigations presented were supported by the Böhler Schweißtechnik Austria GmbH, the Voestalpine AG and the Austrian Research Promotion Agency (FFG). Special thanks are given to all the industry partners and project partners for the support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. Vanovsek.

Additional information

Doc. IIW-2269, recommended for publication by Commission II “Arc Welding and Filler Metals”.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vanovsek, W., Bernhard, C., Fiedler, M. et al. Influence of aluminum content on the characterization of microstructure and inclusions in high-strength steel welds. Weld World 57, 73–83 (2013). https://doi.org/10.1007/s40194-012-0008-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40194-012-0008-0

Keywords (IIW Thesaurus)

Navigation