Skip to main content

Advertisement

Log in

Metaphase Cytogenetics in Chronic Lymphocytic Leukemia

  • Cytogenetics (CL Martin and E Williams, Section Editors)
  • Published:
Current Genetic Medicine Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Chronic lymphocytic leukemia (CLL) is a highly heterogeneous disease and biomarkers are integral to predicting outcomes. In the past, cytogenetics in CLL typically utilized fluorescence in situ hybridization to detect abnormalities due to the low mitotic index of CLL hampering metaphase karyotyping. Recently, stimulation of CLL cells with CpG oligodeoxynucleotides has largely overcome this challenge.

Recent Findings

CpG oligodeoxynucleotides enhance the detection of karyotypic abnormalities in CLL by stimulating leukemic cells that normally do not proliferate in culture. Karyotyping has identified complex karyotype as a prognostic marker associated with poor outcome in CLL. Karyotyping has also uncovered novel chromosomal abnormalities including trisomies, dicentric chromosomes, and jumping translocations.

Summary

CpG oligodeoxynucleotide stimulation significantly improves the ability to detect chromosomal abnormalities via karyotyping in CLL. Karyotyping has proven to be an important diagnostic tool in CLL and contributes to the discovery of novel recurrent chromosomal abnormalities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

Recently published papers of particular interest have been highlighted as: • Of importance

  1. SEER Cancer Statistics Review, 1975–2012: National Cancer Institute, Bethesda, MD. (2016). http://seer.cancer.gov/csr/1975_2012/.

  2. Kitada S, Andersen J, Akar S, Zapata JM, Takayama S, Krajewski S, et al. Expression of apoptosis-regulating proteins in chronic lymphocytic leukemia: correlations with in vitro and in vivo chemoresponses. Blood. 1998;91(9):3379–89.

    CAS  PubMed  Google Scholar 

  3. Meinhardt G, Wendtner CM, Hallek M. Molecular pathogenesis of chronic lymphocytic leukemia: factors and signaling pathways regulating cell growth and survival. J Mol Med (Berl). 1999;77(2):282–93.

    Article  CAS  Google Scholar 

  4. Binet JL, Auquier A, Dighiero G, Chastang C, Piguet H, Goasguen J, et al. A new prognostic classification of chronic lymphocytic leukemia derived from a multivariate survival analysis. Cancer. 1981;48(1):198–206.

    Article  CAS  PubMed  Google Scholar 

  5. Rai KR, Sawitsky A, Cronkite EP, Chanana AD, Levy RN, Pasternack BS. Clinical staging of chronic lymphocytic leukemia. Blood. 1975;46(2):219–34.

    CAS  PubMed  Google Scholar 

  6. Moreno C, Montserrat E. New prognostic markers in chronic lymphocytic leukemia. Blood Rev. 2008;22(4):211–9. doi:10.1016/j.blre.2008.03.003.

    Article  CAS  PubMed  Google Scholar 

  7. Hamblin TJ, Davis Z, Gardiner A, Oscier DG, Stevenson FK. Unmutated Ig V(H) genes are associated with a more aggressive form of chronic lymphocytic leukemia. Blood. 1999;94(6):1848–54.

    CAS  PubMed  Google Scholar 

  8. Damle RN, Wasil T, Fais F, Ghiotto F, Valetto A, Allen SL, et al. Ig V gene mutation status and CD38 expression as novel prognostic indicators in chronic lymphocytic leukemia. Blood. 1999;94(6):1840–7.

    CAS  PubMed  Google Scholar 

  9. Hamblin TJ, Orchard JA, Ibbotson RE, Davis Z, Thomas PW, Stevenson FK, et al. CD38 expression and immunoglobulin variable region mutations are independent prognostic variables in chronic lymphocytic leukemia, but CD38 expression may vary during the course of the disease. Blood. 2002;99(3):1023–9.

    Article  CAS  PubMed  Google Scholar 

  10. Oscier DG, Gardiner AC, Mould SJ, Glide S, Davis ZA, Ibbotson RE, et al. Multivariate analysis of prognostic factors in CLL: clinical stage, IGVH gene mutational status, and loss or mutation of the p53 gene are independent prognostic factors. Blood. 2002;100(4):1177–84.

    CAS  PubMed  Google Scholar 

  11. Döhner H, Stilgenbauer S, Benner A, Leupolt E, Kröber A, Bullinger L, et al. Genomic aberrations and survival in chronic lymphocytic leukemia. N Engl J Med. 2000;343(26):1910–6. doi:10.1056/NEJM200012283432602.

    Article  PubMed  Google Scholar 

  12. Van Dyke DL, Werner L, Rassenti LZ, Neuberg D, Ghia E, Heerema NA, et al. The Dohner fluorescence in situ hybridization prognostic classification of chronic lymphocytic leukaemia (CLL): the CLL Research Consortium experience. Br J Haematol. 2016;. doi:10.1111/bjh.13933.

    PubMed  PubMed Central  Google Scholar 

  13. Byrd JC, Gribben JG, Peterson BL, Grever MR, Lozanski G, Lucas DM, et al. Select high-risk genetic features predict earlier progression following chemoimmunotherapy with fludarabine and rituximab in chronic lymphocytic leukemia: justification for risk-adapted therapy. J Clin Oncol. 2006;24(3):437–43.

    Article  Google Scholar 

  14. Gahrton G, Robert KH, Friberg K, Zech L, Bird AG. Nonrandom chromosomal aberrations in chronic lymphocytic leukemia revealed by polyclonal B-cell-mitogen stimulation. Blood. 1980;56(4):640–7.

    CAS  PubMed  Google Scholar 

  15. Decker T, Peschel C. Effect of immunostimulatory CpG-oligonucleotides in chronic lymphocytic leukemia B cells. Leuk Lymphoma. 2001;42(3):301–7. doi:10.3109/10428190109064586.

    Article  CAS  PubMed  Google Scholar 

  16. Krieg AM. From A to Z on CpG. Trends Immunol. 2002;23(2):64–5.

    Article  CAS  PubMed  Google Scholar 

  17. Decker T, Schneller F, Sparwasser T, Tretter T, Lipford GB, Wagner H, et al. Immunostimulatory CpG-oligonucleotides cause proliferation, cytokine production, and an immunogenic phenotype in chronic lymphocytic leukemia B cells. Blood. 2000;95(3):999–1006.

    CAS  PubMed  Google Scholar 

  18. Liang H, Nishioka Y, Reich CF, Pisetsky DS, Lipsky PE. Activation of human B cells by phosphorothioate oligodeoxynucleotides. J Clin Invest. 1996;98(5):1119–29. doi:10.1172/JCI118894.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Liang X, Moseman EA, Farrar MA, Bachanova V, Weisdorf DJ, Blazar BR, et al. Toll-like receptor 9 signaling by CpG-B oligodeoxynucleotides induces an apoptotic pathway in human chronic lymphocytic leukemia B cells. Blood. 2010;115(24):5041–52. doi:10.1182/blood-2009-03-213363.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Muthusamy N, Breidenbach H, Andritsos L, Flynn J, Jones J, Ramanunni A, et al. Enhanced detection of chromosomal abnormalities in chronic lymphocytic leukemia by conventional cytogenetics using CpG oligonucleotide in combination with pokeweed mitogen and phorbol myristate acetate. Cancer Genet. 2011;204(2):77–83. doi:10.1016/j.cancergen.2010.12.006.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Put N, Konings P, Rack K, Jamar M, Van Roy N, Libouton JM, et al. Improved detection of chromosomal abnormalities in chronic lymphocytic leukemia by conventional cytogenetics using CpG oligonucleotide and interleukin-2 stimulation: a Belgian multicentric study. Genes Chromosom Cancer. 2009;48(10):843–53. doi:10.1002/gcc.20691.

    Article  CAS  PubMed  Google Scholar 

  22. Struski S, Gervais C, Helias C, Herbrecht R, Audhuy B, Mauvieux L. Stimulation of B-cell lymphoproliferations with CpG-oligonucleotide DSP30 plus IL-2 is more effective than with TPA to detect clonal abnormalities. Leukemia. 2009;23(3):617–9. doi:10.1038/leu.2008.252.

    Article  CAS  PubMed  Google Scholar 

  23. Haferlach C, Dicker F, Schnittger S, Kern W, Haferlach T. Comprehensive genetic characterization of CLL: a study on 506 cases analysed with chromosome banding analysis, interphase FISH, IgV(H) status and immunophenotyping. Leukemia. 2007;21(12):2442–51. doi:10.1038/sj.leu.2404935.

    Article  CAS  PubMed  Google Scholar 

  24. Heerema NA, Byrd JC, Dal Cin PS, Dell’ Aquila ML, Koduru PR, Aviram A, et al. Stimulation of chronic lymphocytic leukemia cells with CpG oligodeoxynucleotide gives consistent karyotypic results among laboratories: a CLL Research Consortium (CRC) Study. Cancer Genet Cytogenet. 2010;203(2):134–40. doi:10.1016/j.cancergencyto.2010.07.128.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Wu X, Smoley SA, Peterson MA, Walters DK, Arendt BK, Nowakowski GS, et al. Biological evaluation of CpG stimulation of normal human B-cells: implications for B-cell biology and cytogenetic analysis of CLL B-cells. Br J Haematol. 2011;153(3):402–5. doi:10.1111/j.1365-2141.2010.08514.x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Haferlach C, Dicker F, Weiss T, Schnittger S, Beck C, Grote-Metke A, et al. Toward a comprehensive prognostic scoring system in chronic lymphocytic leukemia based on a combination of genetic parameters. Genes Chromosom Cancer. 2010;49(9):851–9. doi:10.1002/gcc.20794.

    CAS  PubMed  Google Scholar 

  27. ∙ Baliakas P, Iskas M, Gardiner A, Davis Z, Plevova K, Nguyen-Khac F, et al. Chromosomal translocations and karyotype complexity in chronic lymphocytic leukemia: a systematic reappraisal of classic cytogenetic data. Am J Hematol. 2014;89(3):249–55. doi:10.1002/ajh.23618. Large scale study of metaphase cytogenetics in CLL.

  28. Rigolin GM, del Giudice I, Formigaro L, Saccenti E, Martinelli S, Cavallari M, et al. Chromosome aberrations detected by conventional karyotyping using novel mitogens in chronic lymphocytic leukemia: clinical and biologic correlations. Genes Chromosom Cancer. 2015;54(12):818–26. doi:10.1002/gcc.22293.

    Article  CAS  PubMed  Google Scholar 

  29. Heerema NA, Muthusamy N, Ruppert AS, Andritsos LA, Grever MR, Jones JA, et al. Prognostic significance of cytogenetic complexity and del(17p) at diagnosis of chronic lymphocytic leukemia (CLL). Blood. 2013;122(21):1321.

    Google Scholar 

  30. Badoux XC, Keating MJ, Wang X, O’Brien SM, Ferrajoli A, Faderl S, et al. Cyclophosphamide, fludarabine, alemtuzumab, and rituximab as salvage therapy for heavily pretreated patients with chronic lymphocytic leukemia. Blood. 2011;118(8):2085–93. doi:10.1182/blood-2011-03-341032.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Badoux XC, Keating MJ, Wang X, O’Brien SM, Ferrajoli A, Faderl S, et al. Fludarabine, cyclophosphamide, and rituximab chemoimmunotherapy is highly effective treatment for relapsed patients with CLL. Blood. 2011;117(11):3016–24. doi:10.1182/blood-2010-08-304683.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Woyach JA, Lozanski G, Ruppert AS, Lozanski A, Blum KA, Jones JA, et al. Outcome of patients with relapsed or refractory chronic lymphocytic leukemia treated with flavopiridol: impact of genetic features. Leukemia. 2012;26(6):1442–4. doi:10.1038/leu.2011.375.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Jaglowski SM, Ruppert AS, Heerema NA, Bingman A, Flynn JM, Grever MR, et al. Complex karyotype predicts for inferior outcomes following reduced-intensity conditioning allogeneic transplant for chronic lymphocytic leukaemia. Br J Haematol. 2012;159(1):82–7. doi:10.1111/j.1365-2141.2012.09239.x.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Byrd JC, Furman RR, Coutre SE, Flinn IW, Burger JA, Blum KA, et al. Targeting BTK with ibrutinib in relapsed chronic lymphocytic leukemia. N Engl J Med. 2013;369(1):32–42. doi:10.1056/NEJMoa1215637.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. O’Brien S, Furman RR, Coutre SE, Sharman JP, Burger JA, Blum KA, et al. Ibrutinib as initial therapy for elderly patients with chronic lymphocytic leukaemia or small lymphocytic lymphoma: an open-label, multicentre, phase 1b/2 trial. Lancet Oncol. 2014;15(1):48–58. doi:10.1016/S1470-2045(13)70513-8.

    Article  PubMed  Google Scholar 

  36. ∙ Maddocks KJ, Ruppert AS, Lozanski G, Heerema NA, Zhao W, Abruzzo L, et al. Etiology of ibrutinib therapy discontinuation and outcomes in patients with chronic lymphocytic leukemia. JAMA Oncol. 2015;1(1):80–7. doi:10.1001/jamaoncol.2014.218. Identified complex karyotype as an independent prognostic marker for progression on ibrutinib.

  37. Thompson PA, O’Brien SM, Wierda WG, Ferrajoli A, Stingo F, Smith SC, et al. Complex karyotype is a stronger predictor than del(17p) for an inferior outcome in relapsed or refractory chronic lymphocytic leukemia patients treated with ibrutinib-based regimens. Cancer. 2015;121(20):3612–21. doi:10.1002/cncr.29566.

    Article  CAS  PubMed  Google Scholar 

  38. Mayr C, Speicher MR, Kofler DM, Buhmann R, Strehl J, Busch R, et al. Chromosomal translocations are associated with poor prognosis in chronic lymphocytic leukemia. Blood. 2006;107(2):742–51. doi:10.1182/blood-2005-05-2093.

    Article  CAS  PubMed  Google Scholar 

  39. Van Den Neste E, Robin V, Francart J, Hagemeijer A, Stul M, Vandenberghe P, et al. Chromosomal translocations independently predict treatment failure, treatment-free survival and overall survival in B-cell chronic lymphocytic leukemia patients treated with cladribine. Leukemia. 2007;21(8):1715–22. doi:10.1038/sj.leu.2404764.

    Article  Google Scholar 

  40. Dicker F, Schnittger S, Haferlach T, Kern W, Schoch C. Immunostimulatory oligonucleotide-induced metaphase cytogenetics detect chromosomal aberrations in 80 % of CLL patients: a study of 132 CLL cases with correlation to FISH, IgVH status, and CD38 expression. Blood. 2006;108(9):3152–60. doi:10.1182/blood-2006-02-005322.

    Article  CAS  PubMed  Google Scholar 

  41. Gardiner AC, Corcoran MM, Oscier DG. Cytogenetic, fluorescence in situ hybridisation, and clinical evaluation of translocations with concomitant deletion at 13q14 in chronic lymphocytic leukaemia. Genes Chromosom Cancer. 1997;20(1):73–81.

    Article  CAS  PubMed  Google Scholar 

  42. Huh YO, Schweighofer CD, Ketterling RP, Knudson RA, Vega F, Kim JE, et al. Chronic lymphocytic leukemia with t(14;19)(q32;q13) is characterized by atypical morphologic and immunophenotypic features and distinctive genetic features. Am J Clin Pathol. 2011;135(5):686–96. doi:10.1309/AJCPOEFP3SLX6HXJ.

    Article  PubMed  Google Scholar 

  43. Cavazzini F, Hernandez JA, Gozzetti A, Russo Rossi A, De Angeli C, Tiseo R, et al. Chromosome 14q32 translocations involving the immunoglobulin heavy chain locus in chronic lymphocytic leukaemia identify a disease subset with poor prognosis. Br J Haematol. 2008;142(4):529–37. doi:10.1111/j.1365-2141.2008.07227.x.

    Article  PubMed  Google Scholar 

  44. Huh YO, Lin KI, Vega F, Schlette E, Yin CC, Keating MJ, et al. MYC translocation in chronic lymphocytic leukaemia is associated with increased prolymphocytes and a poor prognosis. Br J Haematol. 2008;142(1):36–44. doi:10.1111/j.1365-2141.2008.07152.x.

    Article  PubMed  Google Scholar 

  45. Yin CC, Lin KI, Ketterling RP, Knudson RA, Medeiros LJ, Barron LL, et al. Chronic lymphocytic leukemia with t(2;14)(p16;q32) involves the BCL11A and IgH genes and is associated with atypical morphologic features and unmutated IgVH genes. Am J Clin Pathol. 2009;131(5):663–70. doi:10.1309/AJCPXLY46UPFLISC.

    Article  PubMed  Google Scholar 

  46. Callet-Bauchu E, Salles G, Gazzo S, Poncet C, Morel D, Pagès J, et al. Translocations involving the short arm of chromosome 17 in chronic B-lymphoid disorders: frequent occurrence of dicentric rearrangements and possible association with adverse outcome. Leukemia. 1999;13(3):460–8.

    Article  CAS  PubMed  Google Scholar 

  47. López C, Baumann T, Costa D, López-Guerra M, Navarro A, Gómez C, et al. A new genetic abnormality leading to TP53 gene deletion in chronic lymphocytic leukaemia. Br J Haematol. 2012;156(5):612–8. doi:10.1111/j.1365-2141.2011.08978.x.

    Article  PubMed  Google Scholar 

  48. Espinet B, Solé F, Lloveras E, Abella E, Besses C, Woessner S, et al. Dicentric (17;18) in a case of atypical B-cell chronic lymphocytic leukemia. Cancer Genet Cytogenet. 2000;121(2):194–7.

    Article  CAS  PubMed  Google Scholar 

  49. Woyach JA, Heerema NA, Zhao J, McFaddin A, Stark A, Lin TS, et al. Dic(17;18)(p11.2;p11.2) is a recurring abnormality in chronic lymphocytic leukaemia associated with aggressive disease. Br J Haematol. 2010;148(5):754–9. doi:10.1111/j.1365-2141.2009.08007.x.

    Article  PubMed  Google Scholar 

  50. Heerema N, Breidenbach H, Miller C, McFaddin A, Muthusamy SHN, et al. Dicentric chromosomes are frequent in chronic lymphocytic leukemia (CLL). Cancer Genome Res. 2012;136:314.

    Google Scholar 

  51. Gupta SV, Hertlein E, Lu Y, Sass EJ, Lapalombella R, Chen TL, et al. The proteasome inhibitor carfilzomib functions independently of p53 to induce cytotoxicity and an atypical NF-kappaB response in chronic lymphocytic leukemia cells. Clin Cancer Res. 2013;19(9):2406–19. doi:10.1158/1078-0432.ccr-12-2754.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. An Q, Wright SL, Konn ZJ, Matheson E, Minto L, Moorman AV, et al. Variable breakpoints target PAX5 in patients with dicentric chromosomes: a model for the basis of unbalanced translocations in cancer. Proc Natl Acad Sci USA. 2008;105(44):17050–4. doi:10.1073/pnas.0803494105.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. MacKinnon RN, Patsouris C, Chudoba I, Campbell LJ. A FISH comparison of variant derivatives of the recurrent dic(17;20) of myelodysplastic syndromes and acute myeloid leukemia: obligatory retention of genes on 17p and 20q may explain the formation of dicentric chromosomes. Genes Chromosom Cancer. 2007;46(1):27–36. doi:10.1002/gcc.20385.

    Article  CAS  PubMed  Google Scholar 

  54. MacKinnon RN, Duivenvoorden HM, Campbell LJ. Unbalanced translocations of 20q in AML and MDS often involve interstitial rather than terminal deletions of 20q. Cancer Genet. 2011;204(3):153–61. doi:10.1016/j.cancergen.2010.12.001.

    Article  CAS  PubMed  Google Scholar 

  55. Mackinnon RN, Campbell LJ. The role of dicentric chromosome formation and secondary centromere deletion in the evolution of myeloid malignancy. Genet Res Int. 2011;2011:643628. doi:10.4061/2011/643628.

    PubMed  PubMed Central  Google Scholar 

  56. Mathieu N, Pirzio L, Freulet-Marrière MA, Desmaze C, Sabatier L. Telomeres and chromosomal instability. Cell Mol Life Sci. 2004;61(6):641–56. doi:10.1007/s00018-003-3296-0.

    Article  CAS  PubMed  Google Scholar 

  57. Lin TT, Letsolo BT, Jones RE, Rowson J, Pratt G, Hewamana S, et al. Telomere dysfunction and fusion during the progression of chronic lymphocytic leukemia: evidence for a telomere crisis. Blood. 2010;116(11):1899–907. doi:10.1182/blood-2010-02-272104.

    Article  CAS  PubMed  Google Scholar 

  58. Roos G, Kröber A, Grabowski P, Kienle D, Bühler A, Döhner H, et al. Short telomeres are associated with genetic complexity, high-risk genomic aberrations, and short survival in chronic lymphocytic leukemia. Blood. 2008;111(4):2246–52. doi:10.1182/blood-2007-05-092759.

    Article  CAS  PubMed  Google Scholar 

  59. Miller CR, Stephens D, Ruppert AS, Racke F, McFaddin A, Breidenbach H, et al. Jumping translocations, a novel finding in chronic lymphocytic leukaemia. Br J Haematol. 2015;170(2):200–7. doi:10.1111/bjh.13422.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Berger R, Bernard OA. Jumping translocations. Genes Chromosom Cancer. 2007;46(8):717–23. doi:10.1002/gcc.20456.

    Article  CAS  PubMed  Google Scholar 

  61. Matutes E. Trisomy 12 in chronic lymphocytic leukaemia. Leuk Res. 1996;20(5):375–7.

    Article  CAS  PubMed  Google Scholar 

  62. Sellmann L, Gesk S, Walter C, Ritgen M, Harder L, Martín-Subero JI, et al. Trisomy 19 is associated with trisomy 12 and mutated IGHV genes in B-chronic lymphocytic leukaemia. Br J Haematol. 2007;138(2):217–20. doi:10.1111/j.1365-2141.2007.06636.x.

    Article  PubMed  Google Scholar 

  63. Ibbotson R, Athanasiadou A, Sutton LA, Davis Z, Gardiner A, Baliakas P, et al. Coexistence of trisomies of chromosomes 12 and 19 in chronic lymphocytic leukemia occurs exclusively in the rare IgG-positive variant. Leukemia. 2012;26(1):170–2. doi:10.1038/leu.2011.186.

    Article  CAS  PubMed  Google Scholar 

  64. Put N, Meeus P, Chatelain B, Rack K, Boeckx N, Nollet F, et al. Translocation t(14;18) is not associated with inferior outcome in chronic lymphocytic leukemia. Leukemia. 2009;23(6):1201–4.

    Article  CAS  PubMed  Google Scholar 

  65. Tang G, Banks HE, Sargent RL, Medeiros LJ, Abruzzo LV. Chronic lymphocytic leukemia with t(14;18)(q32;q21). Hum Pathol. 2013;44(4):598–605. doi:10.1016/j.humpath.2012.07.005.

    Article  CAS  PubMed  Google Scholar 

  66. Chapiro E, Radford-Weiss I, Bastard C, Luquet I, Lefebvre C, Callet-Bauchu E, et al. The most frequent t(14;19)(q32;q13)-positive B-cell malignancy corresponds to an aggressive subgroup of atypical chronic lymphocytic leukemia. Leukemia. 2008;22(11):2123–7. doi:10.1038/leu.2008.102.

    Article  CAS  PubMed  Google Scholar 

  67. Nabhan C, Raca G, Wang YL. Predicting prognosis in chronic lymphocytic leukemia in the contemporary era. JAMA Oncol. 2015;1(7):965–74. doi:10.1001/jamaoncol.2015.0779.

    Article  PubMed  Google Scholar 

  68. Austen B, Skowronska A, Baker C, Powell JE, Gardiner A, Oscier D, et al. Mutation status of the residual ATM allele is an important determinant of the cellular response to chemotherapy and survival in patients with chronic lymphocytic leukemia containing an 11q deletion. J Clin Oncol. 2007;25(34):5448–57. doi:10.1200/JCO.2007.11.2649.

    Article  CAS  PubMed  Google Scholar 

  69. Jeromin S, Weissmann S, Haferlach C, Dicker F, Bayer K, Grossmann V, et al. SF3B1 mutations correlated to cytogenetics and mutations in NOTCH1, FBXW7, MYD88, XPO1 and TP53 in 1160 untreated CLL patients. Leukemia. 2014;28(1):108–17. doi:10.1038/leu.2013.263.

    Article  CAS  PubMed  Google Scholar 

  70. Balatti V, Bottoni A, Palamarchuk A, Alder H, Rassenti LZ, Kipps TJ, et al. NOTCH1 mutations in CLL associated with trisomy 12. Blood. 2012;119(2):329–31. doi:10.1182/blood-2011-10-386144.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. ∙ Del Giudice I, Rossi D, Chiaretti S, Marinelli M, Tavolaro S, Gabrielli S, et al. NOTCH1 mutations in +12 chronic lymphocytic leukemia (CLL) confer an unfavorable prognosis, induce a distinctive transcriptional profiling and refine the intermediate prognosis of +12 CLL. Haematologica. 2012;97(3):437–41. doi:10.3324/haematol.2011.060129. Refines prognosis of trisomy 12 using NOTCH1 mutations.

  72. Lucas DM, Ruppert AS, Lozanski G, Dewald GW, Lozanski A, Claus R, et al. Cytogenetic prioritization with inclusion of molecular markers predicts outcome in previously untreated patients with chronic lymphocytic leukemia treated with fludarabine or fludarabine plus cyclophosphamide: a long-term follow-up study of the US intergroup phase III trial E2997. Leuk Lymphoma. 2015;56(11):3031–7. doi:10.3109/10428194.2015.1023800.

    Article  CAS  PubMed  Google Scholar 

  73. Woyach JA, Furman RR, Liu TM, Ozer HG, Zapatka M, Ruppert AS, et al. Resistance mechanisms for the Bruton’s tyrosine kinase inhibitor ibrutinib. N Engl J Med. 2014;370(24):2286–94. doi:10.1056/NEJMoa1400029.

    Article  PubMed  PubMed Central  Google Scholar 

  74. Liu TM, Woyach JA, Zhong Y, Lozanski A, Lozanski G, Dong S, et al. Hypermorphic mutation of phospholipase C, γ2 acquired in ibrutinib-resistant CLL confers BTK independency upon B-cell receptor activation. Blood. 2015;126(1):61–8. doi:10.1182/blood-2015-02-626846.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Krzywinski M, Schein J, Birol I, Connors J, Gascoyne R, Horsman D, et al. Circos: an information aesthetic for comparative genomics. Genome Res. 2009;19(9):1639–45. doi:10.1101/gr.092759.109.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nyla A. Heerema.

Ethics declarations

Disclosure

Cecelia Miller, Natarajan Muthusamy, Heather Breidenbach, Athena Puski, John C. Byrd, and Nyla Heerema declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the Topical collection on Cytogenetics.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Miller, C., Muthusamy, N., Breidenbach, H. et al. Metaphase Cytogenetics in Chronic Lymphocytic Leukemia. Curr Genet Med Rep 4, 65–73 (2016). https://doi.org/10.1007/s40142-016-0090-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40142-016-0090-5

Keywords

Navigation