Skip to main content

Advertisement

Log in

Cardiac conditioning for healthy individuals: primary prevention of heart disease

  • Cardiopulmonary Rehabilitation (MN Bartels, Section Editor)
  • Published:
Current Physical Medicine and Rehabilitation Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Physical inactivity and sedentary behavior are highly prevalent. The benefits and risks of physical activity and evidence base for exercise prescription are not widely known by healthcare providers.

Recent Finding

Regular exercise and reducing sedentary time are essential elements of primordial and primary prevention in healthy adults. The underlying physiological mechanisms, such as physiologic cardiac hypertrophy, enhanced autonomic and vascular function, and improved circulation and mitochondrial function, are extensive. The recent scientific evidence supporting the current recommendations for the quantity and quality of exercise and evidence-informed principles of exercise prescription for improving cardiorespiratory fitness in the healthy adult are explained.

Summary

All adults should receive a prescription for exercise due to its powerful effect upon health. Using evidence-based prescription principles tailored to the individual can maximize the beneficial effects of exercise in chronic disease and disability prevention.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Mozaffarian D, Benjamin EJ, Go AS, Arnett DK, Blaha MJ, Cushman M, et al. Executive summary: heart disease and stroke statistics—2016 update: a report from the American Heart Association. Circulation. 2016;133(4):447–54. doi:10.1161/cir.0000000000000366.

    PubMed  Google Scholar 

  2. Ford ES. Trends in predicted 10-year risk of coronary heart disease and cardiovascular disease among U.S. adults from 1999 to 2010. J Am Coll Cardiol. 2013;61(22):2249–52. doi:10.1016/j.jacc.2013.03.023.

    PubMed  PubMed Central  Google Scholar 

  3. Daviglus ML, Lloyd-Jones DM, Pirzada A. Preventing cardiovascular disease in the 21st century: therapeutic and preventive implications of current evidence. Am J Cardiovasc Drugs. 2006;6(2):87–101.

    CAS  PubMed  Google Scholar 

  4. • Claas SA, Arnett DK. The role of healthy lifestyle in the primordial prevention of cardiovascular disease. Curr Cardiol Rep. 2016;18(6):56. doi:10.1007/s11886-016-0728-7. Primordial prevention involves preempting the development of CVD risk factors. Lifestyle factors are the interventional targets in primordial prevention of CVD.

  5. Maclagan LC, Tu JV. Using the concept of ideal cardiovascular health to measure population health: a review. Curr Opin Cardiol. 2015;30(5):518–24. doi:10.1097/hco.0000000000000210.

    PubMed  Google Scholar 

  6. Xanthakis V, Enserro DM, Murabito JM, Polak JF, Wollert KC, Januzzi JL, et al. Ideal cardiovascular health: associations with biomarkers and subclinical disease and impact on incidence of cardiovascular disease in the Framingham Offspring Study. Circulation. 2014;130(19):1676–83. doi:10.1161/circulationaha.114.009273.

    CAS  PubMed  Google Scholar 

  7. Younus A, Aneni EC, Spatz ES, Osondu CU, Roberson L, Ogunmoroti O, et al. A systematic review of the prevalence and outcomes of ideal cardiovascular health in US and non-US populations. Mayo Clin Proc. 2016;91(5):649–70. doi:10.1016/j.mayocp.2016.01.019.

    PubMed  Google Scholar 

  8. •• Garber CE, Blissmer B, Deschenes MR, Franklin BA, Lamonte MJ, Lee IM, et al. American College of Sports Medicine position stand. Quantity and quality of exercise for developing and maintaining cardiorespiratory, musculoskeletal, and neuromotor fitness in apparently healthy adults: guidance for prescribing exercise. Med Sci Sports Exerc. 2011;43(7):1334–59. doi:10.1249/MSS.0b013e318213fefb. This paper provides background and recommendations for prescribing physical activity for healthy adults.

    Google Scholar 

  9. US Department of Health and Human Services. 2008 Physical Activity Guidelines for Americans. Washington, DC: U.S. Department of Health and Human Services; 2008. ODPHP Publication No. U0036.

  10. US Department of Health and Human Services. 2008 Physical Activity Guidelines Advisory Committee Report. Washington, DC: U.S. Department of Health and Human Services; 2008.

    Google Scholar 

  11. Kohl HW 3rd, Craig CL, Lambert EV, Inoue S, Alkandari JR, Leetongin G, et al. The pandemic of physical inactivity: global action for public health. Lancet (London, England). 2012;380(9838):294–305. doi:10.1016/s0140-6736(12)60898-8.

    Google Scholar 

  12. • Naci H, Ioannidis JP. Comparative effectiveness of exercise and drug interventions on mortality outcomes: metaepidemiological study. BMJ (Clinical Research Ed.). 2013;347:f5577. doi:10.1136/bmj.f5577. This paper shows the importance of physical activity and how it compares with accepted pharmacological therapies for common chronic diseases.

    PubMed  PubMed Central  Google Scholar 

  13. Lee IM, Shiroma EJ, Lobelo F, Puska P, Blair SN, Katzmarzyk PT. Effect of physical inactivity on major non-communicable diseases worldwide: an analysis of burden of disease and life expectancy. Lancet. 2012;380(9838):219–29. doi:10.1016/s0140-6736(12)61031-9.

    PubMed  PubMed Central  Google Scholar 

  14. Bauman A, Merom D, Bull FC, Buchner DM, Fiatarone Sing MA. Updating the evidence for physical activity: summative reviews of the epidemiological evidence, prevalence, and interventions to promote “active aging”. Gerontologist. 2016;56(Suppl 2):S268–80. doi:10.1093/geront/gnw031.

    PubMed  Google Scholar 

  15. Pescatello LS, Arena R, Riebe D, Thompson PD, editors. ACSM’s guidelines for exercise testing and prescription. 9th ed. Philadelphia: Wolters Kluwer/Lippincott Williams & Wilkins Health; 2014.

    Google Scholar 

  16. •• Wen CP, Wai JP, Tsai MK, Yang YC, Cheng TY, Lee MC, et al. Minimum amount of physical activity for reduced mortality and extended life expectancy: a prospective cohort study. Lancet (London, England). 2011;378(9798):1244–53. doi:10.1016/s0140-6736(11)60749-6. This paper shows the dose response of physical activity and the impactful effects on mortality.

    Google Scholar 

  17. Centers for Disease Control and Prevention. Facts about physical activity. Atlanta: U.S. Department of Health and Human Services; 2014. http://www.cdc.gov/physicalactivity/data/facts.htm. Accessed 13 May 2016.

  18. Buckler A, Servies T. Behavioral counseling interventions to promote a healthful diet and physical activity for cardiovascular disease prevention in adults. Am Fam Physician. 2013;87(12):869–70.

    PubMed  Google Scholar 

  19. World Health Organization. WHO Guidelines approved by the Guidelines Review Committee. Global recommendations on physical activity for health. Geneva: World Health Organization; 2010.

    Google Scholar 

  20. Kodama S, Saito K, Tanaka S, et al. Cardiorespiratory fitness as a quantitative predictor of all-cause mortality and cardiovascular events in healthy men and women: a meta-analysis. JAMA. 2009;301(19):2024–35. doi:10.1001/jama.2009.681.

    CAS  PubMed  Google Scholar 

  21. Despres JP. Physical activity, sedentary behaviours, and cardiovascular health: when will cardiorespiratory fitness become a vital sign? Can J Cardiol. 2016;32(4):505–13. doi:10.1016/j.cjca.2015.12.006.

    PubMed  Google Scholar 

  22. •• DeFina LF, Haskell WL, Willis BL, Barlow CE, Finley CE, Levine BD, et al. Physical activity versus cardiorespiratory fitness: two (partly) distinct components of cardiovascular health? Prog Cardiovasc Dis. 2015;57(4):324–9. doi:10.1016/j.pcad.2014.09.008. This article discusses the importance of cardiorespiratory fitness and physical activity in improving health and how these factors are distinct from each other.

    PubMed  Google Scholar 

  23. Bloomer RJ. Energy cost of moderate-duration resistance and aerobic exercise. J Strength Cond Res. 2005;19(4):878–82.

    PubMed  Google Scholar 

  24. Lee DC, Sui X, Artero EG, Lee IM, Church TS, McAuley PA, et al. Long-term effects of changes in cardiorespiratory fitness and body mass index on all-cause and cardiovascular disease mortality in men: the Aerobics Center Longitudinal Study. Circulation. 2011;124(23):2483–90. doi:10.1161/circulationaha.111.038422.

    PubMed  PubMed Central  Google Scholar 

  25. Blair SN, Kohl HW 3rd, Barlow CE, Paffenbarger RS Jr, Gibbons LW, Macera CA. Changes in physical fitness and all-cause mortality. A prospective study of healthy and unhealthy men. JAMA. 1995;273(14):1093–8.

    CAS  PubMed  Google Scholar 

  26. Myers J, McAuley P, Lavie CJ, Despres JP, Arena R, Kokkinos P. Physical activity and cardiorespiratory fitness as major markers of cardiovascular risk: their independent and interwoven importance to health status. Prog Cardiovasc Dis. 2015;57(4):306–14. doi:10.1016/j.pcad.2014.09.011.

    PubMed  Google Scholar 

  27. Swift DL, Lavie CJ, Johannsen NM, Arena R, Earnest CP, O’Keefe JH, et al. Physical activity, cardiorespiratory fitness, and exercise training in primary and secondary coronary prevention. Circ J. 2013;77(2):281–92.

    PubMed  Google Scholar 

  28. Al-Mallah MH, Juraschek SP, Whelton S, Dardari ZA, Ehrman JK, Michos ED, et al. Sex differences in cardiorespiratory fitness and all-cause mortality: the Henry Ford ExercIse Testing (FIT) Project. Mayo Clin Proc. 2016;91(6):755–62. doi:10.1016/j.mayocp.2016.04.002.

    PubMed  PubMed Central  Google Scholar 

  29. Fogelholm M. Physical activity, fitness and fatness: relations to mortality, morbidity and disease risk factors. A systematic review. Obes Rev. 2010;11(3):202–21. doi:10.1111/j.1467-789X.2009.00653.x.

    CAS  PubMed  Google Scholar 

  30. Katzmarzyk PT, Church TS, Blair SN. Cardiorespiratory fitness attenuates the effects of the metabolic syndrome on all-cause and cardiovascular disease mortality in men. Arch Intern Med. 2004;164(10):1092–7. doi:10.1001/archinte.164.10.1092.

    PubMed  Google Scholar 

  31. Mehanna E, Hamik A, Josephson RA. Cardiorespiratory fitness and atherosclerosis: recent data and future directions. Curr Atherosc Rep. 2016;18(5):26. doi:10.1007/s11883-016-0580-7.

    Google Scholar 

  32. Park YM, Sui X, Liu J, Zhou H, Kokkinos PF, Lavie CJ, et al. The effect of cardiorespiratory fitness on age-related lipids and lipoproteins. J Am Coll Cardiol. 2015;65(19):2091–100. doi:10.1016/j.jacc.2015.03.517.

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Lin X, Zhang X, Guo J, Roberts CK, McKenzie S, Wu WC, et al. Effects of exercise training on cardiorespiratory fitness and biomarkers of cardiometabolic health: a systematic review and meta-analysis of randomized controlled trials. J Am Heart Assoc. 2015;4(7). doi:10.1161/jaha.115.002014.

  34. Wilson MG, Ellison GM, Cable NT. Basic science behind the cardiovascular benefits of exercise. Heart (Br Cardiac Soc). 2015;101(10):758–65. doi:10.1136/heartjnl-2014-306596.

    Google Scholar 

  35. Fernandes T, Barauna VG, Negrao CE, Phillips MI, Oliveira EM. Aerobic exercise training promotes physiological cardiac remodeling involving a set of microRNAs. Am J Physiol Heart Circ Physiol. 2015;309(4):H543–52. doi:10.1152/ajpheart.00899.2014.

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Collins MA, Cureton KJ, Hill DW, Ray CA. Relationship of heart rate to oxygen uptake during weight lifting exercise. Med Sci Sports Exerc. 1991;23(5):636–40.

    CAS  PubMed  Google Scholar 

  37. Stanley J, Peake JM, Buchheit M. Cardiac parasympathetic reactivation following exercise: implications for training prescription. Sports Med (Auckland, NZ). 2013;43(12):1259–77. doi:10.1007/s40279-013-0083-4.

    Google Scholar 

  38. Leosco D, Parisi V, Femminella GD, Formisano R, Petraglia L, Allocca E, et al. Effects of exercise training on cardiovascular adrenergic system. Front Physiol. 2013;4:348. doi:10.3389/fphys.2013.00348.

    PubMed  PubMed Central  Google Scholar 

  39. da Silva VP, de Oliveira NA, Silveira H, Mello RG, Deslandes AC. Heart rate variability indexes as a marker of chronic adaptation in athletes: a systematic review. Ann Noninvasive Electrocardiol. 2015;20(2):108–18. doi:10.1111/anec.12237.

    PubMed  Google Scholar 

  40. Duncker DJ, Bache RJ. Regulation of coronary blood flow during exercise. Physiol Rev. 2008;88(3):1009–86. doi:10.1152/physrev.00045.2006.

    CAS  PubMed  Google Scholar 

  41. Hoier B, Hellsten Y. Exercise-induced capillary growth in human skeletal muscle and the dynamics of VEGF. Microcirculation (New York, NY: 1994). 2014;21(4):301–14. doi:10.1111/micc.12117.

    CAS  Google Scholar 

  42. Laughlin MH, Bowles DK, Duncker DJ. The coronary circulation in exercise training. Am J Physiol Heart Circ Physiol. 2012;302(1):H10–23. doi:10.1152/ajpheart.00574.2011.

    CAS  PubMed  Google Scholar 

  43. Phillips SA, Mahmoud AM, Brown MD, Haus JM. Exercise interventions and peripheral arterial function: implications for cardio-metabolic disease. Prog Cardiovasc Dis. 2015;57(5):521–34. doi:10.1016/j.pcad.2014.12.005.

    PubMed  Google Scholar 

  44. Ashor AW, Lara J, Siervo M, Celis-Morales C, Oggioni C, Jakovljevic DG, et al. Exercise modalities and endothelial function: a systematic review and dose–response meta-analysis of randomized controlled trials. Sports Med (Auckland, NZ). 2015;45(2):279–96. doi:10.1007/s40279-014-0272-9.

    Google Scholar 

  45. Swift DL, Earnest CP, Blair SN, Church TS. The effect of different doses of aerobic exercise training on endothelial function in postmenopausal women with elevated blood pressure: results from the DREW study. Br J Sports Med. 2012;46(10):753–8. doi:10.1136/bjsports-2011-090025.

    PubMed  Google Scholar 

  46. Cartee GD, Hepple RT, Bamman MM, Zierath JR. Exercise promotes healthy aging of skeletal muscle. Cell Metab. 2016;23(6):1034–47. doi:10.1016/j.cmet.2016.05.007.

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Hoppeler H. Molecular networks in skeletal muscle plasticity. J Exp Biol. 2016;219(Pt 2):205–13. doi:10.1242/jeb.128207.

    PubMed  Google Scholar 

  48. Shibata AI, Oka K, Sugiyama T, Salmon JO, Dunstan DW, Owen N. Physical activity, television viewing time, and 12-year changes in waist circumference. Med Sci Sports Exerc. 2016;48(4):633–40. doi:10.1249/mss.0000000000000803.

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Dempsey PC, Howard BJ, Lynch BM, Owen N, Dunstan DW. Associations of television viewing time with adults’ well-being and vitality. Prev Med. 2014;69:69–74. doi:10.1016/j.ypmed.2014.09.007.

    PubMed  Google Scholar 

  50. • Shuval K, Finley CE, Barlow CE, Nguyen BT, Njike VY, Pettee Gabriel K. Independent and joint effects of sedentary time and cardiorespiratory fitness on all-cause mortality: the Cooper Center Longitudinal Study. BMJ Open. 2015;5(10):e008956. doi:10.1136/bmjopen-2015-008956. This paper shows how sedentary time is associated with poorer health outcomes.

    PubMed  PubMed Central  Google Scholar 

  51. Veerman JL, Healy GN, Cobiac LJ, Vos T, Winkler EA, Owen N, et al. Television viewing time and reduced life expectancy: a life table analysis. Br J Sports Med. 2012;46(13):927–30. doi:10.1136/bjsm.2011.085662.

    PubMed  Google Scholar 

  52. Wijndaele K, Healy GN, Dunstan DW, Barnett AG, Salmon J, Shaw JE, et al. Increased cardiometabolic risk is associated with increased TV viewing time. Med Sci Sports Exerc. 2010;42(8):1511–8. doi:10.1249/MSS.0b013e3181d322ac.

    PubMed  Google Scholar 

  53. Ford ES, Caspersen CJ. Sedentary behaviour and cardiovascular disease: a review of prospective studies. Int J Epidemiol. 2012;41(5):1338–53. doi:10.1093/ije/dys078.

    PubMed  PubMed Central  Google Scholar 

  54. Dunstan DW, Thorp AA, Healy GN. Prolonged sitting: is it a distinct coronary heart disease risk factor? Curr Opin Cardiol. 2011;26(5):412–9. doi:10.1097/HCO.0b013e3283496605.

    PubMed  Google Scholar 

  55. Healy GN, Dunstan DW, Salmon J, Cerin E, Shaw JE, Zimmet PZ, et al. Breaks in sedentary time: beneficial associations with metabolic risk. Diabetes Care. 2008;31(4):661–6. doi:10.2337/dc07-2046.

    PubMed  Google Scholar 

  56. Dahabreh IJ, Paulus JK. Association of episodic physical and sexual activity with triggering of acute cardiac events: systematic review and meta-analysis. JAMA. 2011;305(12):1225–33. doi:10.1001/jama.2011.336.

    PubMed  PubMed Central  Google Scholar 

  57. Thompson PD, Franklin BA, Balady GJ, Blair SN, Corrado D, Estes NA 3rd, et al. Exercise and acute cardiovascular events placing the risks into perspective: a scientific statement from the American Heart Association Council on Nutrition, Physical Activity, and Metabolism and the Council on Clinical Cardiology. Circulation. 2007;115(17):2358–68. doi:10.1161/circulationaha.107.181485.

    PubMed  Google Scholar 

  58. Mittleman MA, Maclure M, Tofler GH, Sherwood JB, Goldberg RJ, Muller JE. Triggering of acute myocardial infarction by heavy physical exertion. Protection against triggering by regular exertion. Determinants of Myocardial Infarction Onset Study Investigators. N Engl J Med. 1993;329(23):1677–83. doi:10.1056/nejm199312023292301.

    CAS  PubMed  Google Scholar 

  59. Riebe D, Franklin BA, Thompson PD, Garber CE, Whitfield GP, Magal M, et al. Updating ACSM’s recommendations for exercise preparticipation health screening. Med Sci Sports Exerc. 2015;47(11):2473–9. doi:10.1249/mss.0000000000000664.

    CAS  PubMed  Google Scholar 

  60. Colbert LH, Hootman JM, Macera CA. Physical activity-related injuries in walkers and runners in the aerobics center longitudinal study. Clin J Sport Med. 2000;10(4):259–63.

    CAS  PubMed  Google Scholar 

  61. Dempsey RL, Layde PM, Laud PW, Guse CE, Hargarten SW. Incidence of sports and recreation related injuries resulting in hospitalization in Wisconsin in 2000. Inj Prev. 2005;11(2):91–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Hootman JM, Macera CA, Ainsworth BE, Addy CL, Martin M, Blair SN. Epidemiology of musculoskeletal injuries among sedentary and physically active adults. Med Sci Sports Exerc. 2002;34(5):838–44.

    PubMed  Google Scholar 

  63. Hootman JM, Macera CA, Ainsworth BE, Martin M, Addy CL, Blair SN. Association among physical activity level, cardiorespiratory fitness, and risk of musculoskeletal injury. Am J Epidemiol. 2001;154(3):251–8.

    CAS  PubMed  Google Scholar 

  64. van Mechelen W. Running injuries. A review of the epidemiological literature. Sports Med. 1992;14(5):320–35.

    PubMed  Google Scholar 

  65. Nelson ME, Rejeski WJ, Blair SN, Duncan PW, Judge JO, King AC, et al. Physical activity and public health in older adults: recommendation from the American College of Sports Medicine and the American Heart Association. Med Sci Sports Exerc. 2007;39(8):1435–45.

    PubMed  Google Scholar 

  66. Haskell WL, Lee IM, Pate RR, Powell KE, Blair SN, Franklin BA, et al. Physical activity and public health: updated recommendation for adults from the American College of Sports Medicine and the American Heart Association. Med Sci Sports Exerc. 2007;39(8):1423–34.

    PubMed  Google Scholar 

  67. Williams PT, Thompson PD. Dose-dependent effects of training and detraining on weight in 6406 runners during 7.4 years. Obesity (Silver Spring). 2006;14(11):1975–84.

    Google Scholar 

  68. Whitfield GP, Pettee Gabriel KK, Rahbar MH, Kohl HW 3rd. Application of the American Heart Association/American College of Sports Medicine Adult Preparticipation Screening Checklist to a nationally representative sample of US adults aged >=40 years from the National Health and Nutrition Examination Survey 2001 to 2004. Circulation. 2014;129(10):1113–20. doi:10.1161/circulationaha.113.004160.

    PubMed  PubMed Central  Google Scholar 

  69. Warburton DE, Gledhill N, Jamnik VK, Bredin SS, McKenzie DC, Stone J, et al. Evidence-based risk assessment and recommendations for physical activity clearance: Consensus Document 2011. Appl Physiol Nutr Metab (Physiologie Appliquee, Nutrition et Metabolisme). 2011;36(Suppl 1):S266–98. doi:10.1139/h11-062.

    Google Scholar 

  70. Jamnik VK, Warburton DE, Makarski J, McKenzie DC, Shephard RJ, Stone JA, et al. Enhancing the effectiveness of clearance for physical activity participation: background and overall process. Appl Physiol Nutr Metab (Physiologie Appliquee, Nutrition et Metabolisme). 2011;36(Suppl 1):S3–13. doi:10.1139/h11-044.

    Google Scholar 

  71. Goodman JM, Thomas SG, Burr J. Evidence-based risk assessment and recommendations for exercise testing and physical activity clearance in apparently healthy individuals. Appl Physiol Nutr Metab (Physiologie Appliquee, Nutrition et Metabolisme). 2011;36(Suppl 1):S14–32. doi:10.1139/h11-048.

    Google Scholar 

  72. Lauer M, Froelicher ES, Williams M, Kligfield P. Exercise testing in asymptomatic adults: a statement for professionals from the American Heart Association Council on Clinical Cardiology, Subcommittee on Exercise, Cardiac Rehabilitation, and Prevention. Circulation. 2005;112(5):771–6.

    PubMed  Google Scholar 

  73. Moyer VA. Screening for coronary heart disease with electrocardiography: U.S. Preventive Services Task Force recommendation statement. Ann Intern Med. 2012;157(7):512–8. doi:10.7326/0003-4819-157-7-201210020-00514.

    PubMed  Google Scholar 

  74. American College of Sports Medicine Position Stand and American Heart Association. Recommendations for cardiovascular screening, staffing, and emergency policies at health/fitness facilities. Med Sci Sports Exerc. 1998;30(6):1009–18.

    Google Scholar 

  75. Wolk MJ, Bailey SR, Doherty JU, Douglas PS, Hendel RC, Kramer CM, et al. ACCF/AHA/ASE/ASNC/HFSA/HRS/SCAI/SCCT/SCMR/STS 2013 multimodality appropriate use criteria for the detection and risk assessment of stable ischemic heart disease: a report of the American College of Cardiology Foundation Appropriate Use Criteria Task Force, American Heart Association, American Society of Echocardiography, American Society of Nuclear Cardiology, Heart Failure Society of America, Heart Rhythm Society, Society for Cardiovascular Angiography and Interventions, Society of Cardiovascular Computed Tomography, Society for Cardiovascular Magnetic Resonance, and Society of Thoracic Surgeons. J Am Coll Cardiol. 2014;63(4):380–406. doi:10.1016/j.jacc.2013.11.009.

    PubMed  Google Scholar 

  76. Lakka TA, Laaksonen DE. Physical activity in prevention and treatment of the metabolic syndrome. Appl Physiol Nutr Metab. 2007;32(1):76–88.

    PubMed  Google Scholar 

  77. Pescatello LS, Franklin BA, Fagard R, Farquhar WB, Kelley GA, Ray CA. American College of Sports Medicine position stand. Exercise and hypertension. Med Sci Sports Exerc. 2004;36(3):533–53.

    PubMed  Google Scholar 

  78. Thompson PD. Exercise and physical activity in the prevention and treatment of atherosclerotic cardiovascular disease. Arterioscler Thromb Vasc Biol. 2003;23(8):1319–21.

    CAS  PubMed  Google Scholar 

  79. Pi-Sunyer X, Blackburn G, Brancati FL, Bray GA, Bright R, Clark JM, et al. Reduction in weight and cardiovascular disease risk factors in individuals with type 2 diabetes: one-year results of the look AHEAD trial. Diabetes Care. 2007;30(6):1374–83.

    PubMed  Google Scholar 

  80. Wilmore JH, Green JS, Stanforth PR, Gagnon J, Rankinen T, Leon AS, et al. Relationship of changes in maximal and submaximal aerobic fitness to changes in cardiovascular disease and non-insulin-dependent diabetes mellitus risk factors with endurance training: the HERITAGE Family Study. Metabolism. 2001;50(11):1255–63.

    CAS  PubMed  Google Scholar 

  81. Pescatello LS, MacDonald HV, Lamberti L, Johnson BT. Exercise for hypertension: a prescription update integrating existing recommendations with emerging research. Curr Hypertens Rep. 2015;17(11):87. doi:10.1007/s11906-015-0600-y.

    PubMed  PubMed Central  Google Scholar 

  82. Santos LP, Moraes RS, Vieira PJ, Ash GI, Waclawovsky G, Pescatello LS, et al. Effects of aerobic exercise intensity on ambulatory blood pressure and vascular responses in resistant hypertension: a crossover trial. J Hypertens. 2016;34(7):1317–24. doi:10.1097/hjh.0000000000000961.

    CAS  PubMed  Google Scholar 

  83. Thompson PD, Crouse SF, Goodpaster B, Kelley D, Moyna N, Pescatello L. The acute versus the chronic response to exercise. Med Sci Sports Exerc. 2001;33(6 Suppl):S438–45 discussion S52–3.

    CAS  PubMed  Google Scholar 

  84. Slentz CA, Aiken LB, Houmard JA, Bales CW, Johnson JL, Tanner CJ, et al. Inactivity, exercise, and visceral fat. STRRIDE: a randomized, controlled study of exercise intensity and amount. J Appl Physiol. 2005;99(4):1613–8.

    PubMed  Google Scholar 

  85. Weiss EP, Holloszy JO. Improvements in body composition, glucose tolerance, and insulin action induced by increasing energy expenditure or decreasing energy intake. J Nutr. 2007;137(4):1087–90.

    CAS  PubMed  Google Scholar 

  86. Frank LL, Sorensen BE, Yasui Y, Tworoger SS, Schwartz RS, Ulrich CM, et al. Effects of exercise on metabolic risk variables in overweight postmenopausal women: a randomized clinical trial. Obes Res. 2005;13(3):615–25.

    PubMed  Google Scholar 

  87. Lee S, Kuk JL, Davidson LE, Hudson R, Kilpatrick K, Graham TE, et al. Exercise without weight loss is an effective strategy for obesity reduction in obese individuals with and without Type 2 diabetes. J Appl Physiol. 2005;99(3):1220–5.

    PubMed  Google Scholar 

  88. Ross R, Janssen I, Dawson J, Kungl AM, Kuk JL, Wong SL, et al. Exercise-induced reduction in obesity and insulin resistance in women: a randomized controlled trial. Obes Res. 2004;12(5):789–98.

    PubMed  Google Scholar 

  89. Church TS, Earnest CP, Skinner JS, Blair SN. Effects of different doses of physical activity on cardiorespiratory fitness among sedentary, overweight or obese postmenopausal women with elevated blood pressure: a randomized controlled trial. JAMA. 2007;297(19):2081–91. doi:10.1001/jama.297.19.2081.

    CAS  PubMed  Google Scholar 

  90. Despres JP, Lemieux I, Bergeron J, Pibarot P, Mathieu P, Larose E, et al. Abdominal obesity and the metabolic syndrome: contribution to global cardiometabolic risk. Arterioscler Thromb Vasc Biol. 2008;28(6):1039–49.

    CAS  PubMed  Google Scholar 

  91. Knowler WC, Barrett-Connor E, Fowler SE, Hamman RF, Lachin JM, Walker EA, et al. Reduction in the incidence of type 2 diabetes with lifestyle intervention or metformin. N Engl J Med. 2002;346(6):393–403.

    CAS  PubMed  Google Scholar 

  92. Donnelly JE, Blair SN, Jakicic JM, Manore MM, Rankin JW, Smith BK. American College of Sports Medicine Position Stand. Appropriate physical activity intervention strategies for weight loss and prevention of weight regain for adults. Med Sci Sports Exerc. 2009;41(2):459–71.

    PubMed  Google Scholar 

  93. Wilmore JH, Stanforth PR, Hudspeth LA, Gagnon J, Daw EW, Leon AS, et al. Alterations in resting metabolic rate as a consequence of 20 wk of endurance training: the HERITAGE Family Study. Am J Clin Nutr. 1998;68(1):66–71.

    CAS  PubMed  Google Scholar 

  94. Scharhag-Rosenberger F, Walitzek S, Kindermann W, Meyer T. Differences in adaptations to 1 year of aerobic endurance training: individual patterns of nonresponse. Scand J Med Sci Sports. 2012;22(1):113–8. doi:10.1111/j.1600-0838.2010.01139.x.

    CAS  Google Scholar 

  95. Blankenship JM, Granados K, Braun B. Effects of subtracting sitting versus adding exercise on glycemic control and variability in sedentary office workers. Appl Physiol Nutr Metab (Physiologie Appliquee, Nutrition et Metabolisme). 2014;39(11):1286–93. doi:10.1139/apnm-2014-0157.

    CAS  Google Scholar 

  96. Duvivier BM, Schaper NC, Bremers MA, van Crombrugge G, Menheere PP, Kars M, et al. Minimal intensity physical activity (standing and walking) of longer duration improves insulin action and plasma lipids more than shorter periods of moderate to vigorous exercise (cycling) in sedentary subjects when energy expenditure is comparable. PLoS One. 2013;8(2):e55542. doi:10.1371/journal.pone.0055542.

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Matthews CE, George SM, Moore SC, Bowles HR, Blair A, Park Y, et al. Amount of time spent in sedentary behaviors and cause-specific mortality in US adults. Am J Clin Nutr. 2012;95(2):437–45. doi:10.3945/ajcn.111.019620.

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Matthews CE, Moore SC, Sampson J, Blair A, Xiao Q, Keadle SK, et al. Mortality benefits for replacing sitting time with different physical activities. Med Sci Sports Exerc. 2015;47(9):1833–40. doi:10.1249/mss.0000000000000621.

    PubMed  PubMed Central  Google Scholar 

  99. Healy GN, Eakin EG, Owen N, LaMontagne AD, Moodie M, Winkler EA, et al. A cluster RCT to reduce office workers’ sitting time: impact on activity outcomes. Med Sci Sports Exerc. 2016;. doi:https://doi.org/10.1249/mss.0000000000000972.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carol Ewing Garber.

Ethics declarations

Conflict of Interest

Shirit Kamil-Rosenberg and Carol Ewing Garber declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the Topical Collection on Cardiopulmonary Rehabilitation.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kamil-Rosenberg, S., Garber, C.E. Cardiac conditioning for healthy individuals: primary prevention of heart disease. Curr Phys Med Rehabil Rep 4, 223–232 (2016). https://doi.org/10.1007/s40141-016-0130-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40141-016-0130-9

Keywords

Navigation