Skip to main content

Advertisement

Log in

Progress in Advanced Imaging Techniques for the Lumbar Spine

  • Interventional Pain Management (David J. Kennedy and Josh Levin, Section Editors)
  • Published:
Current Physical Medicine and Rehabilitation Reports Aims and scope Submit manuscript

Abstract

Low back pain remains challenging to diagnose and treat. There has been considerable progress in advanced spine imaging that has improved the understanding of the anatomy and physiology of the lumbar spine. Advanced imaging can now reveal fundamental properties of lumbar spine tissues and lend insight into the specific chemical, physiological, and mechanical changes that occur with degeneration. Some of these imaging modalities may eventually be used in clinical evaluation and may direct interventional management of patients with low back pain. While there are many novel and exciting developments, very few imaging methods have been applied to the known spine pain syndromes. The advanced imaging methods most amenable to direct clinical application for known spine pain syndromes are fat-suppressed magnetic resonance imaging, T1rho magnetic resonance imaging, and metabolic tracer studies. This paper reviews these imaging methods alongside many others in development; these imaging modalities inform the understanding of the lumbar spine and may be used in the future to assess spine pain syndromes and direct treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Andersson GB. Epidemiological features of chronic low-back pain. The Lancet. 1999;354:581–5.

    CAS  Google Scholar 

  2. Jarvik JG, Deyo RA. Diagnostic evaluation of low back pain with emphasis on imaging. Ann Intern Med. 2002;137:586–97.

    PubMed  Google Scholar 

  3. Maus T. Imaging the back pain patient. Phys Med Rehabil Clin N Am. 2010;21:725–66. doi:10.1016/j.pmr.2010.07.004.

    PubMed  Google Scholar 

  4. Auerbach JD, Johannessen W, Borthakur A, et al. In vivo quantification of human lumbar disc degeneration using T(1rho)-weighted magnetic resonance imaging. Eur Spine J. 2006;15(Suppl 3):S338–44.

    PubMed  Google Scholar 

  5. Akella SVS, Regatte RR, Wheaton AJ, et al. Reduction of residual dipolar interaction in cartilage by spin-lock technique. Magn Reson Med. 2004;52:1103–9.

    PubMed  Google Scholar 

  6. Nguyen AM, Johannessen W, Yoder JH, et al. Noninvasive quantification of human nucleus pulposus pressure with use of T1rho-weighted magnetic resonance imaging. J Bone Joint Surg Am. 2008;90:796–802. doi:10.2106/JBJS.G.00667.

    PubMed  PubMed Central  Google Scholar 

  7. Zobel BB, Vadalà G, Del Vescovo R, et al. T1ρ magnetic resonance imaging quantification of early lumbar intervertebral disc degeneration in healthy young adults. Spine. 2012;37:1224–30. doi:10.1097/BRS.0b013e31824b2450.

    PubMed  PubMed Central  Google Scholar 

  8. Blumenkrantz G, Zuo J, Li X, et al. In vivo 3.0-tesla magnetic resonance T1rho and T2 relaxation mapping in subjects with intervertebral disc degeneration and clinical symptoms. Magn Reson Med. 2010;63:1193–200. doi:10.1002/mrm.22362.

    PubMed  PubMed Central  Google Scholar 

  9. Zuo J, Joseph GB, Li X, et al. In vivo intervertebral disc characterization using magnetic resonance spectroscopy and T1ρ imaging: association with discography and Oswestry Disability Index and Short Form-36 Health Survey. Spine. 2012;37:214–21. doi:10.1097/BRS.0b013e3182294a63.

    PubMed  PubMed Central  Google Scholar 

  10. • Vadalà G, Russo F, Battisti S, et al. Early intervertebral disc degeneration changes in asymptomatic weightlifters assessed by T1ρ-magnetic resonance imaging. Spine. 2014;39:1881–6. doi:10.1097/BRS.0000000000000554. This study assesses the degeneration of IVD measured by T1-rho MR in weightlifters—athletes who sustain profound stresses on the discs.

    PubMed  PubMed Central  Google Scholar 

  11. Borthakur A, Maurer PM, Fenty M, et al. T1ρ magnetic resonance imaging and discography pressure as novel biomarkers for disc degeneration and low back pain. Spine. 2011;36:2190–6. doi:10.1097/BRS.0b013e31820287bf.

    PubMed  PubMed Central  Google Scholar 

  12. Thakkar RS, Subhawong T, Carrino JA, Chhabra A. Cartilage magnetic resonance imaging techniques at 3 T: current status and future directions. Top Magn Reson Imaging. 2011;22:71–81. doi:10.1097/RMR.0b013e318259ff95.

    PubMed  Google Scholar 

  13. Watanabe A, Benneker LM, Boesch C, et al. Classification of intervertebral disk degeneration with axial T2 mapping. Am J Roentgenol. 2007;189:936–42.

    Google Scholar 

  14. Welsch GH, Trattnig S, Paternostro-Sluga T, et al. Parametric T2 and T2* mapping techniques to visualize intervertebral disc degeneration in patients with low back pain: initial results on the clinical use of 3.0 Tesla MRI. Skeletal Radiol. 2011;40:543–51. doi:10.1007/s00256-010-1036-8.

    PubMed  Google Scholar 

  15. Takashima H, Takebayashi T, Yoshimoto M, et al. Correlation between T2 relaxation time and intervertebral disk degeneration. Skelet Radiol. 2012;41:163–7.

    Google Scholar 

  16. Stelzeneder D, Welsch GH, Kovács BK, et al. Quantitative T2 evaluation at 3.0T compared to morphological grading of the lumbar intervertebral disc: a standardized evaluation approach in patients with low back pain. Eur J Radiol. 2012;81:324–30. doi:10.1016/j.ejrad.2010.12.093.

    PubMed  Google Scholar 

  17. Trattnig S, Stelzeneder D, Goed S, et al. Lumbar intervertebral disc abnormalities: comparison of quantitative T2 mapping with conventional MR at 3.0 T. Eur Radiol. 2010;20:2715–22.

    PubMed  Google Scholar 

  18. Mwale F, Demers CN, Michalek AJ, et al. Evaluation of quantitative magnetic resonance imaging, biochemical and mechanical properties of trypsin-treated intervertebral discs under physiological compression loading. J Magn Reson Imaging. 2008;27:563–73.

    PubMed  PubMed Central  Google Scholar 

  19. Maquer G, Brandejsky V, Benneker LM, et al. Human intervertebral disc stiffness correlates better with the Otsu threshold computed from axial T 2 map of its posterior annulus fibrosus than with clinical classifications. Med Eng Phys. 2014;36:219–25.

    PubMed  Google Scholar 

  20. Hoppe S, Quirbach S, Mamisch TC, et al. Axial T2 mapping in intervertebral discs: a new technique for assessment of intervertebral disc degeneration. Eur Radiol. 2012;22:2013–9. doi:10.1007/s00330-012-2448-8.

    PubMed  Google Scholar 

  21. •• Ellingson AM, Nagel TM, Polly DW, et al. Quantitative T2* (T2 star) relaxation times predict site specific proteoglycan content and residual mechanics of the intervertebral disc throughout degeneration. J Orthop Res. 2014;32:1083–9. doi:10.1002/jor.22633. Though not yet clinically applicable, the work of this group associates mechanical and chemical properties of the IVD to MRI imaging findings. Further development of this methodology has the potential to allow prediction of tissue function from non-invasive imaging.

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Ellingson AM, Mehta H, Polly DW, et al. Disc degeneration assessed by quantitative T2* (T2 star) correlated with functional lumbar mechanics. Spine. 2013;38:E1533–40. doi:10.1097/BRS.0b013e3182a59453.

    PubMed  Google Scholar 

  23. Detiger SE, Holewijn RM, Hoogendoorn RJ, et al. MRI T2* mapping correlates with biochemistry and histology in intervertebral disc degeneration in a large animal model. Eur Spine J. 2014;24:1935–43.

    PubMed  Google Scholar 

  24. Zhang X, Yang L, Gao F, et al. Comparison of T1ρ and T2* relaxation mapping in patients with different grades of disc degeneration at 3T MR. Med Sci Monit. 2015;21:1934–41. doi:10.12659/MSM.894406.

    PubMed  PubMed Central  Google Scholar 

  25. Stelzeneder D, Messner A, Vlychou M, et al. Quantitative in vivo MRI evaluation of lumbar facet joints and intervertebral discs using axial T2 mapping. Eur Radiol. 2011;21:2388–95. doi:10.1007/s00330-011-2198-z.

    PubMed  Google Scholar 

  26. Takashima H, Takebayashi T, Yoshimoto M, et al. Investigation of intervertebral disc and facet joint in lumbar spondylolisthesis using T 2 mapping. Magn Reson Med Sci. 2014;13:261–6.

    PubMed  Google Scholar 

  27. Borthakur A, Reddy R. Imaging cartilage physiology. Top Magn Reson Imaging. 2010;21:291–6. doi:10.1097/RMR.0b013e31823dfe2e.

    PubMed  PubMed Central  Google Scholar 

  28. Schleich C, Müller-Lutz A, Matuschke F, et al. Glycosaminoglycan chemical exchange saturation transfer of lumbar intervertebral discs in patients with spondyloarthritis. J Magn Reson Imaging. 2015;42:1057–63. doi:10.1002/jmri.24877.

    PubMed  Google Scholar 

  29. Müller-Lutz A, Schleich C, Schmitt B, et al. Gender, BMI and T2 dependencies of glycosaminoglycan chemical exchange saturation transfer in intervertebral discs. Magn Reson Imaging. 2016;34:271–5. doi:10.1016/j.mri.2015.10.024.

    PubMed  Google Scholar 

  30. Schleich C, Müller-Lutz A, Eichner M, et al. Glycosaminoglycan chemical exchange saturation transfer of lumbar intervertebral discs in healthy volunteers. Spine. 2016;41:146–52. doi:10.1097/BRS.0000000000001144.

    PubMed  Google Scholar 

  31. Müller-Lutz A, Schleich C, Pentang G, et al. Age-dependency of glycosaminoglycan content in lumbar discs: a 3t gagcEST study. J Magn Reson Imaging. 2015;42:1517–23. doi:10.1002/jmri.24945.

    PubMed  Google Scholar 

  32. Haneder S, Apprich SR, Schmitt B, et al. Assessment of glycosaminoglycan content in intervertebral discs using chemical exchange saturation transfer at 3.0 Tesla: preliminary results in patients with low-back pain. Eur Radiol. 2013;23:861–8. doi:10.1007/s00330-012-2660-6.

    PubMed  Google Scholar 

  33. Wang C, Witschey W, Goldberg A, et al. Magnetization transfer ratio mapping of intervertebral disc degeneration. Magn Reson Med. 2010;64:1520–8. doi:10.1002/mrm.22533.

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Kealey SM, Aho T, Delong D, et al. Assessment of apparent diffusion coefficient in normal and degenerated intervertebral lumbar disks: initial experience. Radiology. 2005;235:569–74.

    PubMed  Google Scholar 

  35. Niinimäki J, Korkiakoski A, Ojala O, et al. Association between visual degeneration of intervertebral discs and the apparent diffusion coefficient. Magn Reson Imaging. 2009;27:641–7. doi:10.1016/j.mri.2008.10.005.

    PubMed  Google Scholar 

  36. Antoniou J, Demers CN, Beaudoin G, et al. Apparent diffusion coefficient of intervertebral discs related to matrix composition and integrity. Magn Reson Imaging. 2004;22:963–72.

    PubMed  Google Scholar 

  37. Beattie PF, Morgan PS, Peters D. Diffusion-weighted magnetic resonance imaging of normal and degenerative lumbar intervertebral discs: a new method to potentially quantify the physiologic effect of physical therapy intervention. J Orthop Sports Phys Ther. 2008;38:42–9. doi:10.2519/jospt.2008.2631.

    PubMed  Google Scholar 

  38. Kerttula LI, Jauhiainen J, Tervonen O, et al. Apparent diffusion coefficient in thoracolumbar intervertebral discs of healthy young volunteers. J Magn Reson Imaging. 2000;12:255–60.

    CAS  PubMed  Google Scholar 

  39. Kurunlahti M, Kerttula L, Jauhiainen J, et al. Correlation of diffusion in lumbar intervertebral disks with occlusion of lumbar arteries: a study in adult volunteers. Radiology. 2001;221:779–86.

    CAS  PubMed  Google Scholar 

  40. Ciavarro C, Caiani EG, Brayda-Bruno M, et al. Mid-term evaluation of the effects of dynamic neutralization system on lumbar intervertebral discs using quantitative molecular MR imaging. J Magn Reson Imaging. 2012;35:1145–51. doi:10.1002/jmri.23525.

    PubMed  Google Scholar 

  41. Vaga S, Raimondi MT, Caiani EG, et al. Quantitative assessment of intervertebral disc glycosaminoglycan distribution by gadolinium-enhanced MRI in orthopedic patients. Magn Reson Med. 2009;59:85–95.

    Google Scholar 

  42. Tibiletti M, Galbusera F, Ciavarro C, Brayda-Bruno M. Is the transport of a gadolinium-based contrast agent decreased in a degenerated or aged disc? A post contrast MRI study. PLoS One. 2013;8:e76697. doi:10.1371/journal.pone.0076697.

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Niinimäki J, Korkiakoski A, Parviainen O, et al. Association of lumbar artery narrowing, degenerative changes in disc and endplate and apparent diffusion in disc on postcontrast enhancement of lumbar intervertebral disc. Magn Reson Mater Phys. 2009;22:101–9.

    Google Scholar 

  44. Koy T, Zange J, Rittweger J, et al. Assessment of lumbar intervertebral disc glycosaminoglycan content by gadolinium-enhanced MRI before and after 21-days of head-down-tilt bedrest. PLoS One. 2014;9:e112104. doi:10.1371/journal.pone.0112104.

    PubMed  PubMed Central  Google Scholar 

  45. Rajasekaran S, Venkatadass K, Naresh Babu J, et al. Pharmacological enhancement of disc diffusion and differentiation of healthy, ageing and degenerated discs : results from in vivo serial post-contrast MRI studies in 365 human lumbar discs. Eur Spine J. 2008;17:626–43. doi:10.1007/s00586-008-0645-6.

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Bae WC, Du J, Bydder GM, Chung CB. Conventional and ultrashort time-to-echo magnetic resonance imaging of articular cartilage, meniscus, and intervertebral disk. Top Magn Reson Imaging. 2010;21:275–89. doi:10.1097/RMR.0b013e31823ccebc.

    PubMed  PubMed Central  Google Scholar 

  47. Arpinar VE, Rand SD, Klein AP, et al. Changes in perfusion and diffusion in the endplate regions of degenerating intervertebral discs: a DCE-MRI study. Eur Spine J. 2015;24:2458–67. doi:10.1007/s00586-015-4172-y.

    PubMed  Google Scholar 

  48. Muftuler LT, Jarman JP, Yu HJ, et al. Association between intervertebral disc degeneration and endplate perfusion studied by DCE-MRI. Eur Spine J. 2015;24:679–85. doi:10.1007/s00586-014-3690-3.

    PubMed  Google Scholar 

  49. Gatehouse PD, He T, Hughes SP, Bydder GM. MR imaging of degenerative disc disease in the lumbar spine with ultrashort TE pulse sequences. Magn Reson Mater Phys. 2004;16:160–6.

    Google Scholar 

  50. Bae WC, Statum S, Zhang Z, et al. Morphology of the cartilaginous endplates in human intervertebral disks with ultrashort echo time MR imaging. Radiology. 2013;266:564–74.

    PubMed  PubMed Central  Google Scholar 

  51. Law T, Anthony M-P, Chan Q, et al. Ultrashort time-to-echo MRI of the cartilaginous endplate: technique and association with intervertebral disc degeneration. J Med Imaging Radiat Oncol. 2013;57:427–34. doi:10.1111/1754-9485.12041.

    PubMed  Google Scholar 

  52. Antoniou J, Epure LM, Michalek AJ, et al. Analysis of quantitative magnetic resonance imaging and biomechanical parameters on human discs with different grades of degeneration. J Magn Reson Imaging. 2013;38:1402–14. doi:10.1002/jmri.24120.

    PubMed  Google Scholar 

  53. Mwale F, Iatridis JC, Antoniou J. Quantitative MRI as a diagnostic tool of intervertebral disc matrix composition and integrity. Eur Spine J. 2008;17:432–40.

    PubMed  PubMed Central  Google Scholar 

  54. Vergari C, Dubois G, Vialle R, et al. Lumbar annulus fibrosus biomechanical characterization in healthy children by ultrasound shear wave elastography. Eur Radiol. 2015. doi:10.1007/s00330-015-3911-0.

    PubMed  Google Scholar 

  55. Streitberger K-J, Diederichs G, Guo J, et al. In vivo multifrequency magnetic resonance elastography of the human intervertebral disk. Magn Reson Med. 2015;74:1380–7. doi:10.1002/mrm.25505.

    PubMed  Google Scholar 

  56. Cortes DH, Magland JF, Wright AC, Elliott DM. The shear modulus of the nucleus pulposus measured using magnetic resonance elastography: a potential biomarker for intervertebral disc degeneration. Magn Reson Med. 2014;72:211–9. doi:10.1002/mrm.24895.

    PubMed  Google Scholar 

  57. Kong MH, Hymanson HJ, Song KY, et al. Kinetic magnetic resonance imaging analysis of abnormal segmental motion of the functional spine unit. J Neurosurg Spine. 2009;10:357–65. doi:10.3171/2008.12.SPINE08321.

    PubMed  Google Scholar 

  58. •• Lao L, Zhong G, Li Q, Liu Z. Kinetic magnetic resonance imaging analysis of spinal degeneration: a systematic review. Orthop Surg 2014;6:294–9. doi: 10.1111/os.12137. This paper reviews the available literature on kinetic MRI, which is a growing field of study within spine care.

    PubMed  PubMed Central  Google Scholar 

  59. Zuo J, Saadat E, Romero A, et al. Assessment of intervertebral disc degeneration with magnetic resonance single-voxel spectroscopy. Magn Reson Med. 2009;62:1140–6. doi:10.1002/mrm.22093.

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Keshari KR, Lotz JC, Kurhanewicz J, Majumdar S. Correlation of HR-MAS spectroscopy derived metabolite concentrations with collagen and proteoglycan levels and Thompson grade in the degenerative disc. Spine. 2005;30:2683–8.

    PubMed  Google Scholar 

  61. Keshari KR, Zektzer AS, Swanson MG, et al. Characterization of intervertebral disc degeneration by high-resolution magic angle spinning (HR-MAS) spectroscopy. Magn Reson Med. 2005;53:519–27.

    CAS  PubMed  Google Scholar 

  62. Radek M, Pacholczyk-Sienicka B, Jankowski S, et al. Assessing the correlation between the degree of disc degeneration on the pfirrmann scale and the metabolites identified in HR-MAS NMR spectroscopy. Magn Reson Imaging. 2015. doi:10.1016/j.mri.2015.12.005.

    CAS  PubMed  Google Scholar 

  63. Pacholczyk-Sienicka B, Radek M, Radek A, Jankowski S. Characterization of metabolites determined by means of 1H HR MAS NMR in intervertebral disc degeneration. MAGMA. 2015;28:173–83. doi:10.1007/s10334-014-0457-0.

    CAS  PubMed  Google Scholar 

  64. Noebauer-Huhmann I-M, Juras V, Pfirrmann CWA, et al. Sodium MR imaging of the lumbar intervertebral disk at 7 T: correlation with T2 mapping and modified Pfirrmann score at 3 T-preliminary results. Radiology. 2012;265:555–64. doi:10.1148/radiol.12111920.

    PubMed  Google Scholar 

  65. • Haneder S, Ong MM, Budjan JM, et al. 23 Na-magnetic resonance imaging of the human lumbar vertebral discs: in vivo measurements at 3.0 T in healthy volunteers and patients with low back pain. Spine J 2014;14:1343–1350. This paper uses a novel MR technique to compare IVD signals between healthy and symptomatic individuals. Sodium content reflects the GAG tissue within the disc.

    PubMed  Google Scholar 

  66. D’Aprile P, Tarantino A, Jinkins J, Brindicci D. The value of fat saturation sequences and contrast medium administration in MRI of degenerative disease of the posterior/perispinal elements of the lumbosacral spine. Eur Radiol. 2007;17:523–31.

    PubMed  Google Scholar 

  67. Czervionke LF, Fenton DS. Fat-saturated mr imaging in the detection of inflammatory facet arthropathy (facet synovitis) in the lumbar spine. Pain Med. 2008;9:400–6.

    PubMed  Google Scholar 

  68. Lakadamyali H, Tarhan NC, Ergun T, et al. STIR sequence for depiction of degenerative changes in posterior stabilizing elements in patients with lower back pain. Am J Roengenolol. 2008;191:973–9. doi:10.2214/AJR.07.2829.

    Google Scholar 

  69. •• Kotsenas AL. Imaging of posterior element axial pain generators: facet joints, pedicles, spinous processes, sacroiliac joints, and transitional segments. Radiol Clin N Am 2012;50:705. This review article identifies the various posterior element structures that can be painful and how they can be assessed with current imaging.

    PubMed  Google Scholar 

  70. Jinkins RJ. Lumbosacral interspinous ligament rupture associated with acute intrinsic spinal muscle degeneration. Eur Radiol. 2002;12:2370–6.

    PubMed  Google Scholar 

  71. Holder LE, Machin JL, Asdourian PL, et al. Planar and high-resolution SPECT bone imaging in the diagnosis of facet syndrome. J Nucl Med. 1995;36:37–44.

    CAS  PubMed  Google Scholar 

  72. Dolan AL, Ryan PJ, Arden NK, et al. The value of SPECT scans in identifying back pain likely to benefit from facet joint injection. Br J Rheumatol. 1996;35:1269–73.

    CAS  PubMed  Google Scholar 

  73. Hamlin LM, Delaplain CB. Bone SPECT in Baastrup’s disease. Clin Nucl Med. 1994;19:640–1.

    CAS  PubMed  Google Scholar 

  74. Makki D, Khazim R, Zaidan AA, et al. Single photon emission computerized tomography (SPECT) scan-positive facet joints and other spinal structures in a hospital-wide population with spinal pain. Spine J. 2010;10:58–62. doi:10.1016/j.spinee.2009.06.004.

    PubMed  Google Scholar 

  75. Ackerman W III, Ahmad M. Pain relief with intraarticular or medial branch nerve blocks in patients with positive lumbar facet joint SPECT imaging: a 12-week outcome study. South Med J. 2008;101:931–4.

    PubMed  Google Scholar 

  76. Pneumaticos SG, Chatziioannou SN, Hipp JA, et al. Low back pain: prediction of short-term outcome of facet joint injection with bone scintigraphy. Radiology. 2006;238:693–8.

    PubMed  Google Scholar 

  77. •• Lehman VT, Murphy RC, Maus TP. 99 mTc-MDP SPECT/CT of the spine and sacrum at a multispecialty institution: clinical use, findings, and impact on patient management. Nucl Med Commun 2013;34:1097–106. A recent study that reviews the use of metabolic tracer imaging in a tertiary referral center. Discusses opportunities for use, utility in medical decision-making, and challenges in implementation.

  78. Pekindil G, Sarikaya A, Pekindil Y, et al. Lumbosacral transitional vertebral articulation: evaluation by planar and SPECT bone scintigraphy. Nucl Med Commun. 2004;25:29–37.

    CAS  PubMed  Google Scholar 

  79. Freiermuth D, Kretzschmar M, Bilecen D, et al. Correlation of 99mTc-DPD SPECT/CT scan findings and diagnostic blockades of lumbar medial branches in patients with unspecific low back pain in a randomized-controlled trial. Pain Med. 2015;16:1916–22.

    PubMed  Google Scholar 

  80. Lehman V, Murphy R, Kaufmann T, et al. Frequency of discordance between facet joint activity on technetium Tc99m methylene diphosphonate SPECT/CT and selection for percutaneous treatment at a large multispecialty institution. Am J Neuroradiol. 2014;35:609–14.

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Verdoorn JT, Lehman VT, Diehn FE, Maus TP. Increased 99mTc MDP activity in the costovertebral and costotransverse joints on SPECT-CT: is it predictive of associated back pain or response to percutaneous treatment? Diagn Interven Radiol. 2015;21:342–7.

    Google Scholar 

  82. Sumer J, Schmidt D, Ritt P, et al. SPECT/CT in patients with lower back pain after lumbar fusion surgery. Nucl Med Commun. 2013;34:964–70.

    PubMed  Google Scholar 

  83. Rager O, Schaller K, Payer M, et al. SPECT/CT in differentiation of pseudarthrosis from other causes of back pain in lumbar spinal fusion: report on 10 consecutive cases. Clin Nucl Med. 2012;37:339–43.

    PubMed  Google Scholar 

  84. Peters M, Willems P, Weijers R, et al. Pseudarthrosis after lumbar spinal fusion: the role of 18F-fluoride PET/CT. Eur J Nucl Med Mol Imaging. 2015;42:1891–8. doi:10.1007/s00259-015-3154-y.

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Peters MJM, Wierts R, Jutten EMC, et al. Evaluation of a short dynamic (18)F-fluoride PET/CT scanning method to assess bone metabolic activity in spinal orthopedics. Ann Nucl Med. 2015;29:799–809. doi:10.1007/s12149-015-1008-0.

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Willick SE, Kendall RW, Roberts ST, Morton K. An emerging imaging technology to assist in the localization of axial spine pain. PM&R. 2009;1:89–92.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. Evan Rivers.

Ethics declarations

Conflict of Interest

W. Evan Rivers, Varun Rimmalapudi, and Jeremy J. Heit declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the Topical Collection on Interventional Pain Management.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rivers, W.E., Rimmalapudi, V. & Heit, J.J. Progress in Advanced Imaging Techniques for the Lumbar Spine. Curr Phys Med Rehabil Rep 4, 87–98 (2016). https://doi.org/10.1007/s40141-016-0114-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40141-016-0114-9

Keywords

Navigation