Skip to main content

Advertisement

Log in

Dry Eye and Refractive Surgery Outcomes

  • Refractive Surgery: From Laser to Intraocular Lenses (C. Starr, Section Editor)
  • Published:
Current Ophthalmology Reports Aims and scope Submit manuscript

Abstract

The purpose of this study is to review effective diagnostic and management strategies for dry eye disease (DED) and technological advances in refractive surgery for improving patient satisfaction and surgical outcomes. In addition to clinical examination and previously used diagnostic tools for DED, newer devices can now allow for earlier detection by measuring surrogate markers for DED and meibomian gland dysfunction. These markers include lipid layer thickness, tear film breakup time, tear osmolarity, and matrix metalloproteinase-9 levels. There continues to also be evolution of newer corneal refractive procedures such as corneal inlays and small-incision lenticular extraction. DED affects millions worldwide and negatively affects vision quality and refractive surgery outcomes. It is critical to effectively diagnose and manage patients with DED, prior to undergoing refractive surgery. Advances in both DED management and surgical technology are making it easier to offer patients the refractive outcomes they desire.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. •• Vickers LA, Gupta PK. The future of dry eye treatment: a glance into the therapeutic pipeline. Ophthalmol Ther. 2015;4:69–78. This reference provides a framework for upcoming dry eye treatment in phase 2 and 3 clinical trials in the USA.

  2. Epidemiology Subcommittee DEWS Workshop. The epidemiology of dry eye disease: report of the Epidemiology Subcommittee of the International Dry Eye Workshop (2007). Ocular Surf. 2007;5(2):93–107.

    Article  Google Scholar 

  3. Vitale S, Goodman LA, Reed GF, Smith JA. Comparison of the NEI-VFQ and OSDI questionnaires in patients with Sjogren’s syndrome-related dry eye. Health Qual Life Outcomes. 2004;2:44.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Le Q, Zhou X, Ge L, Wu L, Hong J, Xu J. Impact of dry eye syndrome on vision-related quality of life in non-clinic- based general population. BMC Ophthalmol. 2012;12:22.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Schiffman RM, Walt JG, Jacobsen G, Doyle JJ, Lebovics G, Sumner W. Utility assessment among patients with dry eye disease. Ophthalmology. 2003;110(7):14121412.

    Article  Google Scholar 

  6. Chia EM, Mitchell P, Rochtchina E, Lee AJ, Maroun R, Wang JJ. Prevalence and associations of dry eye syndrome in an older population: the Blue Mountains Eye Study. Clin Exp Ophthalmol. 2003;31(3):229.

    Article  Google Scholar 

  7. Guo B, Lu P, Chen X, Zhang W, Chen R. Prevalence of dry eye disease in Mongolians at high altitude in China: the Henan eye study. Ophthalmic Epidemiol. 2010;17(4):234.

    Article  PubMed  Google Scholar 

  8. Galor A, Feuer W, Lee DJ, et al. Prevalence and risk factors of dry eye syndrome in a United States veterans affairs population. Am J Ophthalmol. 2011;152(3):377.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Uchino M, Nishiwaki Y, Michikawa T, et al. Prevalence and risk factors of dry eye disease in Japan: Koumi study. Ophthalmology. 2011;118(12):2361–7.

    Article  PubMed  Google Scholar 

  10. Lekhanont K, Rojanaporn D, Chuck RS, Vongthongsri A. Prevalence of dry eye in Bangkok, Thailand. Cornea. 2006;25(10):1162–7.

    Article  PubMed  Google Scholar 

  11. Viso E, Rodriguez-Ares MT, Gude F. Prevalence of and associated factors for dry eye in a Spanish adult population (the Salnes eye study). Ophthalmic Epidemiol. 2009;16(1):15.

    Article  PubMed  Google Scholar 

  12. Moss SE, Klein R, Klein BE. Prevalence of and risk factors for dry eye syndrome. Arch Ophthalmol. 2000;118(9):1264–8.

    Article  CAS  PubMed  Google Scholar 

  13. • Pauline AJ et al. Dry eye in the beaver dam offspring study: prevalence, risk factors, and health-related quality of life. Am J Ophthalmol 2014;157:799–806. The reference details the dry eye prevalence data for a paramount epidemiological study.

  14. Definition and Classification Subcommittee DEWS Workshop. The definition and classification of dry eye disease: report of the definition and classification subcommittee of the International Dry Eye Workshop (2007). Ocular Surf. 2007;5(2):75–92.

    Article  Google Scholar 

  15. Moss SE, Klein R, Klein BE. Long-term incidence of dry eye in an older population. Optom Vis Sci. 2008;85(8):668–74.

    Article  PubMed  Google Scholar 

  16. Moss SE, Klein R, Klein BE. Incidence of dry eye in an older population. Arch Ophthalmol. 2004;122(3):369–73.

    Article  PubMed  Google Scholar 

  17. Lemp MA, Crews LA, Bron AJ, et al. Distribution of aqueous-deficient and evaporative dry eye in a clinical-based patient cohort: a retrospective study. Cornea. 2012;31(5):472–8.

    Article  PubMed  Google Scholar 

  18. Uchino M, et al. Prevalence of dry eye disease and its risk factors in visual display terminal users: the Osaka study. Am J Ophthalmol. 2013;156:759–66.

    Article  PubMed  Google Scholar 

  19. Kaido M, et al. Advanced dry eye screening for visual display terminal workers using functional visual acuity measurement: the Moriguchi study. Br J Ophthalmol. 2015;99:1–5.

    Google Scholar 

  20. Kaido M, Uchino M, Yokoi N, et al. Dry-eye screening by using a functional visual acuity measurement system: the Osaka Study. Invest Ophthalmol Vis Sci. 2014;55:3275–81.

    Article  PubMed  Google Scholar 

  21. Raoof D, Pineda R. Dry eye after laser in situ keratomileusis. Semi Ophthalmol. 2014;29(5–6):358–62.

    Article  Google Scholar 

  22. Lindstorm R. Thought on cataract surgery: 2015. Rev Ophthal. 2015;15(10).

  23. • Denoyer A et al. Dry eye disease after refractive surgery: comparative outcomes of small incision lenticular extraction versus LASIK. Ophthalmology 2015;122:669–76. Newer refractive procedures, such as small incision lenticular extraction (SMILE), are showing promising results with regarding to minimizing dry eye disease post-procedure.

  24. Goto E, Yagi Y, Masumoto Y, Tsubota K. Impaired functional visual acuity of dry eye patients. Am J Ophthalmol. 2002;133:181–6.

    Article  PubMed  Google Scholar 

  25. Montés-Micó R. Role of the tear film in the optical quality of the human eye. J Cataract Refract Surg. 2007;33:1631–5.

    Article  PubMed  Google Scholar 

  26. •• Gupta PK. Cataract surgery in patients with meibomian gland dysfunction. Cataract Refract Surg Today. 2015;15(3):77–8. This reference provides the foundation of knowledge for the basis of evaluating and managing evaporative dry eye disease prior to cataract surgery. It provides an overview as well as effective strategies in optimizing cataract surgery outcomes.

  27. TearLab: Study Demonstrates Hyperosmolarity of the Ocular Surface May Impact Cataract Surgery Planning. http://globenewswire.com/news-release/2014/09/15/666136/10098662/en/Study-Demonstrates-Hyperosmolarity-of-the-Ocular-Surface-May-Impact-Cataract-Surgery-Planning.html#sthash.BhMdaOLp.dpuf. Accessed 14 September 2014.

  28. Luchs J, Buznego C, Trattler W. Incidence of blepharitis in patients scheduled for phacoemulsification. Presentation, American Society of Cataract and Refractive Surgery Annual Symposium and Congress. Boston. April 2010.

  29. Tutt R, Bradley A, Begley C, Thibos LN. Optical and visual impact of tear break-up in human eyes. Invest Ophthalmol Vis Sci. 2000;41:4117–23.

    CAS  PubMed  Google Scholar 

  30. Keynan Y, Finkelman Y, Lagace-Wiens P. The microbiology of endophthalmitis: global trends and a local perspective. Eur J Clin Microbiol Infect Dis. 2012;31(11):2879–86.

    Article  CAS  PubMed  Google Scholar 

  31. Lemley CA, Han DP. Endophthalmitis: a review of current evaluation and management. Retina. 2007;27:662–80.

    Article  PubMed  Google Scholar 

  32. Callegan MC, Engelbert M, Parke DW 2nd, et al. Bacterial endophthalmitis: epidemiology, therapeutics, and bacterium, and bacterium-host interactions. Clin Microbiol Rev. 2002;15:111.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Albietz JM, Lenton LN, McLennan SB. Chronic dry eye and regression after laser in situ keratomileusis for myopia. J Cataract Refract Surg. 2004;30:675–84.

    Article  PubMed  Google Scholar 

  34. Rieger G. The importance of the precorneal tear film for the quality of optical imaging. Br J Ophthalmol. 1992;76:157–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Rolando M, Iester M, Macrı A, Calabria G. Low spatial-contrast sensitivity in dry eyes. Cornea. 1998;17:376–9.

    Article  CAS  PubMed  Google Scholar 

  36. Huang F-C, Tseng S-H, Shih M-H, Chen FK. Effect of artificial tears on corneal surface regularity, contrast sensitivity, and glare disability in dry eyes. Ophthalmology. 2002;109:1934–40.

    Article  PubMed  Google Scholar 

  37. Benito A, et al. Objective optical assessment of tear-film quality dynamics in normal and mildly symptomatic dry eyes. J Cataract Refract Surg. 2011;37(8):1481–7.

    Article  PubMed  Google Scholar 

  38. Montés-Micó R, Cerviño A, Ferrer-Blasco T, García-Lázaro S, Madrid-Costa D. The tear film and the optical quality of the eye. Ocul Surf. 2010;8(4):185–92.

    Article  PubMed  Google Scholar 

  39. Khanal S, Tomlinson A, Esakowitz L, et al. Changes in corneal sensitivity and tear physiology after phacoemulsification. Ophthalmic Physiol Opt. 2008;28(2):127–34.

    Article  PubMed  Google Scholar 

  40. Foulks GN, et al. Clinical guidelines for management of dry eye associated with Sjogren disease. Ocular Surf. 2015;13(2):118–32.

    Article  Google Scholar 

  41. Thibos LN, Hong X. Clinical applications of the Shack-Hartmann aberrometer. Optom Vis Sci. 1999;76:817–25.

    Article  CAS  PubMed  Google Scholar 

  42. Montes-Mico R, Alio JL, Charman WN. Dynamic changes in the tear film in dry eyes. Invest Ophthalmol Vis Sci. 2005;46:1615–9.

    Article  PubMed  Google Scholar 

  43. Li KY, Yoon G. Changes in aberrations and retinal image quality due to tear film dynamics. Opt Express. 2006;14:12552–9.

    Article  PubMed  Google Scholar 

  44. Koh S, Maeda N, Hirohara Y, Mihashi T, Bessho K, Hori Y, Inoue T, Watanabe H, Fujikado T, Tano Y. Serial measurements of higher order aberrations after blinking inpatients with dry eye. Invest Ophthalmol Vis Sci. 2008;49:133–8.

    Article  PubMed  Google Scholar 

  45. Santamaria J, Artal P, Bescos J. Determination of the point spread function of human eyes using a hybrid optical-digital method. J Opt Soc Am A. 1987;4:1109–14.

    Article  CAS  PubMed  Google Scholar 

  46. Artal P. Calculations of two-dimensional foveal retinal images in real eyes. J Opt Soc Am A. 1990;7:1374–81.

    Article  CAS  PubMed  Google Scholar 

  47. Artal P. Understanding aberrations by using double-pass techniques. J Refract Surg. 2000;16:S560–2.

    CAS  PubMed  Google Scholar 

  48. Vilaseca M, Arjona M, Pujol J, Issolio L, Güell JL. Optical quality of foldable monofocal intraocular lenses before and after injection; comparative evaluation using a double-pass system. J Cataract Refract Surg. 2009;35:1415–23.

    Article  PubMed  Google Scholar 

  49. Nanavaty MA, Stanford MR, Sharma R, Dhital A, Spalton DJ, Marshall J. Use of the double-pass technique to quantify ocular scatter in patients with uveitis: a pilot study. Ophthalmologica. 2011;225:61–6.

    Article  PubMed  Google Scholar 

  50. Díaz-Doutón F, Benito A, Pujol J, Arjona M, Güell JL, Artal P. Comparison of the retinal image quality with a Hartmann-Shack wavefront sensor and a double-pass instrument. Invest Ophthalmol Vis Sci. 2006;47:1710–6.

    Article  PubMed  Google Scholar 

  51. Shen M, Li J, Wang J, Ma H, Cai C, Tao A, Yuan Y, Lu F. Upper and lower tear menisci in the diagnosis of dry eye. Invest Ophthalmol Vis Sci. 2009;50:2722–6.

    Article  PubMed  Google Scholar 

  52. Donnenfeld ED et al. Effect of oral re-esterified omega-3 nutritional supplementation on dry-eye disease: double-masked randomized placebo-controlled study. ASCRS ASOA Symposium & Congress. California: San Diego; 2015. p. 19–23.

  53. • Aragona P et al. Matrix metalloproteinase 9 and transglutaminase 2 expression at the ocular surface in patients with different forms of dry eye disease. Ophthalmology. 2015;122(1):62–71. This references provides an understanding of a few of the surrogate markers used to assess dry eye disease.

  54. Shetty R, et al. Elevated expression of matrix metalloproteinase-9 and inflammatory cytokines in keratoconus patients is inhibited by cyclosporine A. Invest Ophthalmol Vis Sci. 2015;56(2):738–50.

    Article  CAS  PubMed  Google Scholar 

  55. Grenier JV. Long-term (3 year) effects of a single thermal pulsation system treatment on meibomian gland function and dry eye symptoms. Eye Contact Lens. 2015.

  56. Thode AR, Latkany RA. Current and emerging therapeutic strategies for the treatment of meibomian gland dysfunction (MGD). Drugs. 2015;75(11):1177–85.

    Article  CAS  PubMed  Google Scholar 

  57. Finis D, Hayajneh J, König C, Borrelli M, Schrader S, Geerling G. Evaluation of an automated thermodynamic treatment (LipiFlow®) system for meibomian gland dysfunction: a prospective, randomized, observer-masked trial. Ocul Surf. 2014;12(2):146–54.

    Article  PubMed  Google Scholar 

  58. Lane SS, et al. A New system, the LipiFlow, for the treatment of meibomian gland dysfunction. Cornea. 2012;31(4):396–404.

    Article  PubMed  Google Scholar 

  59. •• Vora GK, Gupta PK. Intense pulsed light therapy for the treatment of evaporative dry eye disease. Curr Opin Ophthalmol. 2015; 26(4):314–8. This reference highlights a new, innovative treatment for evaporative dry eye disease.

  60. Sheppard JD, Torkildsen GL, Lonsdale JD, et al. Lifitegrast ophthalmic solution 5.0 % for treatment of dry eye disease: results of the OPUS-1 phase 3 study. Ophthalmology. 2014;121(2):475–83.

    Article  PubMed  Google Scholar 

  61. Yandrapu S, Kompella UB. Development of sustained-release microspheres for the delivery of SAR 1118, an LFA-1 antagonist intended for the treatment of vascular complications of the eye. J Ocul Pharmacol Ther. 2013;29(2):236–48.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Paskowitz DM, Nguyen QD, Gehlbach P, et al. Safety, tolerability, and bioavailability of topical SAR 1118, a novel antagonist of lymphocyte function-associated antigen-1: a phase 1b study. Eye (Lond). 2012;26(7):944–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. http://www.prnewswire.com/news-releases/shirereports-top-line-results-on-opus-2-a-phase-3-studyinvestigating-the-use-of-lifitegrast-50-ophthalmicsolution-in-adults-with-dry-eye-disease-234660341.html.

  64. http://www.medscape.com/viewarticle/843968.

  65. Kashima T, Itakura H, Akiyama H, Kishi S. Rebamipide ophthalmic suspension for the treatment of dry eye syndrome: a critical appraisal. Clin Ophthalmol. 2014;8:1003–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Kinoshita S, Awamura S, Oshiden K, et al. Rebamipide (OPC-12759) in the treatment of dry eye: a randomized, double-masked, multicenter, placebo-controlled phase II study. Ophthalmology. 2012;119(12):2471–8.

    Article  PubMed  Google Scholar 

  67. Koh S, Inoue Y, Sugmimoto T, et al. Effect of rebamipide ophthalmic suspension on optical quality in the short break-up time type of dry eye. Cornea. 2013;32(9):1219–23.

    Article  PubMed  Google Scholar 

  68. Igarashi A, Kamiya K, Kobashi H, Shimizu K. Effect of rebamipide ophthalmic suspension on intraocular light scattering for dry eye after corneal refractive surgery. Cornea. 2015;34(8):895–900.

    Article  PubMed  Google Scholar 

  69. Kinoshita S, Oshiden K, Awamura S, et al. A randomized, multicenter phase 3 study comparing 2% rebamipide (OPC-12759) with 0.1% sodium hyaluronate in the treatment of dry eye. Ophthalmology. 2013;120(6):1158–65.

    Article  PubMed  Google Scholar 

  70. Takeji Y, Urashima H, Aoki A, Shinohara H. Rebamipide increases the mucin-like glycoprotein production in corneal epithelial cells. J Ocul Pharmacol Ther. 2012;28(3):259–63.

    Article  CAS  PubMed  Google Scholar 

  71. Urashima H, Okamoto T, Takeji Y, et al. Rebamipide increases the amount of mucin-like substances on the conjunctiva and cornea in the N-acetylcysteine-treated in vivo model. Cornea. 2004;23(6):613–9.

    Article  PubMed  Google Scholar 

  72. Meerovitch K, Torkildsen G, Lonsdale J, et al. Safety and efficacy of MIM-D3 ophthalmic solutions in a randomized, placebo-controlled Phase 2 clinical trial in patients with dry eye. Clin Ophthalmol. 2013;7:1275–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Jain P, Li R, Lama T, et al. An NGF mimetic, MIM-D3, stimulates conjunctival cell glycoconjugate secretion and demonstrates therapeutic efficacy in a rat model of dry eye. Exp Eye Res. 2011;93(4):503–12.

    Article  CAS  PubMed  Google Scholar 

  74. https://clinicaltrials.gov/ct2/show/NCT01960010.

  75. http://www.mimetogen.com/clinical-development.html.

  76. http://www.mimetogen.com/news-publications/press-releases/51-mimetogen-pharmaceuticalsannounces-topline-results-of-its-second-clinicalstudy-with-mim-d3-for-the-treatment-of-dryeye-syndrome.html.

  77. http://investors.ocutx.com/phoenix.zhtml?c=253650&p=irol-newsArticle&ID=2032479.

  78. http://www.ocutx.com/pipeline/dexamethasonepunctum-plug.

  79. http://investors.ocutx.com/phoenix.zhtml?c=253650&p=irol-newsArticle&ID=2009132.

  80. Hou J, Townson SA, Kovalchin JT, et al. Design of a superior cytokine antagonist for topical ophthalmic use. Proc Natl Acad Sci. 2013;110(10):3913–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Goldstein MH, Tubridy KL, Agahigian J, et al. A phase 2 exploratory study of a novel interleukin-1 receptor inhibitor (EBI-005) in the treatment of moderate-to-severe allergic conjunctivitis. Eye Contact Lens. 2015;41(3):145–55.

    Article  PubMed  Google Scholar 

  82. Keating GM. Diquafosol ophthalmic solution 3%: a review of its use in dry eye. Drugs. 2015;75(8):911–22.

    Article  CAS  PubMed  Google Scholar 

  83. https://clinicaltrials.gov/ct2/show/NCT00831662.

  84. Matsumoto Y, Ohashi Y, Watanabe H, et al. Efficacy and safety of diquafosol ophthalmic solution in patients with dry eye syndrome: a Japanese phase 2 clinical trial. Ophthalmology. 2012;119(10):1954–60.

    Article  PubMed  Google Scholar 

  85. Takamura E, Tsubota K, Watanabe H, et al. A randomised, double-masked comparison study of diquafosol versus sodium hyaluronate ophthalmic solutions in dry eye patients. Br J Ophthalmol. 2012;96(10):1310–5.

    Article  PubMed  PubMed Central  Google Scholar 

  86. https://clinicaltrials.gov/ct2/show/NCT01843894.

  87. http://www.businesswire.com/news/home/20141109005056/en/R-Tech-Ueno-Completion-Phase-IIIClinical-Study-.VYOo6mAXN6k.

  88. Schopf L, Enlow E, Popov A, et al. Ocular pharmacokinetics of a novel loteprednol etabonate 0.4% ophthalmic formulation. Ophthalmol Ther. 2014;. doi:10.1007/s40123-014-0021-z.

    PubMed  PubMed Central  Google Scholar 

  89. http://www.businesswire.com/news/home/20150401005554/en/Kala-Pharmaceuticals-Announces-Positive-Results-Phase-2-.VYOvQWAXN6k.

  90. Lai SK, O’Hanlon DE, Harrold S, et al. Rapid transport of large polymeric nanoparticles in fresh undiluted human mucus. Proc Natl Acad Sci. 2007;104(5):1482–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. https://clinicaltrials.gov/ct2/show/NCT02313454.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Preeya K. Gupta.

Ethics declarations

Disclosures

Ashiyana Nariani declares no conflict of interest. Preeya K. Gupta is a consultant to Allergan, AMO, BioTissue, Novabay, Shire, Tear Science, and Alcon.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Funding

There is no funding support for this research.

Additional information

This article is part of the Topical Collection on Refractive Surgery: From Laser to Intraocular Lenses.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nariani, A., Gupta, P.K. Dry Eye and Refractive Surgery Outcomes. Curr Ophthalmol Rep 4, 8–14 (2016). https://doi.org/10.1007/s40135-016-0087-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40135-016-0087-y

Keywords

Navigation