Skip to main content
Log in

Advances in Mild Traumatic Brain Injury Imaging Biomarkers

  • Neuroimaging (B Soares and S Dehkharghani, Section Editors)
  • Published:
Current Radiology Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Imaging diagnosis and prognostication of patients with mild traumatic brain injury (mTBI) remains elusive. The goal of this review is to highlight recent advancements in MR imaging biomarkers of mTBI.

Recent Findings

Susceptibility-weighted imaging and quantitative susceptibility mapping are more sensitive for microhemorrhages than conventional T2* sequences and may allow semi-automated detection of these lesions. Alterations in fractional anisotropy in mTBI have been well described; however, recent data suggest a time-dependent directionality to these changes. Functional MRI studies have recently reported abnormal connectivity following mTBI. Recent advances in whole-brain MR spectroscopy have allowed the characterization of global changes in TBI. However, variability in acquisition and analysis has limited inferences and generalizability of results.

Summary

While use of these techniques has advanced our understanding of mTBI, standardization in study design is needed. A large, multi-center, standardized study using these techniques could allow the translation of the methods from the research group level to the clinical individual level.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

BOLD:

Blood-oxygen level dependent

DMN:

Default mode network

DKI:

Diffusion kurtosis imaging

DTI:

Diffusion tensor imaging

fMRI:

Functional MRI

GCS:

Glasgow coma scale

GRE:

Gradient echo

MRS:

Magnetic resonance spectroscopy

MD:

Mean diffusivity

MK:

Mean kurtosis

mTBI:

Mild traumatic brain Injury

PCA:

Principal component analysis

QSM:

Quantitative susceptibility mapping

rs-fMRI:

Resting-state fMRI

SWI:

Susceptibility-weighted imaging

TAI:

Traumatic axonal injury

TBI:

Traumatic brain injury

References

  1. Centers for Disease Control and Prevention. 2015. Report to congress on traumatic brain injury in the United States: epidemiology and rehabilitation. National Center for Injury Prevention and Control; Division of Unintentional Injury Prevention. Atlanta, GA.

  2. Teasdale G, Maas A, Lecky F, Manley G, Stocchetti N, Murray G. The glasgow coma scale at 40 years: standing the test of time. Lancet Neurol. 2014;13:844–54. doi:10.1016/s1474-4422(14)70120-6.

    Article  PubMed  Google Scholar 

  3. Nolin P, Heroux L. Relations among sociodemographic, neurologic, clinical, and neuropsychologic variables, and vocational status following mild traumatic brain injury. J Head Trauma Rehabil. 2006;21:514–26. doi:10.1097/00001199-200611000-00006.

    Article  PubMed  Google Scholar 

  4. Wintermark M, Sanelli P, Anzai Y, Tsiouris A, Whitlow C. Imaging evidence and recommendations for traumatic brain injury: conventional neuroimaging techniques. J Am Coll Radiol. 2015;12:e1–14. doi:10.1016/j.jacr.2014.10.014.

    Article  PubMed  Google Scholar 

  5. Yuh E, Mukherjee P, Lingsma H, et al. Magnetic resonance imaging improves 3-month outcome prediction in mild traumatic brain injury. Ann Neurol. 2012;73:224–35. doi:10.1002/ana.23783.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Manolakaki D, Velmahos G, Spaniolas K, de Moya M, Alam H. Early magnetic resonance imaging is unnecessary in patients with traumatic brain injury. J Trauma. 2009;66:1008–14. doi:10.1097/ta.0b013e31819adba2.

    Article  PubMed  Google Scholar 

  7. Strauss S, Hulkower M, Gulko E, Zampolin R, Gutman D, Chitkara M, Zughaft B, Lipton M. Current clinical applications and future potential of diffusion tensor imaging in traumatic brain injury. Top Magn Reson Imaging. 2015;24(6):353–62. doi:10.1097/rmr.0000000000000071.

    Article  PubMed  Google Scholar 

  8. Hulkower MB, Poliak DB, Rosenbaum SB, Zimmerman ME, Lipton ML. A decade of DTI in traumatic brain injury: 10 years and 100 articles later. Am J Neuroradiol. 2013;34:2064–74. doi:10.3174/ajnr.a3395.

    Article  CAS  PubMed  Google Scholar 

  9. McLendon L, Kralik S, Grayson P, Golomb M. The controversial second impact syndrome: a review of the literature. Pediatr Neurol. 2016;62:9–17. doi:10.1016/j.pediatrneurol.2016.03.009.

    Article  PubMed  Google Scholar 

  10. Hammoud DA, Wasserman BA. Diffuse axonal injuries: pathophysiology and imaging. Neuroimaging Clin N Am. 2002;12:205–16. doi:10.1016/s1052-5149(02)00011-4.

    Article  PubMed  Google Scholar 

  11. Wu X, Kirov I, Gonen O, Ge Y, Grossman RI, Lui YW. MR imaging applications in mild traumatic brain injury: an imaging update. Radiology. 2016;279:693–707. doi:10.1148/radiol.16142535.

    Article  PubMed  Google Scholar 

  12. Currie S, Saleem N, Straiton J, Macmullen-Price J, Warren D, Craven I. Imaging assessment of traumatic brain injury. Postgrad Med J. 2015;92:41–50. doi:10.1136/postgradmedj-2014-133211.

    Article  PubMed  Google Scholar 

  13. Tong K, Ashwal S, Obenaus A, Nickerson J, Kido D, Haacke E. Susceptibility-weighted MR Imaging: a review of clinical applications in children. Am J Neuroradiol. 2008;29:9–17. doi:10.3174/ajnr.a0786.

    Article  CAS  PubMed  Google Scholar 

  14. Park J, Park S, Kang S, Nam T, Min B, Hwang S. Detection of traumatic cerebral microbleeds by susceptibility-weighted image of MRI. J Korean Neurosurg Soc. 2009;46:365–9. doi:10.3340/jkns.2009.46.4.365.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Fakhran S, Yaeger K, Alhilali L. Symptomatic white matter changes in mild traumatic brain injury resemble pathologic features of early Alzheimer dementia. Radiology. 2013;269:249–57. doi:10.1148/radiol.13122343.

    Article  PubMed  Google Scholar 

  16. Nisenbaum EJ, Novikov DS, Lui YW. The presence and role of iron in mild traumatic brain injury: an imaging perspective. J Neurotrauma. 2014;31:301–7. doi:10.1089/neu.2013.3102.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Haacke E, Liu S, Buch S, Zheng W, Wu D, Ye Y. Quantitative susceptibility mapping: current status and future directions. Magn Reson Imaging. 2015;33:1–25. doi:10.1016/j.mri.2014.09.004.

    Article  PubMed  Google Scholar 

  18. Liu J, Xia S, Hanks R, Wiseman N, Peng C, Zhou S, Haacke E, Kou Z. Susceptibility weighted imaging and mapping of micro-hemorrhages and major deep veins after traumatic brain injury. J Neurotrauma. 2016;33:10–21. doi:10.1089/neu.2014.3856.

    Article  PubMed  Google Scholar 

  19. Lipton ML, Gulko E, Zimmerman ME, Friedman BW, Kim M, Gellella E, Gold R, Shifteh K, Ardekani BA, Branch CA. Diffusion-tensor imaging implicates prefrontal axonal injury in executive function impairment following very mild traumatic brain injury. Radiology. 2009;252:816–24. doi:10.1148/radiol.2523081584.

    Article  PubMed  Google Scholar 

  20. Bodanapally U, Sours C, Zhuo J, Shanmuganathan K. Imaging of traumatic brain injury. Radiol Clin N Am. 2015;53:695–715. doi:10.1016/j.rcl.2015.02.011.

    Article  PubMed  Google Scholar 

  21. Stokum JA, Sours C, Zhuo J, Kane R, Shanmuganathan K, Gullapalli RP. A longitudinal evaluation of diffusion kurtosis imaging in patients with mild traumatic brain injury. Brain Inj. 2014;29(1):47–57. doi:10.3109/02699052.2014.947628.

    Article  PubMed  Google Scholar 

  22. Augustin M, Bammer R, Simbrunner J, Stollberger R, Hartung HP, Fazekas F. Diffusion-weighted imaging of patients with subacute cerebral ischemia: comparison with conventional and contrast-enhanced mr imaging. Am J Neuroradiol. 2000;21:1596–602.

    CAS  PubMed  Google Scholar 

  23. Bazarian J, Zhong J, Blyth B, Zhu T, Kavcic V, Peterson D. Diffusion tensor imaging detects clinically important axonal damage after mild traumatic brain injury: a pilot study. J Neurotrauma. 2007;24:1447–59. doi:10.1089/neu.2007.0241.

    Article  PubMed  Google Scholar 

  24. Chu Z, Wilde E, Hunter J, McCauley S, Bigler E, Troyanskaya M, Yallampalli R, Chia J, Levin H. Voxel-based analysis of diffusion tensor imaging in mild traumatic brain injury in adolescents. Am J Neuroradiol. 2009;31:340–6. doi:10.3174/ajnr.a1806.

    Article  PubMed  Google Scholar 

  25. Inglese M, Makani S, Johnson G, Cohen B, Silver J, Gonen O, Grossman R. Diffuse axonal injury in mild traumatic brain injury: a diffusion tensor imaging study. J Neurosurg. 2005;103:298–303. doi:10.3171/jns.2005.103.2.0298.

    Article  PubMed  Google Scholar 

  26. Lo C, Shifteh K, Gold T, Bello J, Lipton M. Diffusion tensor imaging abnormalities in patients with mild traumatic brain injury and neurocognitive impairment. J Comput Assist Tomogr. 2009;33:293–7. doi:10.1097/rct.0b013e31817579d1.

    Article  PubMed  Google Scholar 

  27. Mayer A, Ling J, Mannell M, Gasparovic C, Phillips J, Doezema D, Reichard R, Yeo R. A prospective diffusion tensor imaging study in mild traumatic brain injury. Neurology. 2010;74:643–50. doi:10.1212/wnl.0b013e3181d0ccdd.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Mayer A, Mannell M, Ling J, Gasparovic C, Yeo R. Functional connectivity in mild traumatic brain injury. Hum Brain Mapp. 2011;32:1825–35. doi:10.1002/hbm.21151.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Messé A, Caplain S, Paradot G, et al. Diffusion tensor imaging and white matter lesions at the subacute stage in mild traumatic brain injury with persistent neurobehavioral impairment. Hum Brain Mapp. 2010;32:999–1011. doi:10.1002/hbm.21092.

    Article  PubMed  Google Scholar 

  30. Miles L, Grossman R, Johnson G, Babb J, Diller L, Inglese M. Short-term DTI predictors of cognitive dysfunction in mild traumatic brain injury. Brain Inj. 2008;22:115–22. doi:10.1080/02699050801888816.

    Article  PubMed  Google Scholar 

  31. Veeramuthu V, Narayanan V, Kuo T, Delano-Wood L, Chinna K, Bondi M, Waran V, Ganesan D, Ramli N. Diffusion tensor imaging parameters in mild traumatic brain injury and its correlation with early neuropsychological impairment: a longitudinal study. J Neurotrauma. 2015;32:1497–509. doi:10.1089/neu.2014.3750.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Wilde E, McCauley S, Hunter J, et al. Diffusion tensor imaging of acute mild traumatic brain injury in adolescents. Neurology. 2008;70:948–55. doi:10.1212/01.wnl.0000305961.68029.54.

    Article  CAS  PubMed  Google Scholar 

  33. Wu T, Wilde E, Bigler E, et al. Evaluating the relationship between memory functioning and cingulum bundles in acute mild traumatic brain injury using diffusion tensor imaging. J Neurotrauma. 2010;27:303–7. doi:10.1089/neu.2009.1110.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Yallampalli R, Wilde E, Bigler E, McCauley S, Hanten G, Troyanskaya M, Hunter J, Chu Z, Li X, Levin H. Acute white matter differences in the fornix following mild traumatic brain injury using diffusion tensor imaging. J Neuroimaging. 2010;23:224–7. doi:10.1111/j.1552-6569.2010.00537.x.

    Article  PubMed  Google Scholar 

  35. Grossman E, Ge Y, Jensen J, Babb J, Miles L, Reaume J, Silver J, Grossman R, Inglese M. Thalamus and cognitive impairment in mild traumatic brain injury: a diffusional kurtosis imaging study. J Neurotrauma. 2012;29:2318–27. doi:10.1089/neu.2011.1763.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Lange R, Panenka W, Shewchuk J, Heran M, Brubacher J, Bioux S, Eckbo R, Shenton M, Iverson G. Diffusion tensor imaging findings and postconcussion symptom reporting six weeks following mild traumatic brain injury. Arch Clin Neuropsychol. 2014;30:7–25. doi:10.1093/arclin/acu060.

    Article  PubMed  Google Scholar 

  37. MacDonald C, Johnson A, Cooper D, et al. Detection of blast-related traumatic brain injury in U.S. military personnel. N Engl J Med. 2011;364:2091–100. doi:10.1056/nejmoa1008069.

    Article  CAS  Google Scholar 

  38. Sasaki T, Pasternak O, Mayinger M, et al. Hockey Concussion education project, part 3. white matter microstructure in ice hockey players with a history of concussion: a diffusion tensor imaging study. J Neurosurg. 2014;120:882–90. doi:10.3171/2013.12.jns132092.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Smits M, Houston G, Dippel D, Wielopolski P, Vernooij M, Koudstaal P, Hunink M, van der Lugt A. Microstructural brain injury in post-concussion syndrome after minor head injury. Neuroradiology. 2010;53:553–63. doi:10.1007/s00234-010-0774-6.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Dean P, Sato J, Vieira G, McNamara A, Sterr A. Long-term structural changes after mTBI and their relation to post-concussion symptoms. Brain Inj. 2015;29:1211–8. doi:10.3109/02699052.2015.1035334.

    Article  Google Scholar 

  41. Geary E, Kraus M, Pliskin N, Little D. Verbal learning differences in chronic mild traumatic brain injury. J Int Neuropsychol Soc. 2010;16:506–16. doi:10.1017/s135561771000010x.

    Article  PubMed  Google Scholar 

  42. Lipton M, Gellella E, Lo C, Gold T, Ardekani B, Shifteh K, Bello J, Branch C. Multifocal white matter ultrastructural abnormalities in mild traumatic brain injury with cognitive disability: a voxel-wise analysis of diffusion tensor imaging. J Neurotrauma. 2008;25:1335–42. doi:10.1089/neu.2008.0547.

    Article  PubMed  Google Scholar 

  43. Maruta J, Suh M, Niogi S, Mukherjee P, Ghajar J. Visual tracking synchronization as a metric for concussion screening. J Head Trauma Rehabil. 2010;25:293–305. doi:10.1097/htr.0b013e3181e67936.

    Article  PubMed  Google Scholar 

  44. Niogi S, Mukherjee P, Ghajar J, et al. Extent of microstructural white matter injury in postconcussive syndrome correlates with impaired cognitive reaction time: a 3T diffusion tensor imaging study of mild traumatic brain injury. Am J Neuroradiol. 2008;29:967–73. doi:10.3174/ajnr.a0970.

    Article  CAS  PubMed  Google Scholar 

  45. Niogi S, Mukherjee P, Ghajar J, Johnson C, Kolster R, Lee H, Suh M, Zimmerman R, Manley G, McCandliss B. Structural dissociation of attentional control and memory in adults with and without mild traumatic brain injury. Brain. 2008;131:3209–21. doi:10.1093/brain/awn247.

    Article  PubMed  Google Scholar 

  46. Lancaster M, Olson DV, McCrea MA, Nelson LD, LaRoche AA, Muftuler LT. Acute white matter changes following sport-related concussion: a serial diffusion tensor and diffusion kurtosis tensor imaging study. Hum Brain Mapp. 2016;37:3821–34. doi:10.1002/hbm.23278.

    Article  PubMed  Google Scholar 

  47. Grossman EJ, Ge Y, Jensen JH, Babb JS, Miles L, Reaume J, Silver JM, Grossman RI, Inglese M. Thalamus and cognitive impairment in mild traumatic brain injury: a diffusional kurtosis imaging study. J Neurotrauma. 2012;29:2318–27. doi:10.1089/neu.2011.1763.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Delouche A, Attye A, Heck O, Grand S, Kastler A, Lamalle L, Renard F, Krainik A. Diffusion MRI: pitfalls, literature review and future directions of research in mild traumatic brain injury. Eur J Radiol. 2016;85:25–30. doi:10.1016/j.ejrad.2015.11.004.

    Article  PubMed  Google Scholar 

  49. • Watts R, Thomas A, Filippi CG, Nickerson JP, Freeman K. Potholes and Molehills bias in the diagnostic performance of diffusion-tensor imaging in concussion. Radiology. 2014;272:217–223. doi:10.1148/radiol.14131856. Statistical analysis demonstrating that DTI datasets may have inherent bias due to the nonindependence of reference and comparison populations.

  50. Raichle ME, Snyder AZ. A default mode of brain function: a brief history of an evolving idea. NeuroImage. 2007;37:1083–90. doi:10.1016/j.neuroimage.2007.02.041.

    Article  PubMed  Google Scholar 

  51. Hayes JP, Bigler ED, Verfaellie M. Traumatic brain injury as a disorder of brain connectivity. J Int Neuropsychol Soc. 2016;22:120–37. doi:10.1017/S1355617715000740.

    Article  PubMed  Google Scholar 

  52. Sharp DJ, Scott G, Leech R. Network dysfunction after traumatic brain injury. Nat Rev Neurol. 2014;10:156–66. doi:10.1038/nrneurol.2014.15.

    Article  PubMed  Google Scholar 

  53. Zhou Y, Milham MP, Lui YW, Miles L, Reaume J, Sodickson DK, Grossman RI, Ge Y. Default-mode network disruption in mild traumatic brain injury. Radiology. 2012;265:882–92. doi:10.1148/radiol.12120748.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Sharp DJ, Beckmann CF, Greenwood R, Kinnunen KM, Bonnelle V, De Boissezon X, Powell JH, Counsell SJ, Patel MC, Leech R. Default mode network functional and structural connectivity after traumatic brain injury. Brain. 2011;134:2233–47. doi:10.1093/brain/awr175.

    Article  PubMed  Google Scholar 

  55. Pandit A, Expert P, Lambiotte R, Bonnelle V, Leech R, Turkheimer F, Sharp D. Traumatic brain injury impairs small-world topology. Neurology. 2013;80:1826–33. doi:10.1212/wnl.0b013e3182929f38.

    Article  PubMed  PubMed Central  Google Scholar 

  56. •• Eierud C, Craddock RC, Fletcher S, Aulakh M, King-Casas B, Kuehl D, LaConte SM. Neuroimaging after mild traumatic brain injury: review and meta-analysis. NeuroImage. 2014;4:283–294. doi:10.1016/j.nicl.2013.12.009. fMRI meta-analysis demonstrating a frontal vulnerability in mTBI with decreased activity in the prefrontal cortex and increased activity in the posterior brain regions.

  57. •• Aoki Y, Inokuchi R. A voxel-based meta-analysis of diffusion tensor imaging in mild traumatic brain injury. Neurosci Biobehav Rev. 2016;66:119–126. doi:10.1016/j.neubiorev.2016.04.021. Employed a voxel-based meta-analysis and determined abnormal rs-fMRI connectivity between the thalamus and prefrontal cortex.

  58. Bonnelle V, Leech R, Kinnunen K, Ham T, Beckmann C, De Boissezon X, Greenwood R, Sharp D. Default mode network connectivity predicts sustained attention deficits after traumatic brain injury. J Neurosci. 2011;31:13442–51. doi:10.1523/jneurosci.1163-11.2011.

    Article  CAS  PubMed  Google Scholar 

  59. Zhang J, Puvenna V, Janigro D: Biomarkers of traumatic brain injury and their relationship to pathology. In: Laskowitz D, Grant G, editors. Translational research in traumatic brain injury. Boca Raton: CRC Press/Taylor and Francis Group; 2016. Chapter 12.

  60. • Eklund A, Nichols T, Knutsson H. Cluster failure: why fMRI inferences for spatial extent have inflated false-positive rates. PNAS. 2016;113:7900–7905. doi:10.1073/pnas.1602413113. Mass empirical analysis of fMRI data demonstrating that common statistical methods over-inflate statistical significance.

  61. •• Maudsley AA, Govind V, Levin B, Saigal G, Harris L, Sheriff S. Distributions of magnetic resonance diffusion and spectroscopy measures with traumatic brain injury. J Neurotrauma 2015;32:1056–1063. doi:10.1089/neu.2014.3505. Investigation utilizing novel whole brain MR spectroscopy to characterize global metabolic changes following TBI.

  62. Xiong KL, Zhu YS, Zhang Wg. Diffusion tensor imaging and magnetic resonance spectroscopy in traumatic brain injury: a review of recent literature. Brain Imag Behav. 2014;8:487–96. doi:10.1007/s11682-013-9288-2.

    Article  Google Scholar 

  63. Smith SM, Jenkinson M, Johansen-Berg H, Rueckert D, Nichols TE, Mackay CE, Watkins KE, Ciccarelli O, Cader MZ, Matthews PM, Behrens T. Tract-based spatial statistics: voxelwise analysis of multi-subject diffusion data. NeuroImage. 2006;31:1487–505. doi:10.1016/j.neuroimage.2006.02.024.

    Article  PubMed  Google Scholar 

  64. • Ghodadra A, Alhilali L, Fakhran S. Principal component analysis of diffusion tensor images to determine white matter injury patterns underlying postconcussive headache. Am J Neuroradiol. 2015;37:274–278. doi:10.3174/ajnr.a4505. Study utilizing principal component analysis to identify fractional anisotropy patterns that correlate with mTBI patient symptoms.

  65. • Meltzer CC, Sze G, Rommelfanger KS, Kinlaw K, Banja JD, Wolpe PR. Guidelines for the ethical use of neuroimages in medical testimony: report of a multidisciplinary consensus conference. Am J Neuroradiol. 2013;35:632–637. doi:10.3174/ajnr.a3711. Recommendations for the ethical use of medical images in clinical and legal situations.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jason W. Allen.

Ethics declarations

Conflict of interest

Ronak N. Shah and Jason W. Allen declare no potential conflicts of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the Topical Collection on Neuroimaging.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shah, R.N., Allen, J.W. Advances in Mild Traumatic Brain Injury Imaging Biomarkers. Curr Radiol Rep 5, 13 (2017). https://doi.org/10.1007/s40134-017-0210-3

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s40134-017-0210-3

Keywords

Navigation