Skip to main content

Advertisement

Log in

Magnetoencephalography (MEG) Slow-Wave Imaging for Diagnosing Non-acute Mild Traumatic Brain Injury

  • Imaging of CNS Trauma (P Mukherjee, Section Editor)
  • Published:
Current Radiology Reports Aims and scope Submit manuscript

Abstract

Mild traumatic brain injury (mTBI) is a leading cause of sustained impairment in military and civilian populations. However, mTBI is difficult to detect using conventional MRI or CT, even in patients with persistent postconcussive symptoms (PCS). Injured brain tissues in mTBI patients generate abnormal slow-waves (1–4 Hz) that can be measured by resting-state magnetoencephalography (MEG). We describe a voxel-based MEG slow-wave imaging approach for detecting abnormality in mTBI patients with persistent PCS on a single-subject basis (Huang et al., Neuroimage Clin 5:109–119, 2014). A normative database from 79 healthy control subjects was established for all brain voxels. High-resolution MEG source magnitude images were obtained by the Fast-VESTAL method (Huang et al., Neuroimage 84:585–604, 2014). In 84 mTBI patients (36 from blasts, and 48 from non-blast causes), this method detected abnormalities with positive detection rates of 84, 86, and 83 % for the combined (blast plus non-blast), blast, and non-blast mTBI groups, respectively, with no false-positives in the control subjects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: •• Of major importance

  1. Thurman DJ, Alverson C, Dunn KA, Guerrero J, Sniezek JE. Traumatic brain injury in the United States: a public health perspective. J Head Trauma Rehabil. 1999;14:602–15.

    Article  CAS  PubMed  Google Scholar 

  2. Centers for Disease Control and Prevention and National Center for Injury Prevention and Control, Report to Congress on mild traumatic brain injury in the United States: steps to prevent a serious public health problem. Atlanta: Centers for Disease Control and Prevention; 2003.

  3. MacGregor AJ, Dougherty AL, Galarneau MR. Injury-specific correlates of combat-related traumatic brain injury in operation iraqi freedom. J Head Trauma Rehabil. 2010;26:312–8.

    Article  Google Scholar 

  4. Rutherford WH. Postconcussion symptoms: relationship to acuteneurological indices, individual differences, and circumstances of injury. In: Levin H, Eisenberg H, Benton AL, editors. Mild head injury. New York: Oxford University Press; 1989. p. 217–28.

    Google Scholar 

  5. Levin HS, Amparo E, Eisenberg HM, Williams DH, High WM Jr, McArdle CB, Weiner RL. Magnetic resonance imaging and computerized tomography in relation to the neurobehavioral sequelae of mild and moderate head injuries. J Neurosurg. 1987;66:706–13.

    Article  CAS  PubMed  Google Scholar 

  6. Binder LM. Persisting symptoms after mild head injury: a review of the postconcussive syndrome. J Clin Exp Neuropsychol. 1986;8:323–46.

    Article  CAS  PubMed  Google Scholar 

  7. Binder LM. A review of mild head trauma. Part II: clinical implications. J Clin Exp Neuropsychol. 1997;19:432–57.

    Article  CAS  PubMed  Google Scholar 

  8. Bohnen N, Jolles J, Twijnstra A. Neuropsychological deficits in patients with persistent symptoms six months after mild head injury. Neurosurgery. 1992;30:692–5.

    Article  CAS  PubMed  Google Scholar 

  9. Rimel RW, Giordani B, Barth JT, Boll TJ, Jane JA. Disability caused by minor head injury. Neurosurgery. 1981;9:221–8.

    Article  CAS  PubMed  Google Scholar 

  10. Alexander MP. Mild traumatic brain injury: pathophysiology, natural history, and clinical management. Neurology. 1995;45:1253–60.

    Article  CAS  PubMed  Google Scholar 

  11. Jeter CB, Hergenroeder GW, Hylin MJ, Redell JB, Moore AN, Dash PK. Biomarkers for the diagnosis and prognosis of mild traumatic brain injury/concussion. J Neurotrauma. 2013;30:657–70.

    Article  PubMed  Google Scholar 

  12. Johnston KM, Ptito A, Chankowsky J, Chen JK. New frontiers in diagnostic imaging in concussive head injury. Clin J Sport Med. 2001;11:166–75.

    Article  CAS  PubMed  Google Scholar 

  13. Kirkwood MW, Yeates KO, Wilson PE. Pediatric sport-related concussion: a review of the clinical management of an oft-neglected population. Pediatrics. 2006;117:1359–71.

    Article  PubMed  Google Scholar 

  14. Bigler ED, Orrison WW. Neuroimaging in sports-related brain injury. In: Lovell, Echemendia RJ, Barth JT, Collins MW, editors. Traumatic brain injury in sports: an international perspective. Lisse: Swets and Zeitlinger; 2004. p. 71–94.

    Google Scholar 

  15. Teasdale G, Jennett B. Assessment of coma and impaired consciousness. A practical scale. Lancet. 1974;2:81–4.

    Article  CAS  PubMed  Google Scholar 

  16. Culotta VP, Sementilli ME, Gerold K, Watts CC. Clinicopathological heterogeneity in the classification of mild head injury. Neurosurgery. 1996;38:245–50.

    Article  CAS  PubMed  Google Scholar 

  17. Leahy RM, Mosher JC, Spencer ME, Huang MX, Lewine JD. A study of dipole localization accuracy for MEG and EEG using a human skull phantom. Electroencephalogr Clin Neurophysiol. 1998;107:159–73.

    Article  CAS  PubMed  Google Scholar 

  18. •• Huang MX, Nichols S, Baker DG, Robb A, Angeles A, Yurgil KA, Drake A, Levy M, Song T, McLay R, Theilmann RJ, Diwakar M, Risbrough VB, Ji Z, Huang CW, Chang DG, Harrington DL, Muzzatti L, Canive JM, Christopher EJ, Chen YH, and Lee RR. Single-subject-based whole-brain MEG slow-wave imaging approach for detecting abnormality in patients with mild traumatic brain injury. Neuroimage Clin. 2014;5:109–19. This article shows MEG’s clinical utility in individual-subject diagnosis of concussions, with 85 % sensitivity.

  19. Lewine JD, Davis JT, Sloan JH, Kodituwakku PW, Orrison WW Jr. Neuromagnetic assessment of pathophysiologic brain activity induced by minor head trauma. AJNR Am J Neuroradiol. 1999;20:857–66.

    CAS  PubMed  Google Scholar 

  20. Lewine JD, Davis JT, Bigler ED, Thoma R, Hill D, Funke M, Sloan JH, Hall S, Orrison WW. Objective documentation of traumatic brain injury subsequent to mild head trauma: multimodal brain imaging with MEG, SPECT, and MRI. J Head Trauma Rehabil. 2007;22:141–55.

    Article  PubMed  Google Scholar 

  21. Huang MX, Theilmann RJ, Robb A, Angeles A, Nichols S, Drake A, D’Andrea J, Levy M, Holland M, Song T, Ge S, Hwang E, Yoo K, Cui L, Baker DG, Trauner D, Coimbra R, Lee RR. Integrated imaging approach with MEG and DTI to detect mild traumatic brain injury in military and civilian patients. J Neurotrauma. 2009;26:1213–26.

    Article  CAS  PubMed  Google Scholar 

  22. •• Huang MX, Nichols S, Robb A, Angeles A, Drake A, Holland M, Asmussen S, D’Andrea J, Chun W, Levy M, Cui L, Song T, Baker DG, Hammer P, McLay R, Theilmann RJ, Coimbra R, Diwakar M, Boyd C, Neff J, Liu TT, Webb-Murphy J, Farinpour R, Cheung C, Harrington DL, Heister D, and Lee RR. An automatic MEG low-frequency source imaging approach for detecting injuries in mild and moderate TBI patients with blast and non-blast causes. Neuroimage. 2012;61:1067–82. This article describes an automated, objective MEG analysis algorithm, with 87 % sensitivity in detecting concussions, making MEG the most sensitive imaging modality for detecting concussions.

  23. Gloor P, Ball G, Schaul N. Brain lesions that produce delta waves in the EEG. Neurology. 1977;27:326–33.

    Article  CAS  PubMed  Google Scholar 

  24. Ball GJ, Gloor P, Schaul N. The cortical electromicrophysiology of pathological delta waves in the electroencephalogram of cats. Electroencephalogr Clin Neurophysiol. 1977;43:346–61.

    Article  CAS  PubMed  Google Scholar 

  25. The Management of Concussion/mTBI Working Group. VA/DoD clinical practice guideline for management of concussion/mild traumatic brain injury. J Rehabil Res Dev. 2009;46:CP1-68.

    Google Scholar 

  26. McLean A Jr, Dikmen S, Temkin N, Wyler AR, Gale JL. Psychosocial functioning at 1 month after head injury. Neurosurgery. 1984;14:393–9.

    Article  PubMed  Google Scholar 

  27. Dikmen SS, Ross BL, Machamer JE, Temkin NR. One year psychosocial outcome in head injury. J Int Neuropsychol Soc. 1995;1:67–77.

    Article  CAS  PubMed  Google Scholar 

  28. Niedermeyer E, Lopes da Silva FH. Electroencephalography: basic principles, clinical applications, and related fields. Philadelphia: Lippincott Williams & Wilkins; 2005.

    Google Scholar 

  29. Mosher JC, Leahy RM, Lewis PS. EEG and MEG: forward solutions for inverse methods. IEEE Trans Biomed Eng. 1999;46:245–59.

    Article  CAS  PubMed  Google Scholar 

  30. Huang MX, Song T, Hagler DJ Jr, Podgorny I, Jousmaki V, Cui L, Gaa K, Harrington DL, Dale AM, Lee RR, Elman J, Halgren E. A novel integrated MEG and EEG analysis method for dipolar sources. Neuroimage. 2007;37:731–48.

    Article  PubMed Central  PubMed  Google Scholar 

  31. Huang MX, Huang CW, Robb A, Angeles A, Nichols SL, Baker DG, Song T, Harrington DL, Theilmann RJ, Srinivasan R, Heister D, Diwakar M, Canive JM, Edgar JC, Chen YH, Ji Z, Shen M, El-Gabalawy F, Levy M, McLay R, Webb-Murphy J, Liu TT, Drake A, Lee RR. MEG source imaging method using fast L1 minimum-norm and its applications to signals with brain noise and human resting-state source amplitude images. Neuroimage. 2014;84:585–604.

    Article  PubMed Central  PubMed  Google Scholar 

  32. Youden WJ. Index for rating diagnostic tests. Cancer. 1950;3:32–5.

    Article  CAS  PubMed  Google Scholar 

  33. Benjamini Y, Hochberg Y. Controlling the false positive rate: a prectical and powerful approach to multiple testing. J R Stat Soc B. 1995;57:289–300.

    Google Scholar 

  34. Schwarzbold M, Diaz A, Martins ET, Rufino A, Amante LN, Thais ME, Quevedo J, Hohl A, Linhares MN, Walz R. Psychiatric disorders and traumatic brain injury. Neuropsychiatr Dis Treat. 2008;4:797–816.

    PubMed Central  PubMed  Google Scholar 

  35. Bryant RA, O’Donnell ML, Creamer M, McFarlane AC, Clark CR, Silove D. The psychiatric sequelae of traumatic injury. Am J Psychiatry. 2010;167:312–20.

    Article  PubMed  Google Scholar 

  36. Kandel ER, Schwartz JH, Jessell TM. Principles of neural science. New York: McGraw-Hill; 2000.

    Google Scholar 

  37. Carlson NR. Physiology of behavior. Boston: Pearson; 2013.

    Google Scholar 

  38. Sergent J, Ohta S, MacDonald B. Functional neuroanatomy of face and object processing. A positron emission tomography study. Brain. 1992;115(Pt 1):15–36.

    Article  PubMed  Google Scholar 

  39. Kanwisher N, McDermott J, Chun MM. The fusiform face area: a module in human extrastriate cortex specialized for face perception. J Neurosci. 1997;17:4302–11.

    CAS  PubMed  Google Scholar 

  40. Weiner KS, Grill-Spector K. Sparsely-distributed organization of face and limb activations in human ventral temporal cortex. Neuroimage. 2010;52:1559–73.

    Article  PubMed Central  PubMed  Google Scholar 

  41. Downing PE, Jiang Y, Shuman M, Kanwisher N. A cortical area selective for visual processing of the human body. Science. 2001;293:2470–3.

    Article  CAS  PubMed  Google Scholar 

  42. Babbage DR, Yim J, Zupan B, Neumann D, Tomita MR, Willer B. Meta-analysis of facial affect recognition difficulties after traumatic brain injury. Neuropsychology. 2011;25:277–85.

    Article  PubMed  Google Scholar 

  43. Basser PJ. Inferring microstructural features and the physiological state of tissues from diffusion-weighted images. NMR Biomed. 1995;8:333–44.

    Article  CAS  PubMed  Google Scholar 

  44. Xu J, Rasmussen IA, Lagopoulos J, Haberg A. Diffuse axonal injury in severe traumatic brain injury visualized using high-resolution diffusion tensor imaging. J Neurotrauma. 2007;24:753–65.

    Article  PubMed  Google Scholar 

  45. Adams JH, Doyle D, Ford I, Gennarelli TA, Graham DI, McLellan DR. Diffuse axonal injury in head injury: definition, diagnosis and grading. Histopathology. 1989;15:49–59.

    Article  CAS  PubMed  Google Scholar 

  46. Huisman TA, Schwamm LH, Schaefer PW, Koroshetz WJ, Shetty-Alva N, Ozsunar Y, Wu O, Sorensen AG. Diffusion tensor imaging as potential biomarker of white matter injury in diffuse axonal injury. AJNR Am J Neuroradiol. 2004;25:370–6.

    PubMed  Google Scholar 

  47. Arfanakis K, Haughton VM, Carew JD, Rogers BP, Dempsey RJ, Meyerand ME. Diffusion tensor MR imaging in diffuse axonal injury. AJNR Am J Neuroradiol. 2002;23:794–802.

    PubMed  Google Scholar 

  48. Niogi SN, Mukherjee P. Diffusion tensor imaging of mild traumatic brain injury. J Head Trauma Rehabil. 2010;25:241–55.

    Article  PubMed  Google Scholar 

  49. Niogi SN, Mukherjee P, Ghajar J, Johnson C, Kolster RA, Sarkar R, Lee H, Meeker M, Zimmerman RD, Manley GT, McCandliss BD. Extent of microstructural white matter injury in postconcussive syndrome correlates with impaired cognitive reaction time: a 3T diffusion tensor imaging study of mild traumatic brain injury. AJNR Am J Neuroradiol. 2008;29:967–73.

    Article  CAS  PubMed  Google Scholar 

  50. Davenport ND, Lim KO, Armstrong MT, Sponheim SR. Diffuse and spatially variable white matter disruptions are associated with blast-related mild traumatic brain injury. Neuroimage. 2012;59:2017–24.

    Article  PubMed  Google Scholar 

  51. Schaul N, Gloor P, Ball G, Gotman J. The electromicrophysiology of delta waves induced by systemic atropine. Brain Res. 1978;143:475–86.

    Article  CAS  PubMed  Google Scholar 

  52. Schaul N. The fundamental neural mechanisms of electroencephalography. Electroencephalogr Clin Neurophysiol. 1998;106:101–7.

    Article  CAS  PubMed  Google Scholar 

  53. Selden NR, Gitelman DR, Salamon-Murayama N, Parrish TB, Mesulam MM. Trajectories of cholinergic pathways within the cerebral hemispheres of the human brain. Brain. 1998;121(Pt 12):2249–57.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

Figures 1, 2, and 3 were previously published in the journal NeuroImage: Clinical, and the text of this article is excerpted from that publication: [18••]. This work was supported in part by Merit Review Grants from the Department of Veterans Affairs to M.X. Huang (I01-CX000499, NURC-022-10F, NEUC-044-06S), R.R. Lee, D.L. Harrington (I01-CX000146), National Football League Charity Grant (M.X. Huang and R.R. Lee), McDonnell Foundation via the Brain Trauma Foundation (PI: J. Ghajar;site PIs: R.R. Lee and M.X. Huang), and MRS-II from Headquarters Marine Corps (D.G. Baker, M.A. Geyer, M.X. Huang, V.B. Risbrough).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roland R. Lee.

Ethics declarations

Conflict of Interest

Mingxiong Huang and Roland R. Lee each declare no potential conflicts of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with animal subjects performed by any of the authors. As noted in the text:  All human participants gave written informed consent for study procedures, which were reviewed and approved by institutional review boards of the VA San Diego Healthcare System and Naval Health Research Center at San Diego.

Additional information

This article is part of the Topical Collection on Imaging of CNS Trauma.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, M., Lee, R.R. Magnetoencephalography (MEG) Slow-Wave Imaging for Diagnosing Non-acute Mild Traumatic Brain Injury. Curr Radiol Rep 3, 41 (2015). https://doi.org/10.1007/s40134-015-0121-0

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s40134-015-0121-0

Keywords

Navigation