Introduction and preliminaries

The concept of b-metric space was introduced and studied by Bakhtin [7] and later used by Czerwik [13, 14] which is a generalization of the usual metric space. After that, several papers have dealt with fixed point theory for single-valued and multi-valued operators in b-metric spaces have been obtained (see, e.g., [2, 5, 11, 12, 26, 28]).

Existence of coupled fixed point was introduced by Guo and Lakshmikantham [16]. In 2006, Gnana-Bhaskar and Lakshmikantham [10] introduced the concept of mixed monotone property in partially ordered metric space. Afterward, Lakshmikantham and Ćirić in [24] extended these results by giving the definition of the g-monotone property. Many papers have been reported on coupled fixed point theory (see, e.g., [1, 3, 4, 9, 18, 27]). In 2011, Vasile Berinde and Marin Borcut [8] extended and generalized the results of [10] and introduced the concept of a tripled fixed point and the mixed monotone property of a mapping F : X 3 X . For more details on tripled fixed point results, we refer to [6, 26]. Recently, Karapinar and Luong [19] introduced the concept of a quadruple fixed point and the mixed monotone property of a mapping F : X 4 X and they presented some new quadruple fixed point results. For a survey of quadruple fixed point theorems and related fixed points we refer the reader to [2022].

Definition 1.1

[14]. Let X be a nonempty set and s 1 a given real number. A function d : X 2 R + is called a b-metric provided that, for all x , y , z X , the following conditions hold:

  • ( b 1 ) d ( x , y ) = 0 if and only if x = y ,

  • ( b 2 ) d ( x , y ) = d ( y , x ) ,

  • ( b 3 ) d ( x , z ) s [ d ( x , y ) + d ( y , z ) ] .

The pair ( X , d ) is called a b-metric space with parameter s .

Remark 1.1

It is obvious that any metric space must be a b-metric space where a b-metric space is a metric space when s = 1 . The following example show that in general a b-metric need not necessarily be a metric space (see also [29]).

Example 1.1

[2]. Let ( X , d ) be a metric space and ρ ( x , y ) = ( d ( x , y ) ) p , where p > 1 is a real number. Then ρ is a b-metric with s = 2 p - 1 . However, if ( X , d ) is a metric space, then ( X , ρ ) is not necessarily a metric space. For example, if X = R is the set of real numbers and d ( x , y ) = | x - y | is the usual Euclidean metric, then ρ ( x , y ) = ( x - y ) 2 is a b-metric on R with s = 2 , but is not a metric on R .

Definition 1.2

[11]. Let ( X , d ) be a b-metric space. Then a sequence { x n } in X is called

  1. (i)

    b-convergent if and only if there exists x X such that d ( x n , x ) 0 as n . In this case, we write lim n x n = x ,

  2. (ii)

    b-Cauchy if and only if d ( x n , x m ) 0 as n , m .

Proposition 1.1

([11] Remark 2.1) In ab-metric space the following assertions hold:

  1. (i)

    Ab-convergent sequence has a unique limit.

  2. (ii)

    Eachb-convergent sequence isb-Cauchy.

  3. (iii)

    In general, ab-metric is not continuous.

Definition 1.3

[11]. Let ( X , d ) and ( X ¯ , d ¯ ) be two b-metric spaces.

  1. (i)

    The space ( X , d ) is b-complete if every b-Cauchy sequence in Xb-converges.

  2. (ii)

    A function f : X X ¯ is b-continuous at a point x X if it is b-sequentially continuous at x , that is, whenever { x n } is b-convergent to x, { f ( x n ) } is b-convergent to f ( x ) .

Definition 1.4

[11]. The b-metric space ( X , d ) is b-complete if every b-Cauchy sequence in Xb-converges.

It should be noted that, in general a b-metric function d ( x , y ) for s > 1 is not jointly continuous in all its variables. The following example on a b-metric which is not continuous.

Example 1.2

[17]. Let X = N { } and let d : X × X R be defined by

d ( m , n ) = 0 , if m = n , | 1 m - 1 n | , if one of m , n is even and the other is even or , 5 , if one of m , n is odd and the other is odd ( and m n ) or , 2 , otherwise .

Then considering all possible cases, it can be checked that for all m , n , p X , we have

d ( m , p ) 5 2 ( d ( m , n ) + d ( n , p ) ) .

Thus, ( X , d ) is a b-metric space (with s = 5 3 ). Let x n = 2 n for each n N . Then

d ( 2 n , ) = 1 2 n 0 as n ,

that is, x n , but d ( x n , 1 ) = 2 5 = d ( , 1 ) as n .

Since, in general, a b-metric is not continuous, we need the following lemma about the b-convergent sequences in the proof of our main result.

Lemma 1.1

[2].Let ( X , d ) be ab-metric space with s 1 , and suppose that { x n } and { y n } b-converge to x , y , respectively. Then, we have

1 s 2 d ( x , y ) lim inf n d ( x n , y n ) lim sup n d ( x n , y n ) s 2 d ( x , y ) .

In particular, if x = y then lim n d ( x n , y n ) = 0 . Moreover, for each z X we have

1 s d ( x , z ) lim inf n d ( x n , z ) lim sup n d ( x n , z ) s d ( x , z ) .

Definition 1.5

Let X be a nonempty set and let F : X 4 X , g : X X . An element ( x , y , z , w ) X 4 is called

  1. (i)

    [19] a quadruple fixed point of F if

    F ( x , y , z , w ) = x , F ( y , z , w , x ) = y , F ( z , w , x , y ) = z and F ( w , x , y , z ) = w .
  2. (ii)

    [25] a quadruple coincidence point of F and g if

    F ( x , y , z , w ) = g x , F ( y , z , w , x ) = g y , F ( z , w , x , y ) = g z and F ( w , x , y , z ) = g w .

    ( g x , g y , g z , g w ) is said to be a quadruple point of coincidence of F and g .

  3. (iii)

    [25] a quadruple common fixed point of F and g if

    F ( x , y , z , w ) = g x = x , F ( y , z , w , x ) = g y = y , F ( z , w , x , y ) = g z = z and F ( w , x , y , z ) = g w = w .

Definition 1.6

[25]. Let ( X , ) be a partially ordered set and let F : X 4 X , g : X X . The mapping F is said to have the mixed g-monotone property if for any x , y , z , w X ,

x 1 , x 2 X , g x 1 g x 2 implies F ( x 1 , y , z , w ) F ( x 2 , y , z , w ) , y 1 , y 2 X , g y 1 g y 2 implies F ( x , y 2 , z , w ) F ( x , y 1 , z , w ) , z 1 , z 2 X , g z 1 g z 2 implies F ( x , y , z 1 , w ) F ( x , y , z 2 , w ) , and w 1 , w 2 X , g w 1 g w 2 implies F ( x , y , z , w 2 ) F ( x , y , z , w 1 ) .

In particular, when g = i X , then from [19] we say that F has the mixed monotone property that is, for any x , y , z , w X ,

x 1 , x 2 X , x 1 x 2 implies F ( x 1 , y , z , w ) F ( x 2 , y , z , w ) , y 1 , y 2 X , y 1 y 2 implies F ( x , y 2 , z , w ) F ( x , y 1 , z , w ) , z 1 , z 2 X , z 1 z 2 implies F ( x , y , z 1 , w ) F ( x , y , z 2 , w ) , and w 1 , w 2 X , w 1 w 2 implies F ( x , y , z , w 2 ) F ( x , y , z , w 1 ) .

The concept of an altering distance function was introduced by Khan et al. [23] as follows.

Definition 1.7

[23]. A function ψ : [ 0 , ) [ 0 , ) is called an altering distance function if

  1. (i)

    ψ is non-decreasing and continuous,

  2. (ii)

    ψ ( t ) = 0 if and only if t = 0 .

Definition 1.8

[1]. The mappings F : X × X X and f : X X are called w-compatible if f ( F ( x , y ) ) = F ( f x , f y ) whenever f ( x ) = F ( x , y ) and f ( y ) = F ( y , x ) .

In 2012, Dorić et al. [15] established coupled fixed point results without the mixed monotone property. This property is automatically satisfied in the case of a totally ordered space. Therefore, these results can be applied in a much wider class of problems. Now, we state a property due to Dorić et al. [15].

If elements x , y of a partially ordered set ( X , ) are comparable (i.e., x y or y x holds) we will write x y . Let g : X X and F : X × X X . We will consider the following condition:

if x , y , u , v X are\;such\;that\; g x F ( x , y ) = g u then F ( x , y ) F ( u , v ) .
(1.1)

In particular, when g = i X , it reduces to

for all x , y , v if x F ( x , y ) then F ( x , y ) F ( F ( x , y ) , v ) .
(1.2)

The aim of this paper is to extend the property due to Dorić et al. [15] to the case of mappings g : X X , F : X 4 X , and show that a mixed monotone property in quadruple fixed point results for mappings in partially ordered b-metric spaces can be replaced by another property which is often easy to check in the case of a totally ordered space. We prove the existence of quadruple coincidence and uniqueness quadruple common fixed point theorems for a compatible and w-compatible mappings satisfying generalized contraction in partially ordered b-metric spaces without the mixed g-monotone property. Also, we state an example showing that our results are effective.

Quadruple coincidence point theorems

Let g : X X and F : X 4 X . We consider the following condition:

if x , y , z , w , u , v , r , t X are\;such\;that\; g x F ( x , y , z , w ) = g u then\, F ( x , y , z , w ) F ( u , v , r , t ) .
(2.1)

In particular, when g = i X , it reduces to

for all x , y , v , r , t if x F ( x , y , z , w ) then F ( x , y , z , w ) F ( F ( x , y , z , w ) , v , r , t ) .
(2.2)

We will show by examples the condition (2.1), ((2.2) resp.) may be satisfied when F does not have the mixed g-monotone property, (monotone property resp.).

Example 2.1

Let X = { a , b , c , d } ,     = { ( a , a ) , ( b , b ) , ( c , c ) , ( d , d ) , ( a , b ) , ( c , d ) } ,

g : a b c d c d c d , F : ( a , y , z , w ) ( b , y , z , w ) ( c , y , z , w ) ( d , y , z , w ) b a c d ,

for all y , z , w X . Since g a = c g b = d but F ( a , y , z , w ) F ( b , y , z , w ) for all y , z , w X , the mapping F does not have the mixed g-monotone property. But it has property (2.1) where

  1. (i)

    For each y , z , w X , we get g c F ( c , y , z , w ) and F ( c , y , z , w ) F ( c , v , r , t ) for all v , r , t X .

  2. (ii)

    For each y , z , w X , we get g d F ( d , y , z , w ) and F ( d , y , z , w ) F ( d , v , r , t ) for all v , r , t X .

  3. (iii)

    The other two cases are trivial.

Example 2.2

Let X = { a , b , c , d } ,     = { ( a , a ) , ( b , b ) , ( c , c ) , ( d , d ) , ( a , b ) , ( c , d ) } ,

F : ( a , y , z , w ) ( b , y , z , w ) ( c , y , z , w ) ( d , y , z , w ) b a c d

for all y , z , w X . Since a b but F ( a , y , z , w ) = b a = F ( b , y , z , w ) for all y , z , w X , the mapping F does not have the mixed monotone property. But it has property (2.2) since

  1. (i)

    For each y , z , w X , we get a F ( a , y , z , w ) and F ( a , y , z , w ) = b a = F ( F ( a , y , z , w ) , v , r , t ) for all v , r , t X .

  2. (ii)

    For each y , z , w X , we get b F ( b , y , z , w ) and F ( b , y , z , w ) = a b = F ( F ( b , y , z , w ) , v , r , t ) for all v , r , t X .

  3. (iii)

    The other two cases are trivial.

Definition 2.1

Let ( X , d ) be a b-metric space and let g : X X , F : X 4 X . The mappings g and F are said to be compatible if

lim n d ( g F ( x n , y n , z n , w n ) , F ( g x n , g y n , g z n , g w n ) ) = 0 , lim n d ( g F ( y n , z n , w n , x n ) , F ( g y n , g z n , g w n , g x n ) ) = 0 , lim n d ( g F ( z n , w n , x n , y n ) , F ( g z n , g w n , g x n , g y n ) ) = 0 and lim n d ( g F ( w n , x n , y n , z n ) , F ( g w n , g x n , g y n , g z n ) ) = 0 ,

hold whenever { x n } , { y n } , { z n } and { w n } are sequences in X such that

lim n F ( x n , y n , z n , w n ) = lim n g x n , lim n F ( y n , z n , w n , x n ) = lim n g y n , lim n F ( z n , w n , x n , y n ) = lim n g z n and lim n F ( w n , x n , y n , z n ) = lim n g w n .

Definition 2.2

The mappings F : X 4 X and g : X X are called w-compatible if g ( F ( x , y , z , w ) ) = F ( g x , g y , g z , g w ) whenever g x = F ( x , y , z , w ) , g y = F ( y , z , w , x ) , g z = F ( z , w , x , y ) and g w = F ( w , x , y , z ) .

Remark 2.1

In an altering distance function ψ : [ 0 , ) [ 0 , ) , since ψ is non-decreasing then for any a , b , c , d [ 0 , ) the following holds.

ψ ( max { a , b , c , d } ) = max { ψ ( a ) , ψ ( b ) , ψ ( c ) , ψ ( d ) } .

The triple ( X , d , ) is called a partially ordered b-metric space if ( X , ) is a partially ordered set and ( X , d ) is a b-metric space.

Our first result is the following.

Theorem 2.1

Let ( X , d , ) be a partially ordered completeb-metric space with parameter s 1 .Let F : X 4 X and g : X X be two mappings such that the following hold:

  1. (i)

    gandFareb-continuous,

  2. (ii)

    F ( X 4 ) g ( X ) , g and F are compatible,

  3. (iii)

    g and F satisfy property (2.1),

  4. (iv)

    there exist x 0 , y 0 , z 0 , w 0 X such that g x 0 F ( x 0 , y 0 , z 0 , w 0 ) , g y 0 F ( y 0 , z 0 , w 0 , x 0 ) , g z 0 F ( z 0 , w 0 , x 0 , y 0 ) and g w 0 F ( w 0 , x 0 , y 0 , z 0 ) ,

  5. (v)

    there exist an altering distance function ψ and ϕ : [ 0 , ) 4 [ 0 , ) is continuous with ϕ ( t 1 , t 2 , t 3 , t 4 ) = 0 if and only if t 1 = t 2 = t 3 = t 4 = 0 such that

    ψ ( s d ( F ( x , y , z , w ) , F ( u , v , r , t ) ) ) ψ ( max { d ( g x , g u ) , d ( g y , g v ) , d ( g z , g r ) , d ( g w , g t ) } ) - ϕ ( d ( g x , g u ) , d ( g y , g v ) , d ( g z , g r ) , d ( g w , g t ) ) ,
    (2.3)

    for all x , y , z , w , u , v , r , t X and g x g u , g y g v , g z g r and g w g t .

Then,Fandghave a quadruple coincidence point.

Proof

Let x 0 , y 0 , z 0 , w 0 X be such that condition (iv) holds. Since F ( X 4 ) g ( X ) , then we can choose x 1 , y 1 , z 1 , w 1 X such that

g x 1 = F ( x 0 , y 0 , z 0 , w 0 ) , g y 1 = F ( y 0 , z 0 , w 0 , x 0 ) , g z 1 = F ( z 0 , w 0 , x 0 , y 0 ) and g w 1 = F ( w 0 , x 0 , y 0 , z 0 ) .
(2.4)

By continuing this process, we can construct sequences { x n } , { y n } , { z n } and { w n } in X such that

g x n + 1 = F ( x n , y n , z n , w n ) , g y n + 1 = F ( y n , z n , w n , x n ) , g z n + 1 = F ( z n , w n , x n , y n ) , and g w n + 1 = F ( w n , x n , y n , z n ) for\,all\, n 0 .
(2.5)

We show that

g x n g x n + 1 , g y n g y n + 1 , g z n g z n + 1 and g w n g w n + 1 for n 0 .
(2.6)

So, we use the mathematical induction. By condition (iv) and using (2.4) we get g x 0 g x 1 , g y 0 g y 1 , g z 0 g z 1 , and g w 0 g w 1 . So (2.6) holds for n = 0 . We assume that (2.6) holds for some n > 0 , that is g x n g x n + 1 , g y n g y n + 1 , g z n g z n + 1 , and g w n g w n + 1 , we get

g x n = F ( x n - 1 , y n - 1 , z n - 1 , w n - 1 ) F ( x n , y n , z n , w n ) = g x n + 1 ,
g y n = F ( y n - 1 , z n - 1 , w n - 1 , x n - 1 ) F ( y n , z n , w n , x n ) = g y n + 1 ,
g z n = F ( z n - 1 , w n - 1 , x n - 1 , y n - 1 ) F ( z n , w n , x n , y n ) = g z n + 1 ,
g w n = F ( w n - 1 , x n - 1 , y n - 1 , z n - 1 ) F ( w n , x n , y n , z n ) = g w n + 1 .

Hence from condition (iii) we conclude that

F ( x n , y n , z n , w n ) F ( x n + 1 , y n + 1 , z n + 1 , w n + 1 ) , F ( y n , z n , w n , x n ) F ( y n + 1 , z n + 1 , w n + 1 , x n + 1 ) , F ( z n , w n , x n , y n ) F ( z n + 1 , w n + 1 , x n + 1 , y n + 1 ) , F ( w n , x n , y n , z n ) F ( w n + 1 , x n + 1 , y n + 1 , z n + 1 ) .

So, g x n + 1 g x n + 2 , g y n + 1 g y n + 2 , g z n + 1 g z n + 2 and g w n + 1 g w n + 2 . Thus (2.6) holds for all n N . Suppose that for some k N ,

g x k = g x k + 1 , g y k = g y k + 1 , g z k = g z k + 1 and g w k = g w k + 1 ,

then by (2.5) we get g x k = F ( x k , y k , z k , w k ) , g y k = F ( y k , z k , w k , x k ) , g z k = F ( z k , w k , x k , y k ) and g w k = F ( w k , x k , y k , z k ) . Hence ( x k , y k , z k , w k ) is a quadruple coincidence point of F and g . So, we assume that for all n N at least g x n g x n + 1 or g y n g y n + 1 or g z n g z n + 1 or g w n g w n + 1 . Since g x n g x n + 1 , g y n g y n + 1 , g z n g z n + 1 and g w n g w n + 1 for all n N , then from (2.3) and (2.5) we obtain

ψ ( s d ( g x n , g x n + 1 ) = ψ ( s d ( F ( x n - 1 , y n - 1 , z n - 1 , w n - 1 ) , F ( x n , y n , z n , w n ) ) ) ψ ( max { d ( g x n - 1 , g x n ) , d ( g y n - 1 , g y n ) , d ( g z n - 1 , g z n ) , d ( g w n - 1 , g w n ) } ) - ϕ ( d ( g x n - 1 , g x n ) , d ( g y n - 1 , g y n ) , d ( g z n - 1 , g z n ) , d ( g w n - 1 , g w n ) ) ,
(2.7)
ψ ( s d ( g y n , g y n + 1 ) ) = ψ ( s d ( F ( y n - 1 , z n - 1 , w n - 1 , x n - 1 ) , F ( y n , z n , w n , x n ) ) ) ψ ( max { d ( g y n - 1 , g y n ) , d ( g z n - 1 , g z n ) , d ( g w n - 1 , g w n ) , d ( g x n - 1 , g x n ) } ) - ϕ ( d ( g y n - 1 , g y n ) , d ( g z n - 1 , g z n ) , d ( g w n - 1 , g w n ) , d ( g x n - 1 , g x n ) ) ,
(2.8)
ψ ( s d ( g z n , g z n + 1 ) ) = ψ ( s d ( F ( z n - 1 , w n - 1 , x n - 1 , y n - 1 ) , F ( z n , w n , x n , y n ) ) ) ψ ( max { d ( g z n - 1 , g z n ) , d ( g w n - 1 , g w n ) , d ( g x n - 1 , g x n ) , d ( g y n - 1 , g y n ) } ) - ϕ ( d ( g z n - 1 , g z n ) , d ( g w n - 1 , g w n ) , d ( g x n - 1 , g x n ) , d ( g y n - 1 , g y n ) ) ,
(2.9)

and

ψ ( s d ( g w n , g w n + 1 ) ) = ψ ( s d ( F ( w n - 1 , x n - 1 , y n - 1 , z n - 1 ) , F ( w n , x n , y n , z n ) ) ) ψ ( max { d ( g w n - 1 , g w n ) , d ( g x n - 1 , g x n ) , d ( g y n - 1 , g y n ) , d ( g z n - 1 , g z n ) } ) - ϕ ( d ( g w n - 1 , g w n ) , d ( g x n - 1 , g x n ) , d ( g y n - 1 , g y n ) , d ( g z n - 1 , g z n ) ) .
(2.10)

Set

δ n = max { d ( g x n , g x n + 1 ) , d ( g y n , g y n + 1 ) , d ( g z n , g z n + 1 ) , d ( g w n , g w n + 1 ) } .

From (2.7) to (2.10) and Remark 2.1, it follows that

ψ ( s δ n ) = max { ψ ( s d ( g x n , g x n + 1 ) ) , ψ ( s d ( g y n , g y n + 1 ) ) , ψ ( s d ( g z n , g z n + 1 ) ) , ψ ( s d ( g w n , g w n + 1 ) ) } ψ ( δ n - 1 ) - min { ϕ ( d ( g x n - 1 , g x n ) , d ( g y n - 1 , g y n ) , d ( g z n - 1 , g z n ) , d ( g w n - 1 , g w n ) ) , ϕ ( d ( g y n - 1 , g y n ) , d ( g z n - 1 , g z n ) , d ( g w n - 1 , g w n ) , d ( g x n - 1 , g x n ) ) , ϕ ( d ( g z n - 1 , g z n ) , d ( g w n - 1 , g w n ) , d ( g x n - 1 , g x n ) , d ( g y n - 1 , g y n ) ) , ϕ ( d ( g w n - 1 , g w n ) , d ( g x n - 1 , g x n ) , d ( g y n - 1 , g y n ) , d ( g z n - 1 , g z n ) ) } .
(2.11)

and since ψ is non-decreasing then from (2.11) we have that

ψ ( δ n ) ψ ( s δ n ) ψ ( δ n - 1 ) - min { ϕ ( d ( g x n - 1 , g x n ) , d ( g y n - 1 , g y n ) , d ( g z n - 1 , g z n ) , d ( g w n - 1 , g w n ) ) , ϕ ( d ( g y n - 1 , g y n ) , d ( g z n - 1 , g z n ) , d ( g w n - 1 , g w n ) , d ( g x n - 1 , g x n ) ) , ϕ ( d ( g z n - 1 , g z n ) , d ( g w n - 1 , g w n ) , d ( g x n - 1 , g x n ) , d ( g y n - 1 , g y n ) ) , ϕ ( d ( g w n - 1 , g w n ) , d ( g x n - 1 , g x n ) , d ( g y n - 1 , g y n ) , d ( g z n - 1 , g z n ) ) } .
(2.12)

Hence,

ψ ( δ n ) ψ ( δ n - 1 ) for \,all n N .
(2.13)

Since ψ is non-decreasing, we have δ n δ n - 1 for all n . Therefore, { δ n } is a non-increasing sequence, so there is some δ 0 such that

lim n δ n = δ .

Letting n , in (2.12), we get

ψ ( δ ) ψ ( δ ) - min { lim n ϕ ( d ( g x n - 1 , g x n ) , d ( g y n - 1 , g y n ) , d ( g z n - 1 , g z n ) , d ( g w n - 1 , g w n ) ) , lim n ϕ ( d ( g y n - 1 , g y n ) , d ( g z n - 1 , g z n ) , d ( g w n - 1 , g w n ) , d ( g x n - 1 , g x n ) ) , lim n ϕ ( d ( g z n - 1 , g z n ) , d ( g w n - 1 , g w n ) , d ( g x n - 1 , g x n ) , d ( g y n - 1 , g y n ) ) , lim n ϕ ( d ( g w n - 1 , g w n ) , d ( g x n - 1 , g x n ) , d ( g y n - 1 , g y n ) , d ( g z n - 1 , g z n ) ) } ψ ( δ ) .

Hence,

min lim n ϕ ( d ( g x n - 1 , g x n ) , d ( g y n - 1 , g y n ) , d ( g z n - 1 , g z n ) , d ( g w n - 1 , g w n ) ) , lim n ϕ ( d ( g y n - 1 , g y n ) , d ( g z n - 1 , g z n ) , d ( g w n - 1 , g w n ) , d ( g x n - 1 , g x n ) ) , lim n ϕ ( d ( g z n - 1 , g z n ) , d ( g w n - 1 , g w n ) , d ( g x n - 1 , g x n ) , d ( g y n - 1 , g y n ) ) , lim n ϕ ( d ( g w n - 1 , g w n ) , d ( g x n - 1 , g x n ) , d ( g y n - 1 , g y n ) , d ( g z n - 1 , g z n ) ) } = 0 .

That is

lim n ϕ ( d ( g x n - 1 , g x n ) , d ( g y n - 1 , g y n ) , d ( g z n - 1 , g z n ) , d ( g w n - 1 , g w n ) ) = 0 or\, lim n ϕ ( d ( g y n - 1 , g y n ) , d ( g z n - 1 , g z n ) , d ( g w n - 1 , g w n ) , d ( g x n - 1 , g x n ) ) = 0 or lim n ϕ ( d ( g z n - 1 , g z n ) , d ( g w n - 1 , g w n ) , d ( g x n - 1 , g x n ) , d ( g y n - 1 , g y n ) ) = 0 or lim n ϕ ( d ( g w n - 1 , g w n ) , d ( g x n - 1 , g x n ) , d ( g y n - 1 , g y n ) , d ( g z n - 1 , g z n ) ) = 0 .

So, using the properties of ϕ, we have

lim n d ( g x n - 1 , g x n ) = 0 , lim n d ( g y n - 1 , g y n ) = 0 , lim n d ( g z n - 1 , g z n ) = 0 and lim n d ( g w n - 1 , g w n ) = 0 .

Thus, lim n δ n - 1 = 0 . Therefore δ = 0 . Now, we show that { g x n } , { g y n } , { g z n } , and { g w n } are b-Cauchy sequences in ( X , d ) , that is, we show that for every ε > 0 , there exists k N such that for all m , n k ,

max { d ( g x m , g x n ) , d ( g y m , g y n ) , d ( g z m , g z n ) , d ( g w m , g w n ) } < ε .

Suppose the contrary, that is at least one of the sequences { g x n } , { g y n } , { g z n } and { g w n } is not a b-Cauchy sequence, so there exists ε > 0 for which we can find subsequences { g x m ( k ) } , { g x n ( k ) } of { g x n } , { g y m ( k ) } , { g y n ( k ) } of { g y n } , { g z m ( k ) } , { g z n ( k ) } of { g z n } and { g w m ( k ) } , { g w n ( k ) } of { g w n } with n ( k ) > m ( k ) k such that

max { d ( g x m ( k ) , g x n ( k ) ) , d ( g y m ( k ) , g y n ( k ) ) , d ( g z m ( k ) , g z n ( k ) ) , d ( g w m ( k ) , g w n ( k ) ) } ε ,
(2.14)

for every integer k, let n ( k ) be the least positive integer with n ( k ) > m ( k ) k satisfying (2.14) and such that

max { d ( g x m ( k ) , g x n ( k ) - 1 ) , d ( g y m ( k ) , g y n ( k ) - 1 ) , d ( g z m ( k ) , g z n ( k ) - 1 ) , d ( g w m ( k ) , g w n ( k ) - 1 ) } < ε .
(2.15)

Using the b-triangle inequality, we get

d ( g x m ( k ) , g x n ( k ) ) s [ d ( g x m ( k ) , g x n ( k ) - 1 ) + d ( g x n ( k ) - 1 , g x n ( k ) ) ] d ( g y m ( k ) , g y n ( k ) ) s [ d ( g y m ( k ) , g y n ( k ) - 1 ) + d ( g y n ( k ) - 1 , g y n ( k ) ) ] d ( g z m ( k ) , g z n ( k ) ) s [ d ( g z m ( k ) , g z n ( k ) - 1 ) + d ( g z n ( k ) - 1 , g z n ( k ) ) ] and\, d ( g w m ( k ) , g w n ( k ) ) s [ d ( g w m ( k ) , g w n ( k ) - 1 ) + d ( g w n ( k ) - 1 , g w n ( k ) ) ] .
(2.16)

Hence from (2.14) and (2.16), we have

ε max { d ( g x m ( k ) , g x n ( k ) ) , d ( g y m ( k ) , g y n ( k ) ) , d ( g z m ( k ) , g z n ( k ) ) , d ( g w m ( k ) , g w n ( k ) ) } s [ max { d ( g x m ( k ) , g x n ( k ) - 1 ) , d ( g y m ( k ) , g y n ( k ) - 1 ) , d ( g z m ( k ) , g z n ( k ) - 1 ) , d ( g w m ( k ) , g w n ( k ) - 1 ) } + max { d ( g x n ( k ) - 1 , g x n ( k ) ) , d ( g y n ( k ) - 1 , g y n ( k ) ) , d ( g z n ( k ) - 1 , g z n ( k ) ) , d ( g w n ( k ) - 1 , g w n ( k ) ) } ] = s max { d ( g x m ( k ) , g x n ( k ) - 1 ) , d ( g y m ( k ) , g y n ( k ) - 1 ) , d ( g z m ( k ) , g z n ( k ) - 1 ) , d ( g w m ( k ) , g w n ( k ) - 1 ) } + s δ n ( k ) - 1 .

Taking the upper and lower limits as k in the above inequality, from (2.14), (2.15) and as lim n δ n - 1 = 0 , we conclude that

ε s lim sup k max { d ( g x m ( k ) , g x n ( k ) ) , d ( g y m ( k ) , g y n ( k ) ) , d ( g z m ( k ) , g z n ( k ) ) , d ( g w m ( k ) , g w n ( k ) ) } < ε ,
(2.17)
ε s lim sup k max { d ( g x m ( k ) , g x n ( k ) - 1 ) , d ( g y m ( k ) , g y n ( k ) - 1 ) , d ( g z m ( k ) , g z n ( k ) - 1 ) , d ( g w m ( k ) , g w n ( k ) - 1 ) } < ε ,
(2.18)

and

ε s lim inf k max { d ( g x m ( k ) , g x n ( k ) - 1 ) , d ( g y m ( k ) , g y n ( k ) - 1 ) , d ( g z m ( k ) , g z n ( k ) - 1 ) , d ( g w m ( k ) , g w n ( k ) - 1 ) } < ε .
(2.19)

Also, from the b-triangle inequality we obtain

ε max { d ( g x m ( k ) , g x n ( k ) ) , d ( g y m ( k ) , g y n ( k ) ) , d ( g z m ( k ) , g z n ( k ) ) , d ( g w m ( k ) , g w n ( k ) ) } s [ max { d ( g x m ( k ) , g x m ( k ) + 1 ) , d ( g y m ( k ) , g y m ( k ) + 1 ) , d ( g z m ( k ) , g z m ( k ) + 1 ) , d ( g w m ( k ) , g w m ( k ) + 1 ) } + max { d ( g x m ( k ) + 1 , g x n ( k ) ) , d ( g y m ( k ) + 1 , g y n ( k ) ) , d ( g z m ( k ) + 1 , g z n ( k ) ) , d ( g w m ( k ) + 1 , g w n ( k ) ) } ] = s δ m ( k ) + s max { d ( g x m ( k ) + 1 , g x n ( k ) ) , d ( g y m ( k ) + 1 , g y n ( k ) ) , d ( g z m ( k ) + 1 , g z n ( k ) ) , d ( g w m ( k ) + 1 , g w n ( k ) ) } ,

and

max { d ( g x m ( k ) + 1 , g x n ( k ) ) , d ( g y m ( k ) + 1 , g y n ( k ) ) , d ( g z m ( k ) + 1 , g z n ( k ) ) , d ( g w m ( k ) + 1 , g w n ( k ) ) } s [ max { d ( g x m ( k ) + 1 , g x m ( k ) ) + g y m ( k ) + 1 , d ( g y m ( k ) ) + d ( g z m ( k ) + 1 , g z m ( k ) ) + d ( g w m ( k ) + 1 , g w m ( k ) ) } + max { d ( g x m ( k ) , g x n ( k ) ) , d ( g y m ( k ) , g y n ( k ) ) , d ( g z m ( k ) , g z n ( k ) ) , d ( g w m ( k ) , g w n ( k ) ) } ] = s δ m ( k ) + s max { d ( g x m ( k ) , g x n ( k ) ) , d ( g y m ( k ) , g y n ( k ) ) , d ( g z m ( k ) , g z n ( k ) ) , d ( g w m ( k ) , g w n ( k ) ) } .

Taking the upper limit as k in the above two inequalities, using (2.14) and as lim n δ n - 1 = 0 , we have

ε s lim sup n max { d ( g x m ( k ) + 1 , g x n ( k ) ) , d ( g y m ( k ) + 1 , g y n ( k ) ) , d ( g z m ( k ) + 1 , g z n ( k ) ) , d ( g w m ( k ) + 1 , g w n ( k ) ) } < s ε .
(2.20)

Since g x n g x n + 1 , g y n g y n + 1 , g z n g z n + 1 and g w n g w n + 1 for all n 0 , then g x m ( k ) g x n ( k ) - 1 , g y m ( k ) g y n ( k ) - 1 , g z m ( k ) g z n ( k ) - 1 and g w m ( k ) g w n ( k ) - 1 .

Putting x = x m ( k ) , y = y m ( k ) , z = z m ( k ) , w = w m ( k ) , u = x n ( k ) - 1 , v = y n ( k ) - 1 , r = z n ( k ) - 1 , t = w n ( k ) - 1 , in (2.3) for all k 0 , we conclude that

ψ ( s d ( g x m ( k ) + 1 , g x n ( k ) ) ) = ψ ( s d ( F ( x m ( k ) , y m ( k ) , z m ( k ) , w m ( k ) ) , F ( x n ( k ) - 1 , y n ( k ) - 1 , z n ( k ) - 1 , w n ( k ) - 1 ) ) ) ψ ( max { d ( g x m ( k ) , g x n ( k ) - 1 ) , d ( g y m ( k ) , g y n ( k ) - 1 ) , d ( g z m ( k ) , g z n ( k ) - 1 ) , d ( g w m ( k ) , g w n ( k ) - 1 ) } ) - ϕ ( d ( g x m ( k ) , g x n ( k ) - 1 ) , d ( g y m ( k ) , g y n ( k ) - 1 ) , d ( g z m ( k ) , g z n ( k ) - 1 ) , d ( g w m ( k ) , g w n ( k ) - 1 ) ) ,
(2.21)
ψ ( s d ( g y m ( k ) + 1 , g y n ( k ) ) ) = ψ ( s d ( F ( y m ( k ) , z m ( k ) , w m ( k ) , x m ( k ) ) , F ( y n ( k ) - 1 , z n ( k ) - 1 , w n ( k ) - 1 , x n ( k ) - 1 ) ) ) ψ ( max { d ( g y m ( k ) , g y n ( k ) - 1 ) , d ( g z m ( k ) , g z n ( k ) - 1 ) , d ( g w m ( k ) , g w n ( k ) - 1 ) , d ( g x m ( k ) , g x n ( k ) - 1 ) } ) - ϕ ( d ( g y m ( k ) , g y n ( k ) - 1 ) , d ( g z m ( k ) , g z n ( k ) - 1 ) , d ( g w m ( k ) , g w n ( k ) - 1 ) , d ( g x m ( k ) , g x n ( k ) - 1 ) ) ,
(2.22)
ψ ( s d ( g z m ( k ) + 1 , g z n ( k ) ) ) = ψ ( s d ( F ( z m ( k ) , w m ( k ) , x m ( k ) , y m ( k ) ) , F ( z n ( k ) - 1 , w n ( k ) - 1 , x n ( k ) - 1 , y n ( k ) - 1 ) ) ) ψ ( max { d ( g z m ( k ) , g z n ( k ) - 1 ) , d ( g w m ( k ) , g w n ( k ) - 1 ) , d ( g x m ( k ) , g x n ( k ) - 1 ) , d ( g y m ( k ) , g y n ( k ) - 1 ) } ) - ϕ ( d ( g z m ( k ) , g z n ( k ) - 1 ) , d ( g w m ( k ) , g w n ( k ) - 1 ) , d ( g x m ( k ) , g x n ( k ) - 1 ) , d ( g y m ( k ) , g y n ( k ) - 1 ) ) ,
(2.23)

and

ψ ( s d ( g w m ( k ) + 1 , g w n ( k ) ) ) = ψ ( s d ( F ( w m ( k ) , x m ( k ) , y m ( k ) , z m ( k ) ) , F ( w n ( k ) - 1 , x n ( k ) - 1 , y n ( k ) - 1 , z n ( k ) - 1 ) ) ) ψ ( max { d ( g w m ( k ) , g w n ( k ) - 1 ) , d ( g x m ( k ) , g x n ( k ) - 1 ) , d ( g y m ( k ) , g y n ( k ) - 1 ) , d ( g z m ( k ) , g z n ( k ) - 1 ) } ) - ϕ ( d ( g w m ( k ) , g w n ( k ) - 1 ) , d ( g x m ( k ) , g x n ( k ) - 1 ) , d ( g y m ( k ) , g y n ( k ) - 1 ) , d ( g z m ( k ) , g z n ( k ) - 1 ) ) .
(2.24)

From (2.21)–(2.24) and Remark 2.1, it follows that

ψ ( s max { d ( g x m ( k ) + 1 , g x n ( k ) ) , d ( g y m ( k ) + 1 , g y n ( k ) ) , d ( g z m ( k ) + 1 , g z n ( k ) ) , d ( g w m ( k ) + 1 , g w n ( k ) ) } ) ψ ( max { d ( g x m ( k ) , g x n ( k ) - 1 ) , d ( g y m ( k ) , g y n ( k ) - 1 ) , d ( g z m ( k ) , g z n ( k ) - 1 ) , d ( g w m ( k ) , g w n ( k ) - 1 ) } ) - min { ϕ ( d ( g x m ( k ) , g x n ( k ) - 1 ) , d ( g y m ( k ) , g y n ( k ) - 1 ) , d ( g z m ( k ) , g z n ( k ) - 1 ) , d ( g w m ( k ) , g w n ( k ) - 1 ) ) , ϕ ( d ( g y m ( k ) , g y n ( k ) - 1 ) , d ( g z m ( k ) , g z n ( k ) - 1 ) , d ( g w m ( k ) , g w n ( k ) - 1 ) , d ( g x m ( k ) , g x n ( k ) - 1 ) ) , ϕ ( d ( g z m ( k ) , g z n ( k ) - 1 ) , d ( g w m ( k ) , g w n ( k ) - 1 ) , d ( g x m ( k ) , g x n ( k ) - 1 ) , d ( g y m ( k ) , g y n ( k ) - 1 ) ) , ϕ ( d ( g w m ( k ) , g w n ( k ) - 1 ) , d ( g x m ( k ) , g x n ( k ) - 1 ) , d ( g y m ( k ) , g y n ( k ) - 1 ) , d ( g z m ( k ) , g z n ( k ) - 1 ) ) } .

Taking the upper limit as k in the above inequality and using (2.18) and (2.20), we have

ψ ( ε ) = ψ s ε s ψ ( ε ) - lim inf k min { ϕ ( d ( g x m ( k ) , g x n ( k ) - 1 ) , d ( g y m ( k ) , g y n ( k ) - 1 ) , d ( g z m ( k ) , g z n ( k ) - 1 ) , d ( g w m ( k ) , g w n ( k ) - 1 ) ) , ϕ ( d ( g y m ( k ) , g y n ( k ) - 1 ) , d ( g z m ( k ) , g z n ( k ) - 1 ) , d ( g w m ( k ) , g w n ( k ) - 1 ) , d ( g x m ( k ) , g x n ( k ) - 1 ) ) , ϕ ( d ( g z m ( k ) , g z n ( k ) - 1 ) , d ( g w m ( k ) , g w n ( k ) - 1 ) , d ( g x m ( k ) , g x n ( k ) - 1 ) , d ( g y m ( k ) , g y n ( k ) - 1 ) ) , ϕ ( d ( g w m ( k ) , g w n ( k ) - 1 ) , d ( g x m ( k ) , g x n ( k ) - 1 ) , d ( g y m ( k ) , g y n ( k ) - 1 ) , d ( g z m ( k ) , g z n ( k ) - 1 ) ) } .

Hence,

lim inf k min { ϕ ( d ( g x m ( k ) , g x n ( k ) - 1 ) , d ( g y m ( k ) , g y n ( k ) - 1 ) , d ( g z m ( k ) , g z n ( k ) - 1 ) , d ( g w m ( k ) , g w n ( k ) - 1 ) ) , ϕ ( d ( g y m ( k ) , g y n ( k ) - 1 ) , d ( g z m ( k ) , g z n ( k ) - 1 ) , d ( g w m ( k ) , g w n ( k ) - 1 ) , d ( g x m ( k ) , g x n ( k ) - 1 ) ) , ϕ ( d ( g z m ( k ) , g z n ( k ) - 1 ) , d ( g w m ( k ) , g w n ( k ) - 1 ) , d ( g x m ( k ) , g x n ( k ) - 1 ) , d ( g y m ( k ) , g y n ( k ) - 1 ) ) , ϕ ( d ( g w m ( k ) , g w n ( k ) - 1 ) , d ( g x m ( k ) , g x n ( k ) - 1 ) , d ( g y m ( k ) , g y n ( k ) - 1 ) , d ( g z m ( k ) , g z n ( k ) - 1 ) ) } = 0 ,

Therefore,

lim inf k ϕ ( d ( g x m ( k ) , g x n ( k ) - 1 ) , d ( g y m ( k ) , g y n ( k ) - 1 ) , d ( g z m ( k ) , g z n ( k ) - 1 ) , d ( g w m ( k ) , g w n ( k ) - 1 ) ) = 0 , or lim inf k ϕ ( d ( g y m ( k ) , g y n ( k ) - 1 ) , d ( g z m ( k ) , g z n ( k ) - 1 ) , d ( g w m ( k ) , g w n ( k ) - 1 ) , d ( g x m ( k ) , g x n ( k ) - 1 ) ) = 0 , or lim inf k ϕ ( d ( g z m ( k ) , g z n ( k ) - 1 ) , d ( g w m ( k ) , g w n ( k ) - 1 ) , d ( g x m ( k ) , g x n ( k ) - 1 ) , d ( g y m ( k ) , g y n ( k ) - 1 ) ) = 0 , or lim inf k ϕ ( d ( g w m ( k ) , g w n ( k ) - 1 ) , d ( g x m ( k ) , g x n ( k ) - 1 ) , d ( g y m ( k ) , g y n ( k ) - 1 ) , d ( g z m ( k ) , g z n ( k ) - 1 ) ) = 0 .

Using the properties of ϕ, it follows that

lim inf k d ( g x m ( k ) , g x n ( k ) - 1 ) = 0 , lim inf k d ( g y m ( k ) , g y n ( k ) - 1 ) = 0 , lim inf k d ( g z m ( k ) , g z n ( k ) - 1 ) = 0 and lim inf k d ( g w m ( k ) , g w n ( k ) - 1 ) = 0 .

Hence,

lim inf k max { d ( g x m ( k ) , g x n ( k ) - 1 ) , d ( g y m ( k ) , g y n ( k ) - 1 ) , d ( g z m ( k ) , g z n ( k ) - 1 ) , d ( g w m ( k ) , g w n ( k ) - 1 ) } = 0 ,

which is a contradiction to (2.19). Thus, { g x n } , { g y n } , { g z n } , and { g w n } are b-Cauchy sequences in X . Now, we show that F and g have a quadruple coincidence point. Since X is b-complete and { g x n } , { g y n } , { g z n } , and { g w n } are b-Cauchy sequences in X , there exists x , y , z , w X such that

lim n d ( g x n , x ) = 0 , lim n d ( g y n , y ) = 0 , lim n d ( g z n , z ) = 0 a n d lim n d ( g w n , w ) = 0 .
(2.25)

From (2.5) and (2.25), we get

lim n g x n = lim n F ( x n , y n , z n , w n ) = x , lim n g y n = lim n F ( y n , z n , w n , x n ) = y ,
lim n g z n = lim n F ( z n , w n , x n , y n ) = z lim n g w n = lim n F ( w n , x n , y n , z n ) = w .

Hence from the compatibility of F and g, we obtain

lim n d ( g F ( x n , y n , z n , w n ) , F ( g x n , g y n , g z n , g w n ) ) = 0 , lim n d ( g F ( y n , z n , w n , x n ) , F ( g y n , g z n , g w n , g x n ) ) = 0 , lim n d ( g F ( z n , w n , x n , y n ) , F ( g z n , g w n , g x n , g y n ) ) = 0 , and lim n d ( g F ( w n , x n , y n , z n ) , F ( g w n , g x n , g y n , g z n ) ) = 0 .
(2.26)

Further, from the continuity of F and g we get

lim n g F ( x n , y n , z n , w n ) = lim n g g x n + 1 = g x , lim n F ( g x n , g y n , g z n , g w n ) = F ( x , y , z , w ) , lim n g F ( y n , z n , w n , x n ) = lim n g g y n + 1 = g y , lim n F ( g y n , g z n , g w n , g x n ) = F ( y , z , w , x ) , lim n g F ( z n , w n , x n , y n ) = lim n g g z n + 1 = g z , lim n F ( g z n , g w n , g x n , g y n ) = F ( z , w , x , y ) , lim n g F ( w n , x n , y n , z n ) = lim n g g w n + 1 = g w and lim n F ( g w n , g x n , g y n , g z n ) = F ( w , x , y , z ) .

Thus from (2.26) and using Lemma 1.1, we have that g x = F ( x , y , z , w ) , g y = F ( y , z , w , x ) , g z = F ( z , w , x , y ) , g w = F ( w , x , y , z ) . Hence, ( x , y , z , w ) is a quadruple coincidence point of F and g .

By removing the continuity and compatibility assumptions of F and g in Theorem 2.1, we prove the following theorem.

Theorem 2.2

Let ( X , d , ) be a partially orderedb-metric space with parameter s 1 . Let F : X 4 X and g : X X be two mappings satisfying (2.3) for all x , y , z , w , u , v , r , t X , such that g x g u , g y g v , g z g r and g w g t , whereψandϕare the same as in Theorem2.1.Suppose that

  1. (i)

    F ( X 4 ) g ( X ) ,

  2. (ii)

    Fandgsatisfy property (2.1),

  3. (iii)

    there exist x 0 , y 0 , z 0 , w 0 X such that g x 0 F ( x 0 , y 0 , z 0 , w 0 ) , g y 0 F ( y 0 , z 0 , w 0 , x 0 ) , g z 0 F ( z 0 , w 0 , x 0 , y 0 ) and g w 0 F ( w 0 , x 0 , y 0 , z 0 ) ,

  4. (iv)

    g ( X ) is ab-complete subspace of X ,

  5. (v)

    if x n x when n in X , then x n x fornsufficiently large.

Then there exist x , y , z , w X such that g x = F ( x , y , z , w ) , g y = F ( y , z , w , x ) , g z = F ( z , w , x , y ) , and g w = F ( w , x , y , z ) . Moreover, if g x 0 , g y 0 , g z 0 and g w 0 are comparable, then g x = g y = g z = g w , and ifFandgarew-compatible, thenFandghave a quadruple coincidence point of the form ( p , p , p , p ) .

Proof

From Theorem 2.1, we have that { g x n } , { g y n } , { g z n } and { g w n } are b-Cauchy sequences in X . Since g ( X ) is a b-complete subspace of X and { g x n } , { g y n } , { g z n } , { g w n } g ( X ) , there exist x , y , z , w X such that

lim n d ( g x n , g x ) = lim n d ( g y n , g y ) = lim n d ( g z n , g z ) = lim n d ( g w n , g w ) = 0 .

Since g x n g x when n in X , then from condition (v) we obtain g x n g x for n sufficiently large. Similarly, we may show that g y n g y , g z n g z and g w n g w for n sufficiently large. For such n , using (2.3) we get

ψ ( s d ( F ( x , y , z , w ) , g x n + 1 ) ) = ψ ( s d ( F ( x , y , z , w ) , F ( x n , y n , z n , w n ) ) ) ψ ( max { d ( g x , g x n ) , d ( g y , g y n ) , d ( g z , g z n ) , d ( g w , g w n ) } ) - ϕ ( d ( g x , g x n ) , d ( g y , g y n ) , d ( g z , g z n ) , d ( g w , g w n ) ) .

From the above inequality, using Lemma 1.1, as n , and using the properties of ϕ we obtain

ψ 1 s d ( F ( x , y , z , w ) , g x ) ψ ( s lim sup n d ( F ( x , y , z , w ) , g x n + 1 ) ) = lim sup n ψ ( s d ( F ( x , y , z , w ) , g x n + 1 ) ) lim sup n ψ ( max { d ( g x , g x n ) , d ( g y , g y n ) , d ( g z , g z n ) , d ( g w , g w n ) } ) - lim inf n ϕ ( d ( g x , g x n ) , d ( g y , g y n ) , d ( g z , g z n ) , d ( g w , g w n ) ) ψ ( 0 ) - ϕ ( 0 , 0 , 0 , 0 ) = 0 .

Thus, F ( x , y , z , w ) = g x . Similarly, we can show that F ( y , z , w , x ) = g y , F ( z , w , x , y ) = g z and F ( w , x , y , z ) = g w .

Now, assume that g x 0 g y 0 g z 0 g w 0 . From (2.6), we have

g x n g x 0 , g y n g y 0 , g z n g z 0 and g w n g w 0 .

Then

g x g x n g x 0 g y 0 g y n g y , g y g y n g y 0 g z 0 g z n g z and g z g z n g z 0 g w 0 g w n g w for\, n sufficiently\,large.

Hence g x g y g z g w . Therefor by (2.3) we obtain

ψ ( max { d ( g x , g y ) , d ( g y , g z ) , d ( g z , g w ) , d ( g w , g x ) } ) ψ ( s max { d ( g x , g y ) , d ( g y , g z ) , d ( g z , g w ) , d ( g w , g x ) } ) ψ ( max { d ( g x , g y ) , d ( g y , g z ) , d ( g z , g w ) , d ( g w , g x ) } ) - min { ϕ ( d ( g x , g y ) , d ( g y , g z ) , d ( g z , g w ) , d ( g w , g x ) ) , ϕ ( d ( g y , g z ) , d ( g z , g w ) , d ( g w , g x ) , d ( g x , g y ) ) , ϕ ( d ( g z , g w ) , d ( g w , g x ) , d ( g x , g y ) , d ( g y , g z ) ) , ϕ ( d ( g w , g x ) , d ( g x , g y ) , d ( g y , g z ) , d ( g z , g w ) ) } .

Hence,

min { ϕ ( d ( g x , g y ) , d ( g y , g z ) , d ( g z , g w ) , d ( g w , g x ) ) , ϕ ( d ( g y , g z ) , d ( g z , g w ) , d ( g w , g x ) , d ( g x , g y ) ) , ϕ ( d ( g z , g w ) , d ( g w , g x ) , d ( g x , g y ) , d ( g y , g z ) ) , ϕ ( d ( g w , g x ) , d ( g x , g y ) , d ( g y , g z ) , d ( g z , g w ) ) } = 0 ,

which implies that

ϕ ( d ( g x , g y ) , d ( g y , g z ) , d ( g z , g w ) , d ( g w , g x ) ) = 0 or\; ϕ ( d ( g y , g z ) , d ( g z , g w ) , d ( g w , g x ) , d ( g x , g y ) ) = 0 or\; ϕ ( d ( g z , g w ) , d ( g w , g x ) , d ( g x , g y ) , d ( g y , g z ) ) = 0 or\; ϕ ( d ( g w , g x ) , d ( g x , g y ) , d ( g y , g z ) , d ( g z , g w ) ) } = 0 .

Then from the properties of ϕ we have d ( g x , g y ) = d ( g y , g z ) = d ( g z , g w ) = d ( g w , g x ) = 0 , that is g x = g y = g z = g w . Now, suppose that g x = g y = g z = g w = p , since F and g are w-compatible, then

g p = g g x = g ( F ( x , y , z , w ) ) = F ( g x , g y , g z , g w ) = F ( p , p , p , p ) .

So, F and g have a quadruple coincidence point of the form ( p , p , p , p ) .

Corollary 2.1

Replace the contractive condition (2.3)of Theorem2.1 (or Theorem2.2,respectively) by the following condition:

there exist ψ : [ 0 , ) [ 0 , ) such thatψis an altering distance function and φ : [ 0 , ) [ 0 , ) is continuous with φ ( t ) = 0 if and only if t = 0 such that

ψ ( s d ( F ( x , y , z , w ) , F ( u , v , r , t ) ) ) ψ ( max { d ( g x , g u ) , d ( g y , g v ) , d ( g z , g r ) , d ( g w , g t ) } ) - φ ( max { d ( g x , g u ) , d ( g y , g v ) , d ( g z , g r ) , d ( g w , g t ) } ) ,

for all x , y , z , w , u , v , r , t X and g x g u , g y g v , g z g r and g w g t . Let the other conditions of Theorem2.1(or Theorem2.2,respectively) be satisfied. Then,Fandghave a quadruple coincidence point.

Proof

We replace ϕ ( t 1 , t 2 , t 3 , t 4 ) = φ ( max ( t 1 , t 2 , t 3 , t 4 ) ) in Theorem 2.1 (or Theorem 2.2, respectively). So φ is continuous and φ ( t ) = 0 if and only if t = 0 .

Corollary 2.2

Replace the contractive condition (2.3)of Theorem2.1(or Theorem2.2,respectively) by the following condition:

d ( F ( x , y , z , w ) , F ( u , v , r , t ) ) k 4 s max { d ( g x , g u ) , d ( g y , g v ) , d ( g z , g r ) , d ( g w , g t ) } ,

for all x , y , z , w , u , v , r , t X , and g x g u , g y g v , g z g r and g w g t , where k [ 0 , 1 ) . Let the other conditions of Theorem2.1( or Theorem2.2) be satisfied. Then,Fandghave a quadruple coincidence point.

Proof

We take ψ ( t ) = t 4 and ϕ ( t 1 , t 2 , t 3 , t 4 ) = ( 1 - k ) 4 max ( t 1 , t 2 , t 3 , t 4 ) in Theorem 2.1 (or Theorem 2.2, respectively).

Corollary 2.3

Replace the contractive condition (2.3)of Theorem2.1(or Theorem2.2,respectively) by the following condition:

there exist ϕ : [ 0 , ) 4 [ 0 , ) is continuous with ϕ ( t 1 , t 2 , t 3 , t 4 ) = 0 if and only if t 1 = t 2 = t 3 = t 4 = 0 such that

d ( F ( x , y , z , w ) , F ( u , v , r , t ) ) 1 s max { d ( g x , g u ) , d ( g y , g v ) , d ( g z , g r ) , d ( g w , g t ) } - 1 s ϕ ( d ( g x , g u ) , d ( g y , g v ) , d ( g z , g r ) , d ( g w , g t ) ) ,

for all x , y , z , w , u , v , r , t X and g x g u , g y g v , g z g r and g w g t . Let the other conditions of Theorem2.1(or Theorem2.2,respectively) be satisfied. Then,Fandghave a quadruple coincidence point.

Proof

Taking ψ ( t ) = t in Theorem 2.1 (or Theorem 2.2, respectively), we have Corollary 2.3.

Corollary 2.4

Replace the contractive condition(2.3)of Theorem2.1(or Theorem2.2,respectively) by the following condition:

there exist ψ : [ 0 , ) [ 0 , ) such thatψis an altering distance function, and ϕ : [ 0 , ) 4 [ 0 , ) is continuous with ϕ ( t 1 , t 2 , t 3 , t 4 ) = 0 if and only if t 1 = t 2 = t 3 = t 4 = 0 such that

ψ ( s d ( F ( x , y , z , w ) , F ( u , v , r , t ) ) ) ψ d ( g x , g u ) + d ( g y , g v ) + d ( g z , g r ) + d ( g w , g t ) 4 - ϕ ( d ( g x , g u ) , d ( g y , g v ) , d ( g z , g r ) , d ( g w , g t ) ) ,

for all x , y , z , w , u , v , r , t X and g x g u , g y g v , g z g r and g w g t . Let the other conditions of Theorem2.1(or Theorem2.2,respectively) be satisfied. Then,Fandghave a quadruple coincidence point.

Proof

Since

( d ( g x , g u ) + d ( g y , g v ) + d ( g z , g r ) + d ( g w , g t ) 4 max { d ( g x , g u ) , d ( g y , g v ) , d ( g z , g r ) , d ( g w , g t ) } ,

and since ψ is assumed to be nondecreasing, then we apply Theorem 2.1 (or Theorem 2.2 respectively).

Corollary 2.5

Replace the contractive condition (2.3)of Theorem2.1(or Theorem2.2respectively) by the following condition

d ( F ( x , y , z , w ) , F ( u , v , r , t ) ) k 4 s ( d ( g x , g u ) + d ( g y , g v ) + d ( g z , g r ) + d ( g w , g t ) ) ,

for all x , y , z , w , u , v , r , t X and g x g u , g y g v , g z g r and g w g t , where k [ 0 , 1 ) . Let the other conditions of Theorem2.1(or Theorem2.2respectively) be satisfied. ThenFandghave a quadruple coincidence point.

Proof

We take ψ ( t ) = t and ϕ ( t 1 , t 2 , t 3 , t 4 ) = 1 - k 4 ( t 1 + t 2 + t 3 + t 4 ) in Corollary 2.4.

Now, we obtain some quadruple coincidence point results for mappings satisfying a contractive condition of integral type. We denote by Λ the set of all functions α : [ 0 , + ) [ 0 , + ) verifying the following conditions:

  1. (i)

    α is a positive Lebesgue integrable mapping on each compact subset of [ 0 , + )

  2. (ii)

    for all ε > 0 , we have 0 ε α ( t ) d t > 0 .

Let N N be a fixed positive integer. Let { α i } 1 i N be a family of N functions that belong to Λ . For all t 0 , we denote ( I i ) i = 1 , . . . , N as follows:

  • I 1 ( t ) = 0 t α 1 ( s ) d s ,

  • I 2 ( t ) = 0 I 1 ( t ) α 2 ( s ) d s = 0 0 t α 1 ( s ) d s α 2 ( s ) d s ,

  • I 3 ( t ) = 0 I 2 ( t ) α 3 ( s ) d s = 0 0 0 t α 1 ( s ) d s α 2 ( s ) d s α 3 ( s ) d s ,

  • I N ( t ) = 0 I N - 1 ( t ) α N ( s ) d s .

We have the following result.

Corollary 2.6

Replace the contractive condition (2.3)of Theorem2.1(or Theorem2.2respectively) by the following condition:

I N ( ψ ( s d ( F ( x , y , z , w ) , F ( u , v , r , t ) ) ) ) I N ( ψ ( max { d ( g x , g u ) , d ( g y , g v ) , d ( g z , g r ) , d ( g w , g t ) } ) ) - I N ( ϕ ( d ( g x , g u ) , d ( g y , g v ) , d ( g z , g r ) , d ( g w , g t ) ) ) .
(2.27)

Let the other conditions of Theorem2.1(or Theorem2.2respectively) be satisfied. ThenFandghave a quadruple coincidence point.

Proof

Consider the function Ψ = I N ψ and Φ = I N ϕ . Then (2.27) becomes

Ψ ( s d ( F ( x , y , z , w ) , F ( u , v , r , t ) ) ) Ψ ( max { d ( g x , g u ) , d ( g y , g v ) , d ( g z , g r ) , d ( g w , g t ) } ) - Φ ( d ( g x , g u ) , d ( g y , g v ) , d ( g z , g r ) , d ( g w , g t ) ) .

It is easy to show that Ψ is an altering distance function, Φ is continuous and Φ ( t 1 , t 2 , t 3 , t 4 ) = 0 if and only if t 1 = t 2 = t 3 = t 4 = 0 . Applying Theorem 2.1 (or Theorem 2.2 respectively) we obtain the proof.

In the case N = 1 , we have the following corollary.

Corollary 2.7

Replace the contractive condition (2.3)of Theorems2.1(or Theorem2.2respectively) by the following: There exists α Λ such that

0 ψ ( s d ( F ( x , y , z , w ) , F ( u , v , r , t ) ) ) α ( t ) d t 0 ψ ( max { d ( g x , g u ) , d ( g y , g v ) , d ( g z , g r ) , d ( g w , g t ) } ) α ( t ) d t - 0 ϕ ( d ( g x , g u ) , d ( g y , g v ) , d ( g z , g r ) , d ( g w , g t ) ) α ( t ) d t .

Let the other conditions of Theorem2.1(or Theorem2.2respectively) be satisfied. ThenFandghave a quadruple coincidence point.

Uniqueness of quadruple fixed point

In this section, we will show the uniqueness of a quadruple common fixed point.

For a product X 4 of a partially ordered set ( X , ) , we define a partial ordering in the following way. For all ( x , y , z , w ) , ( u , v , r , t ) X 4 ,

( x , y , z , w ) ( u , v , r , t ) x u , y v , z r , w t .
(3.1)

We say that ( x , y , z , w ) and ( u , v , r , t ) are comparable if

( x , y , z , w ) ( u , v , r , t ) or\, ( u , v , r , t ) ( x , y , z , w ) .

Also, we say that ( x , y , z , w ) is equal to ( u , v , r , t ) if and only if x = u , y = v , z = r , w = t .

Theorem 3.1

In addition to hypotheses of Theorem2.1(or Theorem2.2,respectively) assume that for all quadruple coincidence points ( x , y , z , w ) , ( u , v , r , t ) X 4 , there exists ( a , b , c , d ) X 4 such that

( F ( a , b , c , d ) , F ( b , c , d , a ) , F ( c , d , a , b ) , F ( d , a , b , c ) ) is comparable to both

( F ( x , y , z , w ) , F ( y , z , w , x ) , F ( z , w , x , y ) , F ( w , x , y , z ) ) and ( F ( u , v , r , t ) , F ( v , r , t , u ) , F ( r , t , u , v ) , F ( t , u , v , r ) ) . Then F and g have a unique quadruple common fixed point ( x , y , z , w ) such that x = g x = F ( x , y , z , w ) , y = g y = F ( y , z , w , x ) , z = g z = F ( z , w , x , y ) , and w = g w = F ( w , x , y , z ) .

Proof

Theorem 2.1 (or Theorem 2.2 respectively) implies that The set of quadruple coincidence points of F and g is not empty. Suppose that ( x , y , z , w ) and ( u , v , r , t ) are two quadruple coincidence points of F and g , that is, F ( x , y , z , w ) = g x , F ( u , v , r , t ) = g u , F ( y , z , w , x ) = g y , F ( v , r , t , u ) = g v , F ( z , w , x , y ) = g z , F ( r , t , u , v ) = g r , F ( w , x , y , z ) = g w , F ( t , u , v , r ) = g t . We show that ( g x , g y , g z , g w ) = ( g u , g v , g r , g t ) . By assumption, there exists ( a , b , c , d ) X 4 such that ( F ( a , b , c , d ) , F ( b , c , d , a ) , F ( c , d , a , b ) , F ( d , a , b , c ) ) is comparable to both

( F ( x , y , z , w ) , F ( y , z , w , x ) , F ( z , w , x , y ) , F ( w , x , y , z ) ) and ( F ( u , v , r , t ) , F ( v , r , t , u ) , F ( r , t , u , v ) , F ( t , u , v , r ) ) .

Since F ( X 4 ) g ( X ) , we can define the sequences { g a n } , { g b n } , { g c n } and { g d n } such that a 0 = a , b 0 = b , c 0 = c , d 0 = d , and

g a n + 1 = F ( a n , b n , c n , d n ) , g b n + 1 = F ( b n , c n , d n , a n ) , g c n + 1 = F ( c n , d n , a n , b n ) , g d n + 1 = F ( d n , a n , b n , c n ) ,

for all n 0 . Also, in the same way define the sequences { g x n } , { g y n } , { g z n } , { g w n } and { g u n } , { g v n } , { g r n } , { g t n } , such that x 0 = x , y 0 = y , z 0 = z , w 0 = w , and u 0 = u , v 0 = v , r 0 = r , t 0 = t , by

g x n + 1 = F ( x n , y n , z n , w n ) , g y n + 1 = F ( y n , z n , w n , x n ) , g z n + 1 = F ( z n , w n , x n , y n ) , g w n + 1 = F ( w n , x n , y n , z n ) , and g u n + 1 = F ( u n , v n , r n , t n ) , g v n + 1 = F ( v n , r n , t n , u n ) , g r n + 1 = F ( r n , t n , u n , v n ) , g t n + 1 = F ( t n , u n , v n , r n ) ,

for all n 0 . Since ( x , y , z , w ) and ( u , v , r , t ) are quadruple coincidence points of F and g , , then g x n = F ( x , y , z , w ) , g u n = F ( u , v , r , t ) , g y n = F ( y , z , w , x ) , g v n = F ( v , r , t , u ) , g z n = F ( z , w , x , y ) , g r n = F ( r , t , u , v ) , g w n = F ( w , x , y , z ) , g t n = F ( t , u , v , r ) , for all n 0 .

Since ( F ( x , y , z , w ) , F ( y , z , w , x ) , F ( z , w , x , y ) , F ( w , x , y , z ) ) = ( g x 1 , g y 1 , g z 1 , g w 1 ) = ( g x , g y , g z , g w ) is comparable to ( F ( a , b , c , d ) , F ( b , c , d , a ) , F ( c , d , a , b ) , F ( d , a , b , c ) ) = ( g a 1 , g b 1 , g c 1 , g d 1 ) , then it is easy to show g x g a 1 , g y g b 1 , g z g c 1 , g w g d 1 . In a similar way, we get that

g x g a n , g y g b n , g z g c n , g w g d n for\,all\; n .
(3.2)

From (2.3) and (3.2), we obtain

ψ ( s d ( g x , g a n + 1 ) ) = ψ ( s d ( F ( x , y , z , w ) , F ( a n , b n , c n , d n ) ) ) ψ ( max { d ( g x , g a n ) , d ( g y , g b n ) , d ( g z , g c n ) , d ( g w , g d n ) } ) - ϕ ( d ( g x , g a n ) , d ( g y , g b n ) , d ( g z , g c n ) , d ( g w , g d n ) ) ,
(3.3)
ψ ( s d ( g y , g b n + 1 ) ) = ψ ( s d ( F ( y , z , w , x ) , F ( b n , c n , d n , a n ) ) ) ψ ( max { d ( g y , g b n ) , d ( g z , g c n ) , d ( g w , g d n ) , d ( g x , g a n ) } ) - ϕ ( d ( g y , g b n ) , d ( g z , g c n ) , d ( g w , g d n ) , d ( g x , g a n ) ) ,
(3.4)
ψ ( s d ( g z , g c n + 1 ) ) = ψ ( s d ( F ( z , w , x , y ) , F ( c n , d n , a n , b n ) ) ) ψ ( max { d ( g z , g c n ) , d ( g w , g d n ) , d ( g x , g a n ) , d ( g y , g b n ) } ) - ϕ ( d ( g z , g c n ) , d ( g w , g d n ) , d ( g x , g a n ) , d ( g y , g b n ) ) ,
(3.5)

and

ψ ( s d ( g w , g d n + 1 ) ) = ψ ( s d ( F ( w , x , y , z ) , F ( d n , a n , b n , c n ) ) ) ψ ( max { d ( g w , g d n ) , d ( g x , g a n ) , d ( g y , g b n ) , d ( g z , g c n ) } ) - ϕ ( d ( g w , g d n ) , d ( g x , g a n ) , d ( g y , g b n ) , d ( g z , g c n ) ) .
(3.6)

Set

γ n = max { d ( g x , g a n ) , d ( g y , g b n ) , d ( g z , g c n ) , d ( g w , g d n ) } .

By (3.3)–(3.6) and Remark 2.1, we obtain that

ψ ( γ n + 1 ) ψ ( s γ n + 1 ) ψ ( γ n ) - min { ϕ ( d ( g x , g a n ) , d ( g y , g b n ) , d ( g z , g c n ) , d ( g w , g d n ) ) , ϕ ( d ( g y , g b n ) , d ( g z , g c n ) , d ( g w , g d n ) , d ( g x , g a n ) ) , ϕ ( d ( g z , g c n ) , d ( g w , g d n ) , d ( g x , g a n ) , d ( g y , g b n ) ) , ϕ ( d ( g w , g d n ) , d ( g x , g a n ) , d ( g y , g b n ) , d ( g z , g c n ) ) } ψ ( γ n ) .
(3.7)

Hence,

ψ ( γ n + 1 ) ψ ( γ n ) for\,all\; n N .

Since ψ is nondecreasing, then γ n + 1 γ n for all n . This implies that γ n is a non-increasing sequence. Therefore, there exists γ 0 such that

lim n γ n = γ .

We show that γ = 0 . Letting n , in (3.7), we get

ψ ( γ ) ψ ( γ ) - min { lim n ϕ ( d ( g x , g a n ) , d ( g y , g b n ) , d ( g z , g c n ) , d ( g w , g d n ) ) , lim n ϕ ( d ( g y , g b n ) , d ( g z , g c n ) , d ( g w , g d n ) , d ( g x , g a n ) ) , lim n ϕ ( d ( g z , g c n ) , d ( g w , g d n ) , d ( g x , g a n ) , d ( g y , g b n ) ) , lim n ϕ ( d ( g w , g d n ) , d ( g x , g a n ) , d ( g y , g b n ) , d ( g z , g c n ) ) } ψ ( γ ) .

Hence,

min { lim n ϕ ( d ( g x , g a n ) , d ( g y , g b n ) , d ( g z , g c n ) , d ( g w , g d n ) ) , lim n ϕ ( d ( g y , g b n ) , d ( g z , g c n ) , d ( g w , g d n ) , d ( g x , g a n ) ) , lim n ϕ ( d ( g z , g c n ) , d ( g w , g d n ) , d ( g x , g a n ) , d ( g y , g b n ) ) , lim n ϕ ( d ( g w , g d n ) , d ( g x , g a n ) , d ( g y , g b n ) , d ( g z , g c n ) ) } = 0 .

Therefore,

lim n ϕ ( d ( g x , g a n ) , d ( g y , g b n ) , d ( g z , g c n ) , d ( g w , g d n ) ) = 0 or lim n ϕ ( d ( g y , g b n ) , d ( g z , g c n ) , d ( g w , g d n ) , d ( g x , g a n ) ) = 0 or lim n ϕ ( d ( g z , g c n ) , d ( g w , g d n ) , d ( g x , g a n ) , d ( g y , g b n ) ) = 0 or lim n ϕ ( d ( g w , g d n ) , d ( g x , g a n ) , d ( g y , g b n ) , d ( g z , g c n ) ) } = 0 .

Using the properties of ϕ, we have

lim n d ( g x , g a n ) = lim n d ( g y , g b n ) = lim n d ( g z , g c n ) = lim n d ( g w , g d n ) = 0 .
(3.8)

Thus lim n γ n = 0 . Similarly, we can show that

lim n d ( g u , g a n ) = lim n d ( g v , g b n ) ) = lim n d ( g r , g c n ) = lim n d ( g t , g d n ) = 0 .
(3.9)

From (3.8) and (3.9), we conclude that ( g x , g y , g z , g w ) = ( g u , g v , g r , g t ) , That is the quadruple coincidence point of F and g is unique.

Denote g x = x , g y = y , g z = z , g w = w and since g x = F ( x , y , z , w ) , g y = F ( y , z , w , x ) , g z = F ( z , w , x , y ) , g w = F ( w , x , y , z ) so we have that

g x = g g x = g F ( x , y , z , w ) , g y = g g y = g F ( y , z , w , x ) ,
(3.10)
g z = g g z = g F ( z , w , x , y ) and\; g w = g g w = g F ( w , x , y , z ) .
(3.11)

By definition of the sequences { g x n } , { g y n } , { g z n } and { g w n } , we have

g x n = F ( x , y , z , w ) = F ( x n - 1 , y n - 1 , z n - 1 , w n - 1 ) , g y n = F ( y , z , w , x ) = F ( y n - 1 , z n - 1 , w n - 1 , x n - 1 ) , g z n = F ( z , w , x , y ) = F ( z n - 1 , w n - 1 , x n - 1 , y n - 1 ) , g w n = F ( w , x , y , z ) = F ( w n - 1 , x n - 1 , y n - 1 , z n - 1 ) .

Consequently,

lim n g x n = lim n F ( x n , y n , z n , w n ) = F ( x , y , z , w ) ,
(3.12)
lim n g y n = lim n F ( y n , z n , w n , x n ) = F ( y , z , w , x ) ,
(3.13)
lim n g z n = lim n F ( z n , w n , x n , y n ) = F ( z , w , x , y ) ,
(3.14)
lim n g w n = lim n F ( w n , x n , y n , z n ) = F ( w , x , y , z ) .
(3.15)

Case 1: In Theorem 2.1, from compatibility and continuity of F and g we obtain

lim n d ( g F ( x n , y n , z n , w n ) , F ( g x n , g y n , g z n , g w n ) ) = 0 , lim n d ( g F ( y n , z n , w n , x n ) , F ( g y n , g z n , g w n , g x n ) ) = 0 , lim n d ( g F ( z n , w n , x n , y n ) , F ( g z n , g w n , g x n , g y n ) ) = 0 , lim n d ( g F ( w n , x n , y n , z n ) , F ( g w n , g x n , g y n , g z n ) ) ) = 0 ,
(3.16)

where

lim n g F ( x n , y n , z n , w n ) = g F ( x , y , z , w ) , lim n F ( g x n , g y n , g z n , g w n ) = F ( g x , g y , g z , g w ) ) , lim n g F ( y n , z n , w n , x n ) = g F ( y , z , w , x ) , lim n F ( g y n , g z n , g w n , g x n ) = F ( g y , g z , g w , g x ) , lim n g F ( z n , w n , x n , y n ) = g F ( z , w , x , y ) , lim n F ( g z n , g w n , g x n , g y n ) = F ( g z , g w , g x , g y ) , lim n g F ( w n , x n , y n , z n ) = g F ( w , x , y , z ) , lim n F ( g w n , g x n , g y n , g z n ) ) = F ( g w , g x , g y , g z ) .

Thus from Lemma 1.1, we conclude that

g F ( x , y , z , w ) = F ( g x , g y , g z , g w ) , g F ( y , z , w , x ) = F ( g y , g z , g w , g x ) , g F ( z , w , x , y ) = F ( g z , g w , g x , g y ) , g F ( w , x , y , z ) = F ( g w , g x , g y , g z ) .

Moreover, from (3.10) implies that

g x = F ( x , y , z , w ) , g y = F ( y , z , w , x ) , g z = F ( z , w , x , y ) , g w = F ( w , x , y , z ) .

Case 2: In Theorem 2.2 since F and g are w-compatible, then

g x = g g x = g ( F ( x , y , z , w ) ) = F ( g x , g y , g z , g w ) = F ( x , y , z , w ) g y = g g y = g ( F ( y , z , w , x ) ) = F ( g y , g z , g w , g x ) = F ( y , z , w , x ) g z = g g z = g ( F ( z , w , x , y ) ) = F ( g z , g w , g x , g y ) = F ( z , w , x , y ) g w = g g w = g ( F ( w , x , y , z ) ) = F ( g w , g x , g y , g z ) = F ( w , x , y , z ) .

Thus, in the two cases we conclude that ( x , y , z , w ) is another quadruple coincidence point of F and g . Hence, ( g x , g y , g z , g w ) = ( g x , g y , g z , g w ) . Therefore

g x = g x = x , g y = g y = y , g z = g z = z , and g w = g w = w .

Hence, ( x , y , z , w ) is a quadruple common fixed point of F and g . The uniqueness of a quadruple common fixed point follows easily from the uniqueness of a quadruple coincidence point.

Now, we give an example to justify the hypotheses of Theorem 2.1.

Example 3.1

Let X = [ 0 , ) be equipped with the b-metric d ( x , y ) = ( x - y ) 2 for all x , y X , where s = 2 , and suppose that is the usual ordering on X . Obviously, ( X , d , ) is a partially ordered complete b-metric space. Let F : X 4 X and g : X X be defined by

F ( x , y , z , w ) = x 2 + y 2 + z 2 + w 2 16 a n d g ( x ) = x 2 .

It is easy to see that g and F are compatible. Define ψ : [ 0 , ) [ 0 , ) by ψ ( t ) = k t and ϕ : [ 0 , ) 4 [ 0 , ) by ϕ ( t 1 , t 2 , t 3 , t 4 ) = k - 1 4 ( t 1 + t 2 + t 3 + t 4 ) , where 1 k 8 . Then, ψ and ϕ have the properties mentioned in Theorem 2.1. Further, for all x , y , z , w , u , v , r , t X , we have g x g u , g y g v , g z g r and g w g t . Hence,

ψ ( s d ( F ( x , y , z , w ) , F ( u , v , r , t ) ) ) = ψ 2 x 2 + y 2 + z 2 + w 2 16 - u 2 + v 2 + r 2 + t 2 16 2 = k 128 ( ( x 2 - u 2 ) + ( y 2 - v 2 ) + ( z 2 - r 2 ) + ( w 2 - t 2 ) ) 2 4 k 128 ( x 2 - u 2 ) 2 + ( y 2 - v 2 ) 2 + ( z 2 - r 2 ) 2 + ( w 2 - t 2 ) 2 = k 32 ( d ( g x , g u ) + d ( g y , g v ) + d ( g z , g r ) + d ( g w , g t ) ) 8 32 ( d ( g x , g u ) + d ( g y , g v ) + d ( g z , g r ) + d ( g w , g t ) ) = 1 4 ( d ( g x , g u ) + d ( g y , g v ) + d ( g z , g r ) + d ( g w , g t ) ) = k 4 ( d ( g x , g u ) + d ( g y , g v ) + d ( g z , g r ) + d ( g w , g t ) ) - k - 1 4 ( d ( g x , g u ) + d ( g y , g v ) + d ( g z , g r ) + d ( g w , g t ) ) k max { d ( g x , g u ) , d ( g y , g v ) , d ( g z , g r ) , d ( g w , g t ) } - ϕ ( d ( g x , g u ) , d ( g y , g v ) , d ( g z , g r ) , d ( g w , g t ) ) = ψ ( max { d ( g x , g u ) , d ( g y , g v ) , d ( g z , g r ) , d ( g w , g t ) } ) - ϕ ( d ( g x , g u ) , d ( g y , g v ) , d ( g z , g r ) , d ( g w , g t ) ) .

So, F and g satisfy all the conditions of Theorem and ( 0 , 0 , 0 , 0 ) is a quadruple coincidence point of F and g . Moreover, by Theorem 3.1 ( 0 , 0 , 0 , 0 ) is the unique quadruple common fixed point of F and g .

Note that, in this case F does not have the g-mixed monotone property, so the results of paper [25] cannot be applied.