Skip to main content
Log in

A central limit theorem for fluctuations in 1D stochastic homogenization

  • Published:
Stochastics and Partial Differential Equations: Analysis and Computations Aims and scope Submit manuscript

Abstract

In this paper, we analyze the random fluctuations in a 1D stochastic homogenization problem and prove a central limit theorem: the first order fluctuations is described by a Gaussian process that solves an SPDE with an additive spatial white noise. Using a probabilistic approach, we obtain a precise error decomposition up to the first order, which also helps to decompose the limiting Gaussian process, with one of the components corresponding to the corrector obtained by a formal two-scale expansion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bal, G.: Central limits and homogenization in random media. Multiscale Model. Simul. 7(2), 677–702 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bal, G., Garnier, J., Motsch, S., Perrier, V.: Random integrals and correctors in homogenization. Asymptot. Anal. 59(1–2), 1–26 (2008)

    MathSciNet  MATH  Google Scholar 

  3. Billingsley, P.: Convergence of Probability Measures. Wiley, New York (1999)

    Book  MATH  Google Scholar 

  4. Bourgeat, A., Piatnitski, A.: Estimates in probability of the residual between the random and the homogenized solutions of one-dimensional second-order operator. Asymptot. Anal. 21, 303–315 (1999)

    MathSciNet  MATH  Google Scholar 

  5. Duerinckx, M., Gloria, A., and Otto, F.: The structure of fluctuations in stochastic homogenization. arXiv:1602.01717 (2016)

  6. Gloria,A., Otto, F.: Quantitative results on the corrector equation in stochastic homogenization. J. Eur. Math. Soc. arXiv:1409.0801 (to appear)

  7. Gloria, A., Otto, F.: An optimal variance estimate in stochastic homogenization of discrete elliptic equations. Ann. Probab. 39, 779–856 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  8. Gloria, A., Neukamm, S., Otto, F.: Quantification of ergodicity in stochastic homogenization: optimal bounds via spectral gap on glauber dynamics. Invent. Math. 199, 455–515 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  9. Gloria, A., Neukamm, S., Otto, F.: An optimal quantitative two-scale expansion in stochastic homogenization of discrete elliptic equations. ESAIM Math. Model. Numer. Anal. 48, 325–346 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  10. Gu, Y., Mourrat, J.-C.: Pointwise two-scale expansion for parabolic equations with random coefficients. Probab. Theory Relat. Fields. arXiv:1410.2157 (to appear)

  11. Gu, Y., Mourrat, J.-C.: Scaling limit of fluctuations in stochastic homogenization. Multiscale Model. Simul. arXiv:1503.00578 (to appear)

  12. Gu, Y., Bal, G.: Random homogenization and convergence to integrals with respect to the Rosenblatt proces. J. Differ. Equ. 253(4), 1069–1087 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  13. Gu, Y., Bal, G.: Fluctuations of parabolic equations with large random potentials. Stoch. Part. Differ. Equ. Anal. Comput. 3, 1–51 (2015)

    MathSciNet  MATH  Google Scholar 

  14. Iftimie, B., Pardoux, È., Piatnitski, A.: Homogenization of a singular random one-dimensional pde. In: Annales de l’IHP Probabilités et statistiques, vol. 44, pp. 519–543 (2008)

  15. Jikov, V.V., Kozlov, S.M., Oleinik, O.A.: Homogenization of Differential Operators and Integral Functionals. Springer, New York (1994)

    Book  Google Scholar 

  16. Kipnis, C., Varadhan, S.: Central limit theorem for additive functionals of reversible markov processes and applications to simple exclusions. Commun. Math. Phys. 104, 1–19 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  17. Komorowski, T., Landim, C., Olla, S.: Fluctuations in Markov processes, vol. 345 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences]. Time symmetry and martingale approximation. Springer, Heidelberg (2012)

  18. Kozlov, S.M.: Averaging of random operators. Mat. Sb. 151, 188–202 (1979)

    MathSciNet  Google Scholar 

  19. Mourrat, J.-C.: Kantorovich distance in the martingale clt and quantitative homogenization of parabolic equations with random coefficients. Probab. Relat. Fields 160, 279–314 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  20. Mourrat, J.-C., Nolen, J.: Scaling limit of the corrector in stochastic homogenization. arXiv:1502.07440 (2015)

  21. Nualart, D.: The Malliavin Calculus and Related Topics, vol. 1995. Springer, Berlin (2006)

    MATH  Google Scholar 

  22. Papanicolaou, G.C., Varadhan, S.R.S.: Boundary value problems with rapidly oscillating random coefficients, in Random fields, vol. I, II (Esztergom, 1979) Colloq. Math. Soc. János Bolyai, vol. 27. North Holland, Amsterdam, pp. 835–873 (1981)

  23. Stroock, D.W.: Diffusion semigroups corresponding to uniformly elliptic divergence form operators. In: Séminaire de Probabilités XXII, Springer, Berlin, pp. 316–347 (1988)

Download references

Acknowledgments

We would like to thank the anonymous referees for their very careful reading of the manuscript which leads to a much improved presentation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu Gu.

Appendix: Technical lemmas

Appendix: Technical lemmas

Lemma 6.1

\(\mathbb {E}\{|\tilde{\phi }(x)|^2\}\lesssim |x|\) and \(\mathbb {E}\{|\tilde{\psi }(x)|^2\}\lesssim |x|^3\).

Proof

Since \(\tilde{\phi }(x)=\bar{a}\int _0^x \tilde{V}(y)dy\) and R(x) is the integrable covariance function of \(\tilde{V}\), we have

$$\begin{aligned} \mathbb {E}\big \{|\tilde{\phi }(x)|^2\big \}\lesssim \int _0^x\int _0^x R(y-z)dydz \lesssim |x|. \end{aligned}$$

For \(\tilde{\psi }(x)\), by (3.11) we have

$$\begin{aligned} \tilde{\psi }(x)=-\frac{2}{\bar{a}}\int _0^x \tilde{\phi }(y)\big (\tilde{V}(y)+\bar{a}^{-1}\big )dy=-2\int _0^x(\tilde{V}(y)+\bar{a}^{-1})\int _0^y \tilde{V}(z)dzdy, \end{aligned}$$

so

$$\begin{aligned} \begin{aligned}&\mathbb {E}\{|\tilde{\psi }(x)|^2\}\\&\quad \lesssim \int _0^x\int _0^x\int _0^{y_1}\int _0^{y_2}|\mathbb {E}\{(\tilde{V}(y_1)+\bar{a}^{-1})(\tilde{V}(y_2)+\bar{a}^{-1})\tilde{V}(z_1)\tilde{V}(z_2)\}|dz_1dz_2dy_1dy_2. \end{aligned} \end{aligned}$$

In the above expression, we need to control the second, third and fourth moments of \(\tilde{V}\), which is a mean-zero stationary random field of finite range dependence. For the term with the second moment, we have

$$\begin{aligned} \int _0^x\int _0^x \int _0^{y_1}\int _0^{y_2}|R(z_1-z_2)|dz_1dz_2dy_1dy_2\lesssim |x|^3. \end{aligned}$$

The other cases are discussed in the same way by applying Lemma 6.2. \(\square \)

Lemma 6.2

(Moment estimates) For any \(x_i\in \mathbb {R}, i=1,2,3,4\), we have

$$\begin{aligned} |\mathbb {E}\left\{ \prod _{i=1}^3 \tilde{V}(x_i)\right\} |\le \rho (|x_1-x_2|)+\rho (|x_1-x_3|)+\rho (|x_2-x_3|), \end{aligned}$$
(5.9)

and

$$\begin{aligned} \begin{aligned} |\mathbb {E}\left\{ \prod _{i=1}^4 \tilde{V}(x_i)\right\} |&\le \rho (|x_1-x_2|)\rho (|x_3-x_4|)+\rho (|x_1-x_3|)\rho (|x_2-x_4|)\\&\quad +\rho (|x_1-x_4|)\rho (|x_2-x_3|) \end{aligned} \end{aligned}$$
(5.10)

for some \(\rho :\mathbb {R}_+\rightarrow \mathbb {R}_+\) satisfying \(\rho (r)\lesssim 1\wedge r^{-p}\) for any \(p>0\).

Proof

Since \(\tilde{V}\) is bounded, mean zero and of finite range dependence, (5.10) comes from [1, Lemma 3.1]. For (5.9), it is clear that there exists a compactly supported \(\rho :\mathbb {R}_+\rightarrow \mathbb {R}_+\) such that

$$\begin{aligned} \begin{aligned} |\mathbb {E}\left\{ \prod _{i=1}^3 \tilde{V}(x_i)\right\} |&\le \rho (\min \{ |x_1-x_2|,|x_1-x_3|,|x_2-x_3|\})\\ \le&\rho (|x_1-x_2|)+\rho (|x_1-x_3|)+\rho (|x_2-x_3|). \end{aligned} \end{aligned}$$

The proof is complete. \(\square \)

Lemma 6.3

(Estimates on local time) Let \(L_t^x(y)\) be the local time of a standard Brownian motion \(W_t\) starting from x up to t, then for any \(p\ge 1\),

$$\begin{aligned} \mathbb {E}\{|L_t^x(y)|^p\}\lesssim t^{\frac{p}{2}}\int _{|y-x|}^\infty q_t(z)dz. \end{aligned}$$

Proof

First, \(L_t^x(y)\) has the same distribution as \(L_t^0(y-x)\). By the strong Markov property of Brownian motion and distribution property of \(L_t^0(0)\), we further have

$$\begin{aligned} L_t^0(y-x)\sim L_{t-\tau _{y-x}}^0(0)1_{\tau _{y-x}\le t}\sim M_{t-\tau _{y-x}}1_{\tau _{y-x}\le t}, \end{aligned}$$

where \(\tau _{y-x}\) is the hitting time of another independent Brownian motion starting at zero and reaching at \(y-x\), and \(M_t\) is the maximum of \(W_t\) during [0, t]. Thus we have

$$\begin{aligned} \begin{aligned} \mathbb {E}\{|L_t^x(y)|^p\}=\int _0^t \mathbb {E}\{ |M_{t-s}|^p\} p^{\tau _{y-x}}(s)ds\lesssim&t^{\frac{p}{2}}\int _0^t p^{\tau _{y-x}}(s)ds\\ =&\,\, t^{\frac{p}{2}} {\mathbb {P}}(\tau _{y-x}\le t), \end{aligned} \end{aligned}$$

with \(p^{\tau _{y-x}}\) the density of \(\tau _{y-x}\). The reflection principle tells that

$$\begin{aligned} {\mathbb {P}}(\tau _{y-x}\le t)=2\int _{|y-x|}^\infty q_t(z)dz. \end{aligned}$$

The proof is complete. \(\square \)

Lemma 6.4

(SPDE representation) Let \(v(t,x)=\mathbb {E}_W\{ f(x+W_t)\int _0^t \dot{\mathcal {W}}(x+W_s)ds\}\), then it solves

$$\begin{aligned} \partial _t v(t,x)=\frac{1}{2}\partial _{x}^2v(t,x)+ u(t,x)\dot{\mathcal {W}}(x) \end{aligned}$$
(5.11)

with zero initial condition, and the function u solving \(\partial _t u=\frac{1}{2}\partial _{x}^2 u\) with initial condition \(u(0,x)=f(x)\).

Proof

The proof is similar to that of Proposition 5.1. First, we approximate the SPDE with a smooth equation. Then we use the probabilistic representation of the smooth equation and show its convergence.

The solution to (5.11) can be written as

$$\begin{aligned} v(t,x)= & {} \int _0^t \int _\mathbb {R}q_{t-s}(x-y)u(s,y)\mathcal {W}(dy)ds\\= & {} \int _\mathbb {R}\left( \int _0^tq_{t-s}(x-y)u(s,y)ds\right) \mathcal {W}(dy), \end{aligned}$$

and we define \(v_\varepsilon (t,x)\) as

$$\begin{aligned} v_\varepsilon (t,x)= & {} \int _0^t \int _\mathbb {R}q_{t-s}(x-y)u(s,y)\mathcal {W}_\varepsilon (y)dyds\\= & {} \int _\mathbb {R}\left( \int _0^tq_{t-s}(x-y)u(s,y)ds\right) \mathcal {W}_\varepsilon (y)dy, \end{aligned}$$

with

$$\begin{aligned} \mathcal {W}_\varepsilon (y)=\int _\mathbb {R}\frac{1}{\varepsilon }h\Big (\frac{x-y}{\varepsilon }\Big )\mathcal {W}(dy) \end{aligned}$$

as a smooth mollification of \(\mathcal {W}\). It is clear that \(v_\varepsilon (t,x)\rightarrow v(t,x)\) in \(L^2(\Omega )\) as \(\varepsilon \rightarrow 0\).

Since \(v_\varepsilon \) solves the equation

$$\begin{aligned} \partial _t v_\varepsilon =\frac{1}{2}\partial _x^2 v_\varepsilon +u \mathcal {W}_\varepsilon , \end{aligned}$$

by a probabilistic representation we can rewrite the solution as

$$\begin{aligned} v_\varepsilon (t,x)=\mathbb {E}_W\left\{ \int _0^t u(t-s,x+W_s)\mathcal {W}_\varepsilon (x+W_s)ds\right\} . \end{aligned}$$

Since u solves the heat equation with initial condition \(u(0,x)=f(x)\), we obtain

$$\begin{aligned} \begin{aligned} v_\varepsilon (t,x)&=\mathbb {E}_W\mathbb {E}_B\left\{ \int _0^t f(x+W_s+B_{t-s})\mathcal {W}_\varepsilon (x+W_s)ds\right\} \\&= \mathbb {E}_W\left\{ f(x+W_t)\int _0^t \mathcal {W}_\varepsilon (x+W_s)ds\right\} \\&= \mathbb {E}_W\left\{ f(x+W_t)\int _\mathbb {R}\mathcal {W}_\varepsilon (y) L_t^x(y)dy\right\} , \end{aligned} \end{aligned}$$

where \(L_t^x(y)\) is the local time of \(x+W_t\).

By Lemma 6.3, for any \(p\ge 1\), \(\mathbb {E}\{|L_t^x(y)|^p\}\) can be bounded by some integrable function in y, and this helps to pass to the limit

$$\begin{aligned}&v_\varepsilon (t,x)\rightarrow \mathbb {E}_W\left\{ f(x+W_t)\int _\mathbb {R}L_t^x(y)\mathcal {W}(dy)\right\} \\&\quad =\mathbb {E}_W\left\{ f(x+W_t)\int _0^t \dot{\mathcal {W}}(x+W_s)ds\right\} \end{aligned}$$

in \(L^2(\Omega )\). The proof is complete. \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gu, Y. A central limit theorem for fluctuations in 1D stochastic homogenization. Stoch PDE: Anal Comp 4, 713–745 (2016). https://doi.org/10.1007/s40072-016-0075-0

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40072-016-0075-0

Keywords

Mathematics Subject Classification

Navigation