Skip to main content
Log in

Normal approximation for the net flux through a random conductor

  • Published:
Stochastics and Partial Differential Equations: Analysis and Computations Aims and scope Submit manuscript

Abstract

We consider solutions of an elliptic partial differential equation in \({\mathbb R}^d\) with a stationary, random conductivity coefficient. The boundary condition on a square domain of width L is chosen so that the solution has a macroscopic unit gradient. We then consider the average flux through the domain. It is known that in the limit \(L \rightarrow \infty \), this quantity converges to a deterministic constant, almost surely. Our main result is about normal approximation for this flux when L is large: we give an estimate of the Kantorovich–Wasserstein distance between the law of this random variable and that of a normal random variable. This extends a previous result of the author (Probab Theory Relat Fields, 2013. doi:10.1007/s00440-013-0517-9) to a much larger class of random conductivity coefficients. The analysis relies on elliptic regularity, on bounds for the Green’s function, and on a normal approximation method developed by Chatterjee (Ann Probab 36:1584–1610, 2008) based on Stein’s method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bal, G., Garnier, J., Motsch, S., Perrier, V.: Random integrals and correctors in homogenization. Asymptot. Anal. 59, 1–26 (2008)

    MathSciNet  MATH  Google Scholar 

  2. Bergin, S.M., Rathmell, A.R., Chen, Y.-H., Charbonneau, P., Li, Z.-Y., Wiley, B.J.: The effect of nanowire length and diameter on the properties of transparent, conducting nanowire films. Nanoscale 4, 1996–2004 (2012)

    Article  Google Scholar 

  3. Biskup, M.: Recent progress on the random conductance model. Probab. Surv. 8, 294–373 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  4. Biskup, M., Salvi, M., Wolff, T.: A central limit theorem for the effective conductance: linear boundary data and small ellipticity contrasts. Commun. Math. Phys. 328, 701–731 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  5. Boivin, D.: Tail estimates for homogenization theorems in random media. ESAIM Probab. Stat. 13, 51–69 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bourgeat, A., Piatnitski, A.: Approximations of effective coefficients in stochastic homogenization. Ann. I.H. Poincaré 40, 153–165 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  7. Bourgeat, A., Piatnitski, A.: Estimates in probability of the residual between the random and the homogenized soutions of one-dimensional second-order operator. Asympt. Anal. 21, 303–315 (1999)

    MathSciNet  MATH  Google Scholar 

  8. Chatterjee, S.: A new method of normal approximation. Ann. Probab. 36, 1584–1610 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  9. Chatterjee, S.: Fluctuations of eigenvalues and second order Poincaré inequalities. Probab. Theory Relat. Fields 143, 1–40 (2009)

    Article  MATH  Google Scholar 

  10. Conlon, J., Naddaf, A.: Green’s functions for elliptic and parabolic equations with random coefficients. N. Y. J. Math. 6, 153–225 (2000)

    MathSciNet  MATH  Google Scholar 

  11. Delmotte, T., Deuschel, J.-D.: On estimating the derivatives of symmetric diffusions in stationary random environments, with applications to the \(\nabla \phi \) interface model. Probab. Theory Relat. Fields 133, 358–390 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  12. Efron, B., Stein, C.: The jackknife estimate of variance. Ann. Stat. 9, 586–596 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  13. Gilbarg, D., Trudinger, N.: Elliptic Partial Differential Equations of Second Order. Springer, New York (2001)

    MATH  Google Scholar 

  14. Giaquinta, M.: Multiple Integrals in the Calculus of Variations and Nonlinear Elliptic Systems. Princeton University Press, Princeton (1983)

    MATH  Google Scholar 

  15. Gloria, A., Marahrens, D.: Annealed Estimates on the Green Functions and Uncertainty Quantification. Annales de l’Institut Henri Poincaré—Analyse Non Linéaire (2015)

  16. Gloria, A., Neukamm, S., Otto, F.: Quantification of ergodicity in stochastic homogenization: optimal bounds via spectral gap on Glauber dynamics. Invent. Math. (2014). doi:10.1007/s00222-014-0518-z

    MathSciNet  MATH  Google Scholar 

  17. Gloria, A.: Fluctuation of solutions to linear elliptic equations with noisy diffusion coefficients. Commun. PDE 38, 304–338 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  18. Gloria, A., Otto, F.: An optimal variance estimate in stochastic homogenization of discrete elliptic equations. Ann. Probab. 39, 779–856 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  19. Gloria, A., Otto, F.: An optimal error estimate in stochastic homogenization of discrete elliptic equations. Ann. Appl. Probab. 22, 1–28 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  20. Gloria, A., Otto, F.: Quantitative results on the corrector equation in stochastic homogenization. J. Eur. Math. Soc. to appear. arxiv:1409.0801

  21. Gloria, A., Otto, F.: Quantitative Estimates on the Periodic Approximation of the Corrector in Stochastic Homogenization. Preprint 2014. arxiv:1409.1161

  22. Grüter, M., Widman, Kjell-Ove: The Green function for uniformly elliptic equations. Manuscr. Math. 37, 303–342 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  23. Han, Q., Lin, F.: Elliptic Partial Differential Equations, 2nd edn. American Mathematical Society, Courant Lecture Notes (2011)

  24. Jikov, V.V., Kozlov, S.M., Oleinik, O.A.: Homogenization of Differential Operators and Integral Functionals. Springer, New York (1994)

    Book  Google Scholar 

  25. Komorowski, T., Ryzhik, L.: A sharp bound on the \(L^2\) norm of the solution of a random elliptic difference equation. Commun. Math. Sci. 9, 607–622 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  26. Kozlov, S.M.: The averaging of random operators. Math. USSR Sb. 109, 188–202 (1979)

    MathSciNet  Google Scholar 

  27. Marahrens, D., Otto, F.: Annealed Estimates on the Green Function. Preprint 2013. arxiv:1304.4408

  28. Meyers, N.: An \(L^p\)-estimate for the gradient of solutions of second order elliptic divergence equations. Ann. Sc. Norm. Super. Pisa Classe Di Sci. 17, 189–206 (1963)

    MathSciNet  MATH  Google Scholar 

  29. Mourrat, J.-C., Otto, F.: Correlation Structure of the Correcto in Stochastic Homogenization. Preprint 2014. arxiv:1402.1924

  30. Naddaf, A., Spencer, T.: Estimates on the Variance of Some Homogenization Problems. Unpublished manuscript (1998)

  31. Nolen, J.: Normal approximation for a random elliptic equation. Probab. Theory Relat. Fields (2013). doi:10.1007/s00440-013-0517-9

  32. Nolen, J., Otto, F.: Manuscript in preparation

  33. Owhadi, H.: Approximation of the effective conductivity of ergodic media by periodization. Probab. Theory Relat. Fields 125, 225–258 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  34. Papanicolaou, G.C., Varadhan, S.R.S.: Boundary Value Problems with Rapidly Oscillating Random Coefficients. Random Fields, vol. I, II, pp. 835–873 (Esztergom, 1979), Colloq. Math. Soc. János Bolyai, 27 North Holland, New York (1979)

  35. Rossignol, R.: Noise-Stability and Central Limit Theorems for Effective Resistance of Random Electric Networks. Annals of Probability, to appear (2015)

  36. Steele, J.M.: An Efron–Stein inequality for nonsymmetric statistics. Ann. Stat. 14, 753–758 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  37. Stein, C.: Approximate Computation of Expectations. IMS Lecture Notes—Monograph Series 7. IMS, Hayward (1972)

  38. Torquato, S.: Random Heterogeneous Materials. Springer, New York (2001)

    MATH  Google Scholar 

  39. Wehr, J.: A lower bound on the variance of conductance in random resistor networks. J. Stat. Phys. 86(5,6), 1359–1365 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  40. Yurinskii, V.V.: Averaging of symmetric diffusion in a random medium. Sib. Math. J. 4, 603–613 (1986)

    MathSciNet  Google Scholar 

Download references

Acknowledgments

I am grateful to Felix Otto for very helpful discussions. This work was partially funded by Grant DMS-1007572 from the US National Science Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James Nolen.

Appendix: Estimates for the periodic Green’s function

Appendix: Estimates for the periodic Green’s function

1.1 \(d \ge 3\): Proof of Lemma 4.4

Here we follow ideas used to prove a uniform decay estimate for Green’s functions in \({\mathbb R}^d\), as in Theorem 1.1 of [22] and Lemma 2.8 of [18]; the difference here is the periodicity, so we include a proof for completeness. Let \(y \in D_L\) and let u(x) satisfy

$$\begin{aligned} - \nabla \cdot (a \nabla u) + \beta u = \delta _y - |D_L|^{-1}, \quad x \in D_L. \end{aligned}$$
(5.1)

in the weak sense. Here \(\beta \ge 0\) is a constant, which we allow for the sake of generality; the Green function in Lemma 4.4 is \(u(x) = G(x,y)\) with \(\beta = 0\). Suppose that u also satisfies

$$\begin{aligned} |\{ x \in D_L\;|\; u(x) > 0 \}| \le \frac{1}{2} |D_L|. \end{aligned}$$
(5.2)

(If this is not the case, then we could apply the same argument to the function \(-u\) instead.) Then, for any \(k > 0\), the function \(u_k(x) = \max (0,\min (u,k))\) satisfies

$$\begin{aligned} |\{ x \in D_L\;|\; u_k(x) \ne 0 \}| = |\{ x \in D_L\;|\; u(x) > 0 \}| \le \frac{1}{2} |D_L|. \end{aligned}$$
(5.3)

Since \(||u_k ||_\infty \le k\), we observe that \(u_k\) satisfies

$$\begin{aligned} \int _{D_L} \nabla u_k \cdot a \nabla u_k \,dx = \int _{D_L} \nabla u \cdot a \nabla u_k \,dx \le - \beta \int _{D_L} u u_k \,dx + 2k \le 2k. \end{aligned}$$

Therefore,

$$\begin{aligned} \int _{D_L} |\nabla u_k|^2 \,dx \le 2 k/a_* . \end{aligned}$$
(5.4)

Considering (5.3), we know there is a constant C, independent of k, L and \(\beta \), such that

$$\begin{aligned} \left( \int _{D_L} |u_k|^q \,dx \right) ^{1/q} \le C \left( \int _{D_L} |\nabla u_k|^2 \,dx \right) ^{1/2} \end{aligned}$$
(5.5)

where \(q = 2d/(d-2)\) is the critical Sobolev exponent. By scaling, this is a consequence of the Sobolev imbedding theorem and the Poincaré inequality for functions \(v \in H^1_{per}(D_1)\) which also satisfy \(|\{ x \in D_1\;|\; v(x) = 0 \}| \ge 1/2\) (for example, see Lemma 4.8 of [23]). By applying Chebychev’s inequality, then (5.5) and (5.4), we obtain the estimate

$$\begin{aligned} | \{ x \in D_L \;|\; u(x) \ge k \}| = | \{ x \in D_L \;|\; u_k(x) \ge k \}|\le & {} k^{-q}\int _{D_L} |u_k|^q \,dx\le C k^{-q/2}.\nonumber \\ \end{aligned}$$
(5.6)

This is a weak-\(L^{p}(D_L)\) estimate on \(u^+ = \max (u,0)\), for \(p = q/2 = d/(d-2)\):

$$\begin{aligned} ||u^+ ||_{L^{p}_W(D_L)} = \sup _{t > 0} \;\;t \;| \{ x \in D_L \;|\; |u^+(x)| > t \}|^{1/p} \le C, \end{aligned}$$
(5.7)

where the constant C is independent of L and \(\beta \ge 0\).

Now let \(\alpha \in (1, p)\), \(x_0 \in D_L\), \(R < dist(x_0,y)\). The weak bound (5.7) implies that \(u^+ \in L^\alpha (B_R(x_0))\). By using the identity

$$\begin{aligned} \int _{B_R} |u^+|^{\alpha }\,dx= & {} \alpha \int _0^\infty t^{\alpha -1} |\{ x \in B_R \;|\; u^+(x) \ge t \}| \,dt \le |B_R| s^\alpha \\&+\,\alpha \int _s^\infty t^{\alpha -1} |\{ x \in B_R \;|\; u^+(x) \ge t \}| \,dt \end{aligned}$$

and optimizing in s, we see that

$$\begin{aligned} ||u^+ ||_{L^{\alpha }(B_R)} \le C \left( \frac{p}{p-\alpha }\right) ^{1/\alpha }|B_R|^{\frac{p-\alpha }{p\alpha }}, \end{aligned}$$
(5.8)

where the constant C depends on \(\alpha \) and p, but not on L or R or \(\beta \ge 0\). Since \(-\nabla \cdot (a \nabla u) + \beta u = -|D_L|^{-1} \) in \(B_R\), the estimates of De Giorgi and Moser give us a bound on \(u^+(x)\) in terms of \(||u^+ ||_{L^\alpha (B_R(x_0))}\). Specifically, Theorem 4.1 of [23] (or Theorem 8.17 of [13]) implies that u is locally bounded and satisfies:

$$\begin{aligned} \sup _{x \in B_{R/2}(x_0)} u^+(x)\le & {} C R^{-d/\alpha } \left( \int _{B_R} (u^+(y))^{\alpha } \,dy \right) ^{1/\alpha } + C R^{2}|D_L|^{-1}, \end{aligned}$$
(5.9)

with a constant C that depends only on d, \(a_*\), \(a^*\), and \(\alpha \). Note that in Theorem 4.1 of [23], the constant depends on \(|\beta |R^2\). However, it is easy to see from the proof (method 1) that if \(\beta \) is known to be non-negative, then the bound is independent of \(\beta \), so the same bound holds under rescaling (as in Theorem 4.14 of [23]).

By combining (5.8) and (5.9) we have

$$\begin{aligned} \sup _{x \in B_{R/2}(x_0)} u^+(x) \!\le \! C R^{-d/\alpha } |B_R|^{\frac{p-\alpha }{p\alpha }} \!+\! C R^{2}|D_L|^{-1} \!\le \! C R^{-d/p} \!+\! C R^{2}L^{-d} \le C R^{2-d}, \end{aligned}$$

where the constant C depends on the dimension, but not on L, \(\beta \ge 0\), R. In particular,

$$\begin{aligned} u^+(x) \le C \left( dist(x,y)\right) ^{2-d}. \end{aligned}$$
(5.10)

Now, assuming (5.2) holds for u (otherwise, replace u by \(-u\)), let us choose \(r \le 0\) such that both

$$\begin{aligned} |\{ x \in D_L\;|\; u(x) > r \}| \le \frac{1}{2}|D_L| \quad \text {and} \quad |\{ x \in D_L\;|\; u(x) < r \}| \le \frac{1}{2}|D_L| \end{aligned}$$

hold. Consider the function \(\bar{u} = r - u\) which satisfies

$$\begin{aligned} - \nabla \cdot (a \nabla \bar{u}) +\beta \bar{u} = - \delta _y + |D_L|^{-1} - \beta |r| \end{aligned}$$

and \(|\{ x \in D_L\;|\; \bar{u}(x) > 0 \}| \le \frac{1}{2}|D_L|\). To the functions \(\bar{u}_k = \max (0,\min (\bar{u},k))\) and \(\bar{u}^+ = \max (0,\bar{u})\) we apply the same argument used to obtain (5.10). The result is:

$$\begin{aligned} \bar{u}^+(x) \le C \left( dist(x,y)\right) ^{2-d}. \end{aligned}$$
(5.11)

In deriving (5.9) for \(\bar{u}^+\), we must use the fact that \(\bar{u}\) is a subsolution of \(- \nabla \cdot (a \nabla \bar{u}) +\beta \bar{u} = |D_L|^{-1}\) away from y, since \(-\beta |r| \le 0\). That is,

$$\begin{aligned} \int _{B_R} \nabla \varphi \cdot a \nabla \bar{u}+ \beta \bar{u} \varphi \,dx \le |D_L|^{-1} \int _{B_R} \varphi \,dx \end{aligned}$$

holds for all \(\varphi \in H^1_{0}(B_R)\) which satisfy \(\varphi \ge 0\). Thus, Theorem 4.1 of [23] (or Theorem 8.17 of [13]) still applies. Apart from this detail, the argument is identical. By combining (5.10) and (5.11) we obtain

$$\begin{aligned} r \!-\! C \left( dist(x,y)\right) ^{2-d} \le r - \bar{u}^+(x) \!\le \! u(x) \!\le \! u^+(x) \le C \left( dist(x,y)\right) ^{2-d}\qquad \end{aligned}$$
(5.12)

On the other hand, (5.10) implies that

$$\begin{aligned} \int _{D_L} u^+(x) \,dx \le C L^2. \end{aligned}$$

We combine this with the fact that \(\int _{D_L} u \,dx = 0\) to conclude that

$$\begin{aligned} 0= & {} \int _{D_L} u^+(x) \,dx + \int _{\{ r < u \le 0\}} u(x) \,dx + \int _{\{ u \le r \}} u(x) \,dx \nonumber \\\le & {} CL^2 + r |\{ x \in D_L \;|\; u(x) \le r \}| \nonumber \\= & {} CL^2 + r |\{ x \in D_L \;|\; \bar{u}(x) \ge 0 \}| \le C L^2 + r L^{d}/2. \nonumber \end{aligned}$$

Hence \(|r| \le 2CL^{2 - d}\). Combining this with (5.12) we obtain \(|u(x)| \le C dist(x,y)^{2-d}\), as desired.

1.2 \(d=2\): Proof of Lemma 4.5

Lemma 4.5 relies on the following oscillation estimate, which is a version of Lemma 2.8(i) of [18]:

Lemma 5.1

Let \(d =2\). For any \(q \ge 1\), there is a constant \(C > 0\) such that

$$\begin{aligned} R^{-2} \int _{B_R(x_0)} |G(x,y)- \bar{G}_R(y)|^q \,dx \le C \end{aligned}$$

holds for all \(x_0 \in D_L\), \(y \in D_L \setminus B_{2R}(x_0)\), \(R > 0\), \(L > 1\), where \(\bar{G}_R(y)\) is the average of \(G(\cdot ,y)\) over the ball \(B_R(x_0)\).

Proof of Lemma 5.1

This is proved as in Lemma 2.8 of [18] (see part (i), Step 2) for the free-space Green’s function (see Step 2 in the proof therein); here we include the proof in the contiuum, periodic setting just for completeness. Fix \(y \in D_L\). Let u(x) satisfy

$$\begin{aligned} - \nabla \cdot (a \nabla u ) + \beta u = \delta _y - |D_L|^{-1}, \end{aligned}$$

where \(\beta \ge 0\) is a constant (as in the proof of Lemma 4.4, we have \(G(x,y) = u(x)\) with \(\beta = 0\). Let \(\overline{u_R}\) be the average of u over the ball \(B_R\). Without loss of generality, suppose \(\overline{u_R} \ge 0\). For \(k \ge 0\), define

$$\begin{aligned} u_k = \max ( \min (u, \overline{u_R} + k), \overline{u_R} - k). \end{aligned}$$

We claim that

$$\begin{aligned} \int _{D_L} |\nabla u_k|^2 \,dx \le \frac{2k}{a_*}. \end{aligned}$$
(5.13)

To see this, observe that for any constant \(c \in {\mathbb R}\),

$$\begin{aligned} \int _{D_L} \nabla u_k \cdot a \nabla u_k \,dx= & {} \int _{D_L} \nabla (u_k + c) \cdot a \nabla u \,dx \nonumber \\ \!= & {} \! u_k(y) \!-\! |D_L|^{-1}\int _{D_L} u_k(x) \,dx - \beta \int _{D_L} u (u_k \!+\! c) \,dx.\qquad \end{aligned}$$
(5.14)

If \(\overline{u_R} \in [0,k]\), let \(c = 0\). Then \(u(x)(u_k(x) + c) \ge 0\) at every point \(x \in D_L\). Hence

$$\begin{aligned} \beta \int _{D_L} u (u_k + c) \,dx \ge 0. \end{aligned}$$
(5.15)

Therefore, (5.13) follows from (5.14). If \(\overline{u_R} > k\), let \(c = k - \overline{u_R}\). Then \(u_k + c \ge 0\). Also, \(u(x) > \overline{u_R} - k > 0\) must hold wherever \((u_k(x) + c) > 0\). Hence (5.15) still holds. Moreover, \(0 \le u_k(x) + c \le 2k\), so again (5.13) follows from (5.14).

Now let \(v(x) = u(x) - \overline{u_R}\). Let \(v_k(x) = \max (\min (v(x),k),-k) = u_k(x) - \overline{u_R}\). Let \(\overline{v_R}\) and \(\overline{v_{k,R}}\) be the average of v and \(v_k\) over \(B_R\), respectively. Hence \(\overline{v_R} = 0\). Then the goal is to bound

$$\begin{aligned} \left( R^{-2} \int _{B_R} |v|^q \,dx \right) ^{1/q}= & {} \left( R^{-2} \int _{B_R \cap \{ |v| \le k\}} |v_k|^q \,dx + R^{-2} \int _{B_R \cap \{ |v| > k\}} |v|^q \,dx \right) ^{1/q} \nonumber \\\le & {} C \left( R^{-2} \int _{B_R \cap \{ |v| \le k\}} |v_k - \overline{v_{k,R}}|^q \,dx\right) ^{1/q} + C |\overline{v_{k,R}}| \nonumber \\&+\, C \left( R^{-2} \int _{B_R \cap \{ |v| > k\}} |v|^q \,dx \right) ^{1/q}. \nonumber \end{aligned}$$

Since \(\overline{v_R} = 0\), we have

$$\begin{aligned} |\overline{v_{k,R}}| \le 2 \left( R^{-2} \int _{B_R \cap \{|v| \ge k\}} |v|^q \,dx \right) ^{1/q}. \end{aligned}$$

Therefore,

$$\begin{aligned} \left( R^{-2} \int _{B_R} |v|^q \,dx \right) ^{1/q}\le & {} C \left( R^{-2} \int _{B_R} |v_k - \overline{v_{k,R}}|^q \,dx\right) ^{1/q} \nonumber \\&+\, C \left( R^{-2} \int _{B_R \cap \{ |v| > k\}} |v|^q \,dx \right) ^{1/q}. \end{aligned}$$
(5.16)

By the Sobolev inequality and then (5.13), we know that for any \(s \in [1, \infty )\) there is a constant \(C_s\) (depending only on s) such that

$$\begin{aligned}&\left( R^{-2} \int _{B_R} |v_k - \overline{v_{k,R}}|^s \,dx \right) ^{1/s} \le C_s \left( \int _{B_R} |\nabla v_k|^2 \,dx \right) ^{1/2}\\&\quad = C_s \left( \int _{B_R} |\nabla u_k|^2 \,dx \right) ^{1/2} \le C k^{1/2}. \end{aligned}$$

To estimate the last integral appearing in (5.16) we use

$$\begin{aligned} \int _{B_R \cap \{ |v| > k\}} |v|^q \,dx= & {} \int _0^\infty q t^{q - 1}|\{ |v| \ge \max (t,k) \}| \,dt\\\le & {} |\{ |v| \ge k \}| k^{q} + q \int _k^\infty t^{q - 1} |\{ |v| \ge t \}| \,dt, \end{aligned}$$

and

$$\begin{aligned} |\{ |v| \ge k \}| \le |\{ |v_k| \ge k \}| \le k^{-s} \int _{B_R} |v_k|^s \,dx. \end{aligned}$$

Let \(s > 2q\). Then

$$\begin{aligned} \int _{B_R} |v_k|^s \,dx\le & {} C \int _{B_R} |v_k - \overline{v_{k,R}}|^s \,dx + C R^2 (\overline{v_{k,R}})^s \nonumber \\\le & {} C \int _{B_R} |v_k - \overline{v_{k,R}}|^s \,dx + C R^2\left( R^{-2} \int _{B_R} |v|^q \,dx \right) ^{s/q} \nonumber \\\le & {} C R^2 k^{s/2} + C R^2\left( R^{-2} \int _{B_R} |v|^q \,dx \right) ^{s/q}. \nonumber \end{aligned}$$

So, if \(I_q = (R^{-2} \int _{B_R} |v|^q \,dx)^{1/q}\), we have

$$\begin{aligned} \int _{B_R} |v_k|^s \,dx \le C R^2 k^{s/2} + C R^2 I_q^s \end{aligned}$$

and \(|\{ |v| \ge k \}| \le R^2 k^{-s/2} + C k^{-s} R^2 I_q^s\).

Combining these bounds and returning to (5.16), we obtain

$$\begin{aligned} I_q\le & {} C k^{1/2} + C R^{-2/q} \left( |\{ |v| \ge k \}| k^{q } + q \int _k^\infty t^{q - 1} |\{ |v| \ge t \}| \,dt \right) ^{1/q} \nonumber \\\le & {} C k^{1/2} + C R^{-2/q} \left( R^2 k^{-s/2}k^q + C k^{-s} R^2 I_q^s k^{q}\right) ^{1/q} \nonumber \\&+\,C R^{-2/q} \left( q \int _k^\infty t^{q - 1} |\{ |v| \ge t \}| \,dt \right) ^{1/q} \nonumber \\\le & {} C k^{1/2} + C R^{-2/q} \left( R^2 k^{-s/2}k^q + C k^{-s} R^2 I_q^s k^{q}\right) ^{1/q} \nonumber \\&+\, C R^{-2/q} \left( q \int _k^\infty t^{q - 1} (R^2 t^{-s/2} + C t^{-s} R^2 I_q^s) \,dt \right) ^{1/q} \nonumber \\\le & {} C k^{1/2} + C k^{1 - s/(2q)} + C I_q^{s/q} k^{1 - s/q}. \end{aligned}$$
(5.17)

By choosing \(k = \alpha I_q\) with \(\alpha > 0\) sufficiently large, we see that this implies \(I_q \le C\). \(\square \)

Now we continue with the proof of Lemma 4.5. By assumption, \(dist(x_0,y) > 2R\). Let \(\varphi \) be a smooth function supported in \(B_{2R}(x_0)\) and satisfying: \(0 \le \varphi (x) \le 1\) for all x, \(\varphi (x) = 1\) for \(x \in B_{R}(x_0)\), and \(|\nabla \varphi | \le C/R\). Applying Lemma 3.2 to \(u(x) = G(x,y)\) with this choice of \(\varphi \), we conclude

$$\begin{aligned} \int _{B_{R}} |\nabla u |^2 \, dx\le & {} K_1 |D_L|^{-1} \int _{B_{2R}} (u - b) \varphi ^2 \,dx -K_1 \beta \int _{B_{2R}} u(u-b) \varphi ^2 \,dx \nonumber \\&+\, K_2 \int _{B_{2R}} |\nabla \varphi |^2 (u- b)^2\,dx. \end{aligned}$$
(5.18)

If we choose \(b = \left( \int _{B_{2R}} \varphi ^2 \,dx \right) ^{-1} \int _{B_{2R}} u \varphi ^2 \,dx\) then Jensen’s inequality implies \(\int _{B_{2R}} u(u - b) \varphi ^2 \,dx \ge 0\). Therefore, since \(\beta \ge 0\),

$$\begin{aligned} \int _{B_{R}} |\nabla u |^2 \, dx\le & {} K_1 |D_L|^{-1} \int _{B_{2R}} (u - b) \varphi ^2 \,dx + K_2 \int _{B_{2R}} |\nabla \varphi |^2 (u- b)^2\,dx \nonumber \\\le & {} K_1 R^{-2} \int _{B_{2R}} |u - b| \,dx + C R^{-2} \int _{B_{2R}} (u- b)^2\,dx. \end{aligned}$$
(5.19)

On the other hand, if \(\bar{u}\) denotes the average of u(x) over \(B_{2R}(x_0)\), we know from Lemma 5.1 that

$$\begin{aligned} R^{-2} \int _{B_{2R}} |u - \bar{u}| \,dx \le C. \end{aligned}$$

Hence

$$\begin{aligned} |\bar{u} - b| \!\le \!\left( \int _{B_{2R}} \varphi ^2 \,dx \right) ^{-1} \int _{B_{2R}} |\bar{u} \!-\! u(x)| \varphi ^2 \,dx \le C R^{-2} \int _{B_{2R}} |\bar{u} \!-\! u(x)| \varphi ^2 \,dx \le C. \end{aligned}$$

Applying Lemma 5.1 again, we obtain

$$\begin{aligned} R^{-2} \int _{B_{2R}} (u- b)^2\,dx \le C R^{-2} \int _{B_{2R}} (u- \bar{u})^2\,dx + C R^{-2} \int _{B_{2R}} (\bar{u}- b)^2\,dx \le C. \end{aligned}$$

Similarly,

$$\begin{aligned} R^{-2} \int _{B_{2R}} |u- b| \,dx \le C R^{-2} \int _{B_{2R}} |u- \bar{u}| \,dx + C R^{-2} \int _{B_{2R}} (\bar{u}- b)\,dx \le C. \end{aligned}$$

In view of (5.19) and the fact that C is independent of R, L and \(\beta \ge 0\), we have proved the desired result. \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nolen, J. Normal approximation for the net flux through a random conductor. Stoch PDE: Anal Comp 4, 439–476 (2016). https://doi.org/10.1007/s40072-015-0068-4

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40072-015-0068-4

Keywords

Mathematics Subject Classification

Navigation