Skip to main content
Log in

Ultra-high intensity lasers as tools for novel physics

  • Review - Atoms, Molecules and Optics
  • Published:
Journal of the Korean Physical Society Aims and scope Submit manuscript

Abstract

Ultra-high intensity lasers can provide excellent tools for investigating novel physical phenomena due to extreme laser fields. The intensity of an ultra-high intensity laser exceeded 1023 W/cm2, and with this unprecedented intensity, the exploration of strong-field physics and laboratory astrophysics can be pursued. In this paper, we review the fundamentals and progress of chirped pulse amplification and optical parametric chirped pulse amplification lasers to generate ultra-high intensity. In addition, we introduce next-generation lasers and key technologies for realizing extreme intensities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. J. Jiao et al., Laser Part Beams 35, 234 (2017)

    Article  ADS  Google Scholar 

  2. M. Marklund, P.K. Shukla, Rev. Mod. Phys. 78, 591 (2006)

    Article  ADS  Google Scholar 

  3. A. Di Piazza, C. Müller, K.Z. Hatsagortsyan, C.H. Keitel, Rev. Mod. Phys. 84, 1177 (2012)

    Article  ADS  Google Scholar 

  4. M. Vranic, O. Klimo, G. Korn, S. Weber, Sci. Rep. 8, 4702 (2018)

    Article  ADS  Google Scholar 

  5. J.W. Yoon et al., Optica 8, 630 (2021)

    Article  ADS  Google Scholar 

  6. D. Strickland, G. Mourou, Opt. Commun. 56, 219 (1985)

    Article  ADS  Google Scholar 

  7. J.H. Sung et al., Opt. Lett. 35, 3021 (2010)

    Article  ADS  Google Scholar 

  8. T.J. Yu et al., Opt. Express 20, 10807 (2012)

    Article  ADS  Google Scholar 

  9. J.H. Sung et al., Opt. Lett. 42, 2058 (2017)

    Article  ADS  Google Scholar 

  10. W. Li et al., Opt. Lett. 43, 5681 (2018)

    Article  ADS  Google Scholar 

  11. F. Lureau et al., High Power Laser Sci. Eng. 8, 43 (2020)

    Article  Google Scholar 

  12. T.H. Maiman, Nature 187, 493 (1960)

    Article  ADS  Google Scholar 

  13. F.J. McClung, R.W. Hellwarth, J. Appl. Phys. 33, 828 (1962)

    Article  ADS  Google Scholar 

  14. L.E. Hargrove, R.L. Fork, M.A. Pollack, Appl. Phys. Lett. 5, 4 (1964)

    Article  ADS  Google Scholar 

  15. E.P. Ippen, C.V. Shank, A. Diens, Appl. Phys. Lett. 21, 348 (1972)

    Article  ADS  Google Scholar 

  16. T. Ditmire, Am. Sci. 98, 394 (2010)

    Google Scholar 

  17. M.D. Perry, G. Mourou, Science 264, 917 (1994)

    Article  ADS  Google Scholar 

  18. P. Maine et al., IEEE J. Quantum Electron. 24, 398 (1988)

    Article  ADS  Google Scholar 

  19. B.C. Stuart et al., Opt. Lett. 22, 242 (1997)

    Article  ADS  Google Scholar 

  20. M.D. Perry et al., Opt. Lett. 24, 160 (1999)

    Article  ADS  Google Scholar 

  21. C.P.J. Barty, C.L. Gordon III., B.E. Lemoff, Opt. Lett. 19, 1442 (1994)

    Article  ADS  Google Scholar 

  22. K. Yamakawa et al., Opt. Lett. 23, 1468 (1998)

    Article  ADS  Google Scholar 

  23. J.D. Bonlie et al., Appl. Phys. B. 70, 155 (2000)

    Article  Google Scholar 

  24. M. Aoyama et al., Opt. Lett. 28, 1594 (2003)

    Article  ADS  Google Scholar 

  25. Y. Cha et al., Rev. Laser Eng. 38, 681 (2010)

    Article  Google Scholar 

  26. S. Akhmanov et al., Sov. J. Exp. Theor. Phys. Lett. 2, 191 (1965)

    ADS  Google Scholar 

  27. C.W. Charles, W. George, Appl. Phys. Lett. 6, 169 (1965)

    Article  Google Scholar 

  28. A. Dubietis et al., IEEE J. Sel. Top. Quantum Electron. 12, 163 (2006)

    Article  ADS  Google Scholar 

  29. V.V. Lozhkarev et al., Opt. Express 14, 446 (2006)

    Article  ADS  Google Scholar 

  30. O.V. Chekhlov et al., Opt. Lett. 31, 3665 (2006)

    Article  ADS  Google Scholar 

  31. V.V. Lozhkarev et al., Laser Phys. Lett. 4, 421 (2007)

    Article  ADS  Google Scholar 

  32. L. Yu et al., Opt. Lett. 40, 3412 (2015)

    Article  ADS  Google Scholar 

  33. X. Zeng et al., Opt. Lett. 42, 2014 (2017)

    Article  ADS  Google Scholar 

  34. I. Jovanovic, C.A. Ebbers, C.P.J. Barty, Opt. Lett. 27, 1622 (2002)

    Article  ADS  Google Scholar 

  35. X. Zhou, H. Lee, T. Kanai, S. Adachi, S. Watanabe, Appl. Phys. B 89, 559 (2007)

    Article  ADS  Google Scholar 

  36. H. Kiriyama et al., Opt. Lett. 35, 1497 (2010)

    Article  ADS  Google Scholar 

  37. H.W. Lee et al., Opt. Express 26, 24775 (2018)

    Article  ADS  Google Scholar 

  38. C.N. Danson et al., High Power Laser Sci. Eng. 7, e54 (2019)

    Article  Google Scholar 

  39. F. Druon et al., Opt. Lett. 23, 1043 (1998)

    Article  ADS  Google Scholar 

  40. S.-W. Bahk et al., Opt. Lett. 29, 2837 (2004)

    Article  ADS  Google Scholar 

  41. V. Yanovsky et al., Opt. Express 16, 2109 (2008)

    Article  ADS  Google Scholar 

  42. A.S. Pirozhkov et al., Opt. Express 25, 20486 (2017)

    Article  ADS  Google Scholar 

  43. Z. Guo et al., Opt. Express 26, 26776 (2018)

    Article  ADS  Google Scholar 

  44. J.W. Yoon et al., Opt. Express 27, 20412 (2019)

    Article  ADS  Google Scholar 

  45. S.S. Bulanov et al., Phys. Plasmas 23, 056703 (2016)

    Article  ADS  Google Scholar 

  46. J. Domanski, J. Badziak, M. Marchwiany, Laser Part. Beams 36, 507 (2018)

    Article  ADS  Google Scholar 

  47. N.V. Didenko et al., Opt. Express 16, 3178 (2008)

    Article  ADS  Google Scholar 

  48. V. Bagnoud, F. Salin, J. Opt. Soc. Am. B 16, 188 (1999)

    Article  ADS  Google Scholar 

  49. C. Hooker et al., Opt. Express 19, 2193 (2011)

    Article  ADS  Google Scholar 

  50. J. Itatani, J. Faure, M. Nantel, G. Mourou, S. Watanabe, Opt. Comm. 148, 70 (1998)

    Article  ADS  Google Scholar 

  51. A. Jullien, O. Albert, F. Burgy et al., Opt. Lett. 30, 920 (2005)

    Article  ADS  Google Scholar 

  52. C. Thaury, F. Quere, J.-P. Geindre et al., Nat. Phys. 3, 424 (2007)

    Article  Google Scholar 

  53. I.W. Choi, C. Jeon, S.G. Lee et al., Opt. Lett. 45, 6342 (2020)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The work was supported by the Institute for Basic Science, South Korea under the project code, IBS-R012- D1, the Ultrashort Quantum Beam Facility (UQBF) operation program (140011) through APRI, GIST, and the GIST Research Institute (GRI) grant funded by the GIST in 2021.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seong Ku Lee.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yoon, J.W., Sung, J.H., Lee, S.K. et al. Ultra-high intensity lasers as tools for novel physics. J. Korean Phys. Soc. 81, 562–569 (2022). https://doi.org/10.1007/s40042-022-00411-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40042-022-00411-3

Keywords

Navigation