Skip to main content
Log in

Fibrous Filter to Protect Building Environments from Polluting Agents: A Review

  • Review Paper
  • Published:
Journal of The Institution of Engineers (India): Series E Aims and scope Submit manuscript

Abstract

This paper discusses the use of fibrous filter to protect the building environments from air born polluting agents and especially of concern chemical, biological and radiological agents. Air-filtration includes removal of particulate from air and toxic gases from air. In air filtration, particulate which are mostly biological and radioactive types of agents can be removed by using mechanical and electrostatic filters. Some biological agents, which cannot be removed by air filtration alone, special techniques like antimicrobial finish, UV germicides, coated filters etc. are required. Biocide agent can be added into the fibre itself by grafting reaction to impart antimicrobial activity. Chemical agents like toxic gases can be removed by integrating adsorbents and sorbents in filters or by fibre modifications. It is also possible to impart catalytic conversion properties into the fibre to remove volatile gasous. Radioactive agents can be removed by particulate filter if present in the form of aerosol or by gas cleaning by the use of specific fibre impregnate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. J. Howard, Guidance for Filtration and Air-Cleaning. Department of Health and Human Services, Cincinnati, Department of Health and Human Services (DHHS) National Institute for Occupational Safety and Health (NIOSH) Publication no. 2003-136 (2003)

  2. A.D. Maynard, D.Y.H. Pui, Nanoparticles and Occupational Health (Springer, New York, 2007), p. 186

    Google Scholar 

  3. P. Bajaj, A.K. Sengupta, Industrial applications of textiles: textiles for filtration and coated fabrics. Text. Prog. 14, 7–8 (1985)

    Article  Google Scholar 

  4. TechSci Research report, Global Air Filters Market Forecast & Opportunities, 2020 (2015)

  5. Gupta S, INDIA—Nonwoven and Woven Fabrics for Filtration (Dry and Liquid Filtration), Forecast 2010–2014 (2010)

  6. R.L. Irvine, Chemical/Biological/Radiological Incident Handbook. Central Intelligence Agency (1998), Available from: https://www.cia.gov/library/reports/general-reports-1/cbr_handbook/cbrbook.htm

  7. U.S. Department of Justice, An Introduction to Biological Agent Detection Equipment for Emergency First Responders. NIJ Guide 101-00 (2001)

  8. Federal Emergency Management Agency, Chemical, Biological and Radiological Measures, Washington, chapter 5. 5.1–5.15 (2001)

  9. E. Švábenská, Systems for detection and identification of biological aerosols. Def. Sci. J 62, 404–411 (2012)

    Article  Google Scholar 

  10. U.S. Department of Justice, Guide for the selection of Chemical Agent and Toxic Industrial Material Detection Equipment for Emergency First Responders. NIJ Guide 100-00 (2000)

  11. W.C. Hinds, Aerosol technology: properties, Behavior, and Measurement of Airborne Particles (Wiley, New York, 1982)

    Google Scholar 

  12. F.M. Veazie, W. H. Kielmeyer, Feasibility of fabric filter as gas-solid contractor to control gaseous pollutants. Department of Health, Education and Welfare U.S (1970)

  13. A. Mukhopadhyay, Composite nonwovens in filters: Part I Filtration Mechanism and Characteristics requirements of Nonwovens as Filter in Composite nonwoven materials: Design, development and applications (Woodhead Publishing Limited, Elsevier, Cambridge, 2014), pp. 120–163

    Google Scholar 

  14. Donaldson Company, Inc. USA, High Efficiency Particulate Air, Hepa Filtration Facts, Available from: www.donaldson.com/en/aircraft/support/…/042665.pdf. Accessed 5 Mar 2013

  15. I. Hutten, Handbook of Nonwoven Filter Media. (Elsevier Science & Technology, New York, 2007), pp. 325–367

  16. Wikipedia (2015) HEPA, Available from: https://en.wikipedia.org/wiki/HEPA. Accessed 5 Aug 2015]

  17. H. Mrozewska, T. Robakowska, W. Krzywanski, Tech. Wlok. 28, 237 (1979)

    Google Scholar 

  18. S. Zhang, W.S. Shim, J. Kim, Mater. Des. 30, 3659–3666 (2009)

    Article  Google Scholar 

  19. C.H. Hung, W.W. Leung, Design of ultra-fine nonwovens via electrospinning of nylon 6: spinning parameters and filtration efficiency. Sep. Purif. Technol. 79, 34–42 (2011)

    Article  Google Scholar 

  20. R.A. Fjeld, T.M. Ownes, The effect of particle charge on penetration in an electret filter. IEEE Trans. Ind. Appl. 24, 4 (1988)

    Article  Google Scholar 

  21. N.L. Lifshutz, Performance decay in synthetic electret filter media. AFSS Conf. Adv. Filtr. Sep. Technol. 11, 307–311 (1997)

    Google Scholar 

  22. K. Ando, M. Takahashi, R. Togashi, Y. Okumara, Properties of electret filter with low pressure drop and high collection efficiency. Proceedings o f 3rd International Aerosol Conference, Kyoto (Pergamon Press, Oxford, 1990)

  23. H. Baumgartner, F. Loeffler, M. Umhauer, Deep-bed electret filters: The determination of single fibre charge and collection efficiency. IEEE Trans. 3, 477–486 (1985)

    Google Scholar 

  24. R.C. Brown, Air Filtration: an Integrated Approach to the Theory and Application of Fibrous Filter (Pergamon Press, Oxford, 1993)

    Google Scholar 

  25. K. Schmidt, Manufacture and use of felt pads made from extremely fine fibres for filtering purposes. Melliand Textilber. 61, 495–497 (1980)

    Google Scholar 

  26. I. Krucinska, S. Zakrzewski, J. Kot, A. Brochocka, Badania nad otrzymywaniem wysokoskutecznych materialow filtracyjnych [Investigations on manufacturing high efficiency filtering materials], Przeglqd Wlokienniczy, 49(A), 25–27 (1995)

  27. I. Krucinska, S. Zakrzewski, J. Kot, A. Brochocka, Investigations of blended fibre filtering materials. Int. J Occup. Saf. Ergon. 3(3–4), 141–149 (1997)

    Article  Google Scholar 

  28. A. Brochocka, K. Majchrzycka, K. Makowski, Modified melt-blown nonwovens for respiratory protective devices against nanoparticles. Fibres Text. East. Eur. 21, 106–111 (2013)

    Google Scholar 

  29. P.P. Tsai, Larry C. Wadsworth, Electro-static charging of melt blown webs for high-efficiency air filters. Adv. Filtr. Sep. Technol. Am. Filtr. Sep. So-c. 9, 473 (1995)

    Google Scholar 

  30. Peter P. Tsai, L.C. Wadsworth, Air Filtration Improved by Electrostatically Charging Fibrous Materials. Part. Sci. Technol. 12, 323–332 (1994)

    Article  Google Scholar 

  31. M. Technostat, Technostat Electrostatic Filte Media (2012), Available from: http://www.hollingsworth-vose.com/Documents/Product%20Literature-Filtration/Technostat%20Electrostatic%20Filter%20Media.pdf

  32. A.G. Bayer, W. Simm, et al. Filter made of electrostatically spun fibres. U.S. Patent 4,069,026 (1978)

  33. “Filtrete home filtration products”, 3M product broacher. www.filtrete.com

  34. S.G. Terjesen, G.B. Cherry, The removal of microorganisms from air by filtration. Trans. Inst. Chem. Eng. 25, 89–96 (1947)

    Google Scholar 

  35. H.F. Allen, Air hygiene for hospitals II efficiency of fibrous filters against staphylococci droplet nuclei and bacteria-bearing dust. J. Am. Med. Assoc. 170, 261–267 (1959)

    Article  Google Scholar 

  36. H.M. Decker, F.A. Geile, H.E. Moorman, C.A. Glick, Removal of bacteria and bacteriophage from the air by electrostatic precipitators and spun glass filter pads. J. Am. Soc. Heat. Ventilat. Eng. 23, 125–128 (1951)

    Google Scholar 

  37. K. Majchrzycka, B. Gutarowska, A. Brochocka, B. Bogumit, New filtering antimicrobial nonwovens with various carriers for biocides as respiratory protective materials against bioaerosol. Int. J. Occup. Saf. Ergon. 18(3), 375–385 (2012)

    Article  Google Scholar 

  38. Z. Żakowska, Microbial biodegradation and biodeterioration of technical materials. IV Scientific Conference: Łódź, 12–15 (2006)

  39. T. Jesionowski, A. Kołodziejczak-Radzimska, F. Ciesielczyk, J. Sójka-Ledakowicz, J. Olczyk, J. Sielski, synthesis of zinc oxide in an emulsion system and its deposition on PES nonwoven fabrics. Fibres Text. East. Eur. 19, 70–75 (2011)

    Google Scholar 

  40. J. Sójka-Ledakowicz, J. Lewartowska, M. Kudzin, T. Jesionowski, K. Siwińska-Stefańska, A. Krysztafkiewicz, Modification of textile materials with micro-and nano-structural metal oxides. Fibres Text. East. Eur. 16, 112–116 (2008)

    Google Scholar 

  41. D.R. Patel, K.C. Patel, Synthesis, antimicrobial activity and application of some novel quinazolinone based monoazo reactive dyes on various fibres. Dyes Pigm. 90, 1–10 (2011)

    Article  Google Scholar 

  42. Ciba specialty chemicals (2001), Polymer Additives

  43. S.W. Foss, D. Keser, D. Tefft, et al., Antimicrobial fibre and fibrous products.US Patent 6,723,428 (2004)

  44. A. Brochocka, K. Majchrzycka, Technology for the production of bioactive melt-blown filtration materials applied to respiratory protective devices. Fi-bres Text. East. Eur. 17(5), 92–98 (2009)

    Google Scholar 

  45. C. Liu, X. Jin, Gang Sun. (2010) Antibacterial Melt Blown PP -g –NDAM Nonwoven. STAMP 2010

  46. R.D. Rohrbach, P.D. Unger, G.W. Jones, Anti-Microbial Fibrous Media. US Patent 6,514,306 B1 (2003)

  47. H.J. Lee, S.H. Jeong, Bacteriostasis of nanosized colloidal silver on polyester nonwovens. Text. Res. J. 74, 442–447 (2004)

    Article  Google Scholar 

  48. B. Gutarowska, J. Skóra, E. Nowak, I. Łysiak, M. Wdówka, Antimicrobial activity and filtration effectiveness of nonwovens with sanitized for respiratory protective equipment. Fi-bres Text. East. Eur. 22, 120–125 (2014)

    Google Scholar 

  49. E. Kujundzic, F. Matalkah, C.J. Howard, M. Hernandez, S.L. Miller, UV air cleaners and upper-room air ultraviolet germicidal irradiation for controlling airborne bacteria and fungal spores. J. Occup. Environ. Hyg. 3, 536–546 (2006)

    Article  Google Scholar 

  50. O.V. Pyankov, I.E. Agranovski, R. Huang, B.J. Mullins, Removal of biological aerosols by oil coated filters. Clean 36(7), 609–614 (2008)

    Google Scholar 

  51. B,Y. Sou, R.C. McMillan, S.M. Causer, Absorption of Formaldehyde by Carpets. Report R219, Wool Research Organisation of New Zealand, WRONZ (2001)

  52. S. Solanki, N. Grover et al., Enzyme-Based Listericidal Nanocomposites. Scientific Reports 3, Article no. 1584 (2013)

  53. Azonano News (2013) Cell lytic enzymes attached to food-safe silica nanoparticles demonstrate ability to kill listeria

  54. S. Levy, Get Ready For Light Activated Antimicrobials, Nonwoven Industr (2010), Available from: http://www.nonwovens-industry.com/issues/2010-10/view_online-exclusives/online-exclusive-get-ready-for-light-activate-60560

  55. Texel (2012) Texel: Leaders in Air, Liquid and Bio-filtration, Nonwoven Industry, Available from: http://www.nonwovens-industry.com/contents/view_breaking-news/2012-11-15/texel-leaders-in-air-liquid-and-bio-filtration

  56. Precision Air (Flanders) Air Filters. product guide http://www.furnacecompare.com/filters/precision-aire.html. Accessed 10 Novr 2013)

  57. R.Y. Raskar, A.G. Gaikwad, The uses of copper and zinc aluminates to cap-ture and convert carbon dioxide to syn-gas at higher temperature. Bull. Chem. React. Eng. Catal. 9(1), 1–15 (2014)

    Article  Google Scholar 

  58. G. Unger, J. Hruza, Nanofibrous filtering materials with catalytic activity. Adv. Mat. Lett. 5(8), 422–428 (2014)

    Google Scholar 

  59. M.A. Daley, M.A. Daley, C.L. Mangun, J.A. DeBarrb, S. Riha, A.A. Lizzio, G.L. Donnals, Adsorption of SO2 on to oxidised and heat treated active carbon fibres. J. Econ. Carbon 35, 411–417 (1997)

    Article  Google Scholar 

  60. I. Mochida, Y. Kawabuchi, S. Kawano, Y. Mastsumura, M. Yoshikawa, High catalytic activity of pitch based activated carbon fibres of moderate surface area for oxidation of NO and NO2. Fuel 76, 543–548 (1997)

    Article  Google Scholar 

  61. S.M. Causer, Absorption of Nitrogen Dioxide by Carpet. WRONZ Report R204 (1993)

  62. Cerex advanced fabric, product guide. www.cerex.com/zones/org1/uploads/products_book.pdf. Accessed April 2015

  63. S.S. Ramkumar, Fibertect® decontaminates nerve gas surrogate in lab testing. Indian Tex. J. 123(7), 85 (2013)

    Google Scholar 

  64. W.X. Chen, S.F. Lu, Y.Y. Yao et al., Copper (II)-silk fibroin complex fibers as air-purifying materials for removing ammonia. Text. Res. J. 75, 326 (2005)

    Article  Google Scholar 

  65. A.I. Valikh, et al., B.P. 1.553, 052 (1979)

  66. A.A Morozova, Vesti. Akad. Navuk, USSR. Ser. Khim. Navuk, 2, 36 (1978)

  67. S.M. Manocha, Porous carbons. Sadhana 28, 335–348 (2003)

    Article  Google Scholar 

  68. R.B. Quincy, Activated Carbon Substrates. U.S. Patent 8,168,852 (2012)

  69. Lewcott Chemicals and Plastics (1980) Nonwoven Industr; 11, (7) 8,

  70. J.E. Koresh, A. Soffer, molecular sieve carbon permselective membrane, part I: presentation of a new device for gas mixture separation. Sep. Sci. Technol. 18, 723–734 (1983)

    Article  Google Scholar 

  71. V. Linkov, R.D. Sanderson, E.P. Jacobs, Scanning probe microscopy study of carbon membrane surface. J. Mater. Sci. Lett. 13, 600–601 (1994)

    Article  Google Scholar 

  72. S.P.J. Smith, V.M. Linkov, R.D. Sanderson, L.F. Petrik, C.T. O’Connor, K. Keiser, Preparation of hollow-fibre composite carbon-zeolite membranes. Microporous Mater. 4, 385–390 (1995)

    Article  Google Scholar 

  73. International Atomic Energy Agency (1989) Retention of Iodine and other Airborne Radionuclides in Nuclear Facilities during abnormal and accident conditions. Vienna Austria, IAEA-TECDOC-521,

  74. G.W. Brassell, R.P. Brugger, Bonded Carbon or Ceramic Fiber Composite Filter Vent For Radioactive Waste. U.S. Patent, 4500328 (1985)

  75. A.V. Obruchikov, S.M. Lebedev, Study on removal of radioactive methyl iodide by modified Busofit carbon fibre. Inorg. Mater.: Appl. Res. 3, 398–400 (2012)

    Article  Google Scholar 

  76. K. Ramarathinam, S. Kumar, K.G. Gandhi, S. Ramachandran, Evaluation of high efficiency particulate air (HEPA) and iodine filters under high temperature, humidity and radiation. IAEA-TECDOC-521 4, 113–142 (1989)

    Google Scholar 

  77. M. Inoue, I. Miyazaki, Filter for Removing Radioactive Substance and Filter unit employing the same. E P Patent 1 868 209 A1 (2007)

  78. Creating Clean Air, A product guide. VOKES Air, http://www.vokesair.com. Accessed 01 April 2014)

  79. V.M. Nakano, W.J. Croisant, Design Assessment using Multizone Simulation to Protect Critical Infrastructure from Internal Chemical and Biological Threats. Purdue University West Lafayette, Indiana, OMB No. 0704-0188 (2006)

  80. W. Kowalski, W. Bahnfleth, A. Musser, Modeling immune building systems for bioterrorism defense. J. Arch. Eng. 9, 86–96 (2003)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Md. Vaseem Chavhan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chavhan, M.V., Mukhopadhyay, A. Fibrous Filter to Protect Building Environments from Polluting Agents: A Review. J. Inst. Eng. India Ser. E 97, 63–73 (2016). https://doi.org/10.1007/s40034-015-0071-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40034-015-0071-3

Keywords

Navigation