Skip to main content
Log in

A Study on Tooling and Its Effect on Heat Generation and Mechanical Properties of Welded Joints in Friction Stir Welding

  • Original Contribution
  • Published:
Journal of The Institution of Engineers (India): Series C Aims and scope Submit manuscript

Abstract

Friction stir welding (FSW) has been the most attracting solid state welding process as it serves numerous advantages like good mechanical, metallurgical properties etc. Non weldable aluminium alloys like 5XXX, 7XXX series can be simply joined by this process. In this present study a mathematical model has been developed and experiments were successfully performed to evaluate mechanical properties of FSW on similar aluminium alloys i.e. AA1100 for different process parameters and mainly two kind of tool geometry (straight cylindrical and conical or cylindrical tapered shaped pin with flat shoulder). Tensile strength and micro hardness for different process parameters are reported of the welded plate sample. It was noticed that in FSW of similar alloy with tool made of SS-310 tool steel, friction is the major contributor for the heat generation. It was seen that tool geometry, tool rotational speed, plunging force by the tool and traverse speed have significant effect on tensile strength and hardness of friction stir welded joints.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Abbreviations

AA :

Aluminium alloy

\(\left[ {C_{e}^{t} } \right]\) :

Element specific heat matrix

FSW:

Friction stir welding

HAZ:

Heat affected zone

H P :

Height of the probe

h 1 :

Indent height of shoulder

h f :

Convection coefficient

\(\left[ {K_{e}^{tb} } \right]\) :

Element diffusion conductivity matrix

\(\left[ {K_{e}^{tc} } \right]\) :

Element convection surface conductivity matrix

{L}:

Vector operator

\(\left\{ N \right\}\) :

Element shape function

\(\left\{ n \right\}\) :

Unit outward normal vector

P n :

Plunging force

Q Sp :

Heat generation due to vertical pressure in shoulder

Q Sm :

Heat generation in shoulder due to travelling of tool shoulder

Q S :

Total heat generation in shoulder

Q 1 :

Heat generation due to vertical pressure at probe tip

Q 2 :

Heat generation due to the rotational movement of the probe (side surface)

Q 3 :

Heat generation due to travelling of the probe (side surface)

Q P :

The total heat generation at the probe

\(\left\{ {Q_{e}^{f} } \right\}\) :

Element heat flow vector for surface S1

\(\left\{ {Q_{e}^{c} } \right\}\) :

Elemental convection surface heat flow vector

\(q_{sup}\) :

Heat supply

\(q^{\prime\prime\prime}\) :

Heat generation

{q}:

Heat flux vector

R S :

Shoulder radius

R Pb :

Radius of probe base

R Pt :

Radius of probe tip

S * ys :

The yield strength of the material at 80 % of the melting point temperature

T α :

Ambient temperature

\(\left\{ {T_{e} } \right\}\) :

Nodal temperature vector

V:

Tool velocity

ω :

Angular velocity of the tool

τ * :

The shear strength of the material at 80 % of its melting point temperature

μ :

Frictional co-efficient between the tool and workpiece

ρ :

Density of plate material

References

  1. W.M. Thomas, E.D. Nicholas, J.C. Needham, M.G. Murch, P. Templesmith, C.J. Dawes, Friction Stir Butt Welding. International patent application No. PCT/GB92/02203 and GB patent application No. 9125978.8 (December 6, 1991)

  2. J.Q. Su, T.W. Nelson, R. Mishra, M.W. Mahoney, Microstructural investigation of friction stir welded 7050-T651 alloy. Acta Mater. 51(3), 713–729 (2003)

    Article  Google Scholar 

  3. R.S. Mishra, Z.Y. Ma, Friction stir welding and processing. Mater. Sci. Eng. 50, 1–78 (2005)

    Article  Google Scholar 

  4. J. Sinke, M.M. Stofregen, E. Estraatsma, Tailor Made Blanks for The Aircraft Industry: A Pilot Study. Technical report (Netherlands Institute for Metals Research, 2005)

  5. N.T. Kumbhar, K. Bhanumurthy, Friction stir welding of Al 6061 alloy. Asian J. Exp. Sci. 22(2), 63–74 (2008)

    Google Scholar 

  6. W.M. Thomas, K.I. Johnson, C.S. Wiesner, Friction stir welding- recent developments in tool and process technologies. Adv. Eng. Mater. 5, 485 (2003)

    Article  Google Scholar 

  7. G. Buffa, J. Hua, R. Shivpuri, Mater. Sci. Eng., A 419, 381–388 (2006)

    Article  Google Scholar 

  8. K. Elangovana, V. Balasubramanianb, Influences of tool pin profile and welding speed on the formation of friction stir processing zone in AA2219 aluminium alloy. J. Mater. Process. Technol. 200, 163–175 (2008)

    Article  Google Scholar 

  9. P. Biswas, N.R. Mandal, Effect of tool geometries on thermal history of FSW of AA1100. Suppl. Weld. J. 90, 129s–135s (2011)

    Google Scholar 

  10. H.K. Mohanty, M.M. Mahapatra, P. Kumar, P. Biswas, N.R. Mandal, Effect of tool shoulder and pin probe profiles on friction stirred aluminum welds—a comparative study. J. Mar. Sci. Appl. 11, 200–207 (2012)

    Article  Google Scholar 

  11. Y.S. Sato, M. Urata, H. Kokawa, Parameters controlling microstructure and hardness during friction-stir welding of precipitation-hardenable aluminum alloy 6063. Metall. Mater. Trans. A 33(3), 625–635 (2002)

    Article  Google Scholar 

  12. W. Tang, X. Guo, J.C. McClure, L.E. Murr, Heat input and temperature distribution in friction stir welding. J. Mater. Process. Manuf. Sci. 7, 163–172 (1998)

  13. W.B. Lee, Y.M. Yeon, S.B. Jung, Evaluation of the microstructure and mechanical properties of friction stir welded 6005 aluminum alloy. Mater. Sci. Technol. 19(11), 1513–1518 (2003)

    Article  Google Scholar 

  14. A. Simar, Y. Brechet, B. Meester, A. Denquin, T. Pardoen, Microstructure, local and global mechanical properties of friction stir welds in aluminum alloy 6005A-T6. Mater. Sci. Eng., A 486(1/2), 85–95 (2008)

    Article  Google Scholar 

  15. P. Cavaliere, A. De Santis, F. Panella, A. Squillace, Effect of welding parameters on mechanical and microstructural properties of dissimilar AA6082–AA2024 joints produced by friction stir welding. Mater. Des. 30, 609–616 (2009)

    Article  Google Scholar 

  16. T. Saeid, A. Abdollah-zadeh, H. Assadi, F. MalekGhaini, Effect of friction stir welding speed on the microstructure and mechanical properties of a duplex stainless steel. Mater. Sci. Eng., A 496, 262–268 (2008)

    Article  Google Scholar 

  17. M.J. Peel, A. Steuwer, P.J. Withers, T. Dickerson, Q. Shi, H. Shercliff, Dissimilar friction stir welds in AA5083–AA6082. Part I: process parameter effects on thermal history and weld. J. Mar. Sci. Appl. 12: 493–499, 499 properties; Metall. Mater. Trans A 37(7), 2183–2193 (2006)

  18. S. Lim, S. Kim, C.G. Lee, S.J. Kim, Tensile behavior of friction-stir-welded Al 6061-T651. Metall. Mater. Trans. A 35(9), 2829–2835 (2004)

    Article  Google Scholar 

  19. P. Biswas, N.R. Mandal, Experimental study on friction stir welding of marine grade aluminum alloy. J. Ship Prod. 25(1), 1–6 (2009)

    Google Scholar 

  20. M.J. Peel, A. Steuwer, P.J. Withers, Dissimilar friction stir welds in AA5083–AA6082. Part II: process parameter effects on microstructure. Metall. Mater. Trans. A 37(7), 2195–2206 (2006)

    Article  Google Scholar 

  21. S.R. Ren, Z.Y. Ma, L.Q. Chen, Effect of welding parameters on tensile properties and fracture behavior of friction stir welded Al–Mg–Si alloy. Scripta Mater. 56(1), 69–72 (2007)

    Article  Google Scholar 

  22. J.J. Muhsin, M.H. Tolephih, A.M. Muhammed, Effect of friction stir welding parameters (rotation and transverse) speed on the transient temperature distribution in friction stir welding of AA 7020-T53. ARPN J. Eng. Appl. Sci. 7(4), 436–446 (2012)

  23. K. Kumar, S.V. Kailas, The role of friction stir welding tool on material flow and weld formation. Mater. Sci. Eng., A 485, 367–374 (2008)

    Article  Google Scholar 

  24. J.H. Record, J.L. Covington, T.W. Nelson, C.D. Sorensen, B.W. Webb, A look at the statistical identification of critical process parameters in friction stir welding. Weld. J. 86, 97s–103s (2007)

    Google Scholar 

  25. A.K. Lakshminarayan, V. Balasubramanian, Process parameters optimization for friction stir welding of RDE-40 aluminium alloy using Taguchi technique. Trans. Nonferrous Met. Soc. China. 18, 548–554 (2008)

  26. P.M.G.P. Moreira, T. Santos, S.M.O. Tavares, V. Richter-Trummer, P. Vilaça, P.M.S.T. de Castro, Mechanical and metallurgical characterization of friction stir welding joints of AA6061-T6 with AA6082-T6. Mater. Des. 30, 180–187 (2009)

    Article  Google Scholar 

  27. J. Adamowski, C. Gambaro, E. Lertora, M. Ponte, M. Szkodo, Analysis of FSW welds made of aluminium alloy AW6082-T6. Int. Sci. J. 28(8), 453–460 (2007)

    Google Scholar 

  28. G. Cam, S. Gucluer, A. Çakan, H.T. Serindag, Mechanical properties of friction stir butt-welded Al-5086 H32 plate. J. Achiev. Mater. Manuf. Eng. 30(2), 151–156 (2008)

  29. A.K. Lakshminarayanan, V. Balasubramanian, An assessment of microstructure, hardness, tensile and impact strength of friction stir welded ferritic stainless steel joints. Mater. Des. 31, 4592–4600 (2010)

    Article  Google Scholar 

  30. C.M. Chen, R. Kovacevic, Finite element modeling of friction stir welding—thermal and thermo-mechanical analysis. Int. J. Mach. Tools Manuf 43, 1319–1326 (2003)

    Article  Google Scholar 

  31. N. Rajamanickam, V. Balusamy, Numerical simulation of transient temperature in friction stir welding of aluminum alloy 2014-T6 type. Manuf. Ind. Eng. (2), 41–44 (2007)

  32. Mohamed Assidi, Lionel Fourment, S. Guerdoux, T. Nelson, Friction model for friction stir welding process simulation: calibrations from welding experiments. Int. J. Mach. Tools Manuf 50, 143–155 (2010)

    Article  Google Scholar 

  33. P. Heurtier, M.J. Jones, C. Desrayaud, J.H. Driver, F. Montheille, D. Allehaux, Mechanical and thermal modelling of friction stir welding. J. Mater. Process. Technol. 171, 348–357 (2006)

    Article  Google Scholar 

  34. O. Frigaard, O. Grong, O.T. Midling, Modeling of the heat flow phenomena in friction stir welding of aluminum alloys. in Proceedings of the Seventh International Conference Joints in AluminumINALCO’98, Cambridge, UK, 15–17 April 1998

  35. O. Frigaard, O. Grong, O.T. Midling, A process model for friction stir welding of age hardening aluminum alloys. Metall. Mater. Trans. A. 32A, 1189–1200 (2001)

  36. O. Frigaard, O. Grong, B. Bjorneklett, O.T. Milding, Modeling of the thermal and microstructure field during friction stir welding of aluminum alloys.1st International Symposium on Friction Stir Welding (Thousand Oaks, Calif, 1999)

    Google Scholar 

  37. M. Song, R. Kovacevic, A new heat transfer model for friction stir welding. Transaction of NAMRI/SME, vol. 30 (SME, 2002), pp. 565–572

  38. J.E. Gould, Z. Feng, Heat flow model for friction stir welding of aluminum alloys. J. Mater. Process. Manuf. Sci. 7(2), 185–194 (1998)

    Article  Google Scholar 

  39. M. Zahedul, H. Khandkar, J. Khan, Thermal modeling of overlap friction stir welding for Al-alloys. J. Mater. Process. Manuf. Sci. 10(2), 91–105 (2001)

  40. M. Song, R. Kovacevic, Thermal modeling of friction stir welding in a moving coordinate system and its validation. Int. J. Mach. Tools Manuf 43, 605–615 (2003)

    Article  Google Scholar 

  41. Jerry C. Wong, The Correspondence between Experimental Data and Computer Simulation of Friction Stir Welding (FSW) (Department of Mechanical and Aerospace Engineering Morgantown, West Virginia, 2008)

    Google Scholar 

  42. Y.J. Chao, X. Qi, Thermal and thermo-mechanical modeling of friction stir welding of aluminum alloy 6061-T6. J. Mater. Process. Manuf. Sci. 7, 215–233 (1998)

  43. Y.J. Chao, X. Qi, W. Tang, Heat transfer in friction stir welding—experimental and numerical studies. ASME J. Manuf. Sci. Eng. 125(1), 138–145 (2003)

    Article  Google Scholar 

  44. M. Mehta, A. Arora, A. De, T. Debroy, The minerals. Metals Mater. Soc. ASM Int. (2011). doi:10.1007/s11661-011-0672-5

    Google Scholar 

Download references

Acknowledgmen

This paper is the expanded version of an article titled, “A Study on Tooling and Its Effect on Heat Generation and Mechanical Properties of Welded Joints in Friction Stir Welding” presented in 5th International & 26th All India Manufacturing Technology, Design and Research Conference (AIMTDR 2014) during December 12–14, 2014 at Indian Institute of Technology Guwahati, India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sujoy Tikader.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tikader, S., Biswas, P. & Puri, A.B. A Study on Tooling and Its Effect on Heat Generation and Mechanical Properties of Welded Joints in Friction Stir Welding. J. Inst. Eng. India Ser. C 99, 139–150 (2018). https://doi.org/10.1007/s40032-016-0325-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40032-016-0325-y

Keywords

Navigation