Skip to main content
Log in

Dynamic Effects in Elastothermodynamic Damping of Hollow Particle Reinforced Metal-Matrix Composites

  • Original Contribution
  • Published:
Journal of The Institution of Engineers (India): Series C Aims and scope Submit manuscript

Abstract

The Metal-Matrix Composites (MMCs) containing hollow spherical reinforcements are under active development for the applications such as space structures, submarine hulls etc. where weight is of critical importance. When these materials are subjected to a time varying strain field, energy is dissipated because of the thermoelastic effect (Elastothermodynamic Damping or ETD). The quasi-static ETD analysis for the MMCs containing hollow spherical particles has been reported in literature. The entropic approach, which is better suited for composite materials with perfect or imperfect interfaces, is used for the analysis. In the present work, the effect of inertia forces is carried out on ETD of hollow particle-reinforced MMCs. For given particle volume fractions (V p ), the inertia forces are found to be more significant at higher value of thermal parameter (Ω T1) (alternatively, frequency of vibration if reinforcement radius is fixed), large cavity volume fraction (V h ) and low value of the parameter B1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

a :

Reinforcement radius

b :

Matrix radius

\( B_{ 1} \) :

Non-dimensional parameter quantifying the inertia effects \( ({=}\sqrt {\tau_{T1} /\tau_{M1} } ) \)

c :

Cavity radius

C i :

Specific heats per unit volume of phase i

E i :

Moduli of elasticity of phase i

k i :

Thermal conductivity of phase i

r :

Radial coordinate

R :

Normalized radial coordinate (=r/a)

Δs :

Entropy produced per unit volume during a cycle

ΔS :

Entropy produced in the entire volume during a cycle

t :

Time

T :

Absolute temperature

\( T_{\text{o}} \) :

Equilibrium temperature \( ({=}300{\text{ K)}} \)

ΔT :

Change in temperature \( ({=}T - T_{\text{o}} ) \)

u i :

Radial displacement of phase i

U i :

Normalized radial displacement (=u i /a)

V :

Volume of composite sphere model

V h :

Cavity volume fraction

V p :

Particle volume fraction

\( V_{i}^{*} \) :

Temperature fluctuation

W :

Maximum stored elastic energy during a cycle

ΔW :

Mechanical energy dissipated during a cycle

α i :

Linear coefficients of thermal expansion of phase i

λ i :

Lame’ constant (=E i ν i /(1 + ν i )(1 − 2ν i ))

μ i :

Lame’ constant (=E i /2(1 + ν i ))

ν i :

Poisson’s ratio of phase i

ρ i :

Mass density of phase i

σ ij :

Stress components

\( \sigma_{\text{o}} \) :

Magnitude of uniform applied stress

τ Mi :

Characteristic mechanical time \( ({=}a\sqrt {\rho_{i} /(\lambda_{i} + 2\mu_{i} )} ) \)

τ Ti :

Characteristic thermal time (=a 2 C i /k i )

Ψ qs :

Specific damping capacity obtained from quasi-static solution

Ψ d :

Specific damping capacity obtained from dynamic solution

ω :

Circular frequency of vibration

Ω Mi :

Non-dimensional mechanical parameter \( ({=}\omega \, \tau_{Mi} ) \)

Ω Ti :

Non-dimensional thermal parameter \( ({=}\omega \, \tau_{Ti} ) \)

rθϕ :

Spherical co-ordinates

References

  1. V.K. Kinra, J.E. Bishop, Elastothermodynamic damping in particulate composites: hollow spherical inclusions. J. Appl. Mech. 64(1), 111 (1997)

    Article  MATH  Google Scholar 

  2. A. Wolfenden, J.M. Wolla, in Dynamic Mechanical Properties, Metal-Matrix Composites, ed. by R.K. Everett, R.J. Arsenault (Academic Press, Boston, 1991), p. 287

    Google Scholar 

  3. C. Zener, ‘Internal friction in solids II. General theory of thermoelastic internal friction. Phys. Rev. 53, 90 (1938)

    Article  MATH  Google Scholar 

  4. M.R. Maheri, R.D. Adams, Vibration properties of structural FRP composites. JSME Int. J. Ser. A 42(3), 307 (1999)

    Article  Google Scholar 

  5. J.B. Alblas, A note on the theory of thermoelastic damping. J. Therm. Stresses 4, 333 (1981)

    Article  Google Scholar 

  6. P. Chadwick, Thermal damping of a vibrating elastic body. Mathematika 9, 38 (1962)

    Article  MathSciNet  MATH  Google Scholar 

  7. U. Lee, Thermoelastic and electromagnetic damping analysis. AIAA J. 23(11), 1789 (1985)

    Article  Google Scholar 

  8. J. Tasi, Thermoelastic dissipation in vibrating plates. J. Appl. Mech. 30, 562 (1963)

    Article  MATH  Google Scholar 

  9. R.C. Shieh, Eigen solutions for coupled thermoelastic vibrations of Timoshenko beams. J. Appl. Mech. 46, 169 (1979)

    Article  MATH  Google Scholar 

  10. V.K. Kinra, K.B. Milligan, A second law analysis of thermoelastic damping. J. Appl. Mech. 61(1), 71 (1994)

    Article  Google Scholar 

  11. J.E. Bishop, V.K. Kinra, Analysis of elastothermodynamic damping in particle-reinforced metal-matrix composites. Metall. Mater. Trans. A 26A(11), 2773 (1995)

    Article  Google Scholar 

  12. K.B. Milligan, V.K. Kinra, Elastothermodynamic damping of fiber-reinforced metal-matrix composites. J. Appl. Mech. 62(2), 441 (1995)

    Article  MATH  Google Scholar 

  13. J.E. Bishop, V.K. Kinra, Thermoelastic damping of a laminated beam in flexure and extension. J. Reinf. Plast. Compos. 12, 210 (1993)

    Article  Google Scholar 

  14. H.M. Ledbetter, S.K. Datta, Mater. Sci. Eng. 67, 25 (1984)

    Article  Google Scholar 

  15. S.K. Srivastava, B.K. Mishra, S.C. Jain, Dynamic effects in elastothermodynamic damping of metal-matrix composites with spherical reinforcement. ASME Trans. J. Vib. Acoust. 121(4), 476 (1999)

    Article  Google Scholar 

  16. S.K. Srivastava, B.K. Mishra, S.C. Jain, Effect of inertia forces in elastothermodynamic damping of fibre-reinforced metal-matrix composites. J. Reinf. Plast. Compos. 20(18), 1601 (2001)

    Article  Google Scholar 

  17. B.A. Boley, J.H. Weiner, Theory of Thermal Stresses (Wiley, New York, 1960)

    MATH  Google Scholar 

  18. J.L. Nowinski, Theory of Thermoelasticity with Applications (Sijthoff & Noordhoff International Publishers B V, The Netherlands, 1978)

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sunil Kumar Srivastava.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Srivastava, S.K., Mishra, B.K. Dynamic Effects in Elastothermodynamic Damping of Hollow Particle Reinforced Metal-Matrix Composites. J. Inst. Eng. India Ser. C 98, 185–190 (2017). https://doi.org/10.1007/s40032-016-0253-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40032-016-0253-x

Keywords

Navigation