Skip to main content
Log in

Machining Challenges: Macro to Micro Cutting

  • Review Paper
  • Published:
Journal of The Institution of Engineers (India): Series C Aims and scope Submit manuscript

Abstract

Metal cutting is an important machining operation in the manufacture of almost all engineering components. Cutting technology has undergone several changes with the development of machine tools and cutting tools to meet challenges posed by newer materials, complex shapes, product miniaturization and competitive environments. In this paper, challenges in macro and micro cutting are brought out. Conventional and micro end-milling are included as illustrative examples and details are presented along with discussion. Lengthy equations are avoided to the extent possible, as the emphasis is on the basic concepts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. M.E. Merchant, Mechanics of the metal cutting process I: orthogonal cutting and a type 2 chip. J. Appl. Phys. 16(5), 267–275 (1945)

    Article  Google Scholar 

  2. P.L.B. Oxley, Mechanics of metal cutting for a material of variable flow stress. ASME J. Eng. Ind 85, 339–345 (1963)

    Article  Google Scholar 

  3. N. Ikawa, R.R. Donaldson, R. Komanduri, W. Konig, T.H. Aachen, P.A. McKeown, T. Moriwaki, I.F. Stowers, Ultraprecision metal cutting—the past, the present and the future. Ann. CIRP: Manuf. Technol 40(2), 587–594 (1991)

    Article  Google Scholar 

  4. T. Masuzawa, H.K. Tonshoff, Three-dimensional micromachining by machine tools. Ann. CIRP: Manuf. Technol. 46, 621–628 (1997)

    Article  Google Scholar 

  5. M. Weck, S. Fischer, M. Vos, Fabrication of micro components using ultra precision machine tools. Nanotechnology 8, 145–148 (1997)

    Article  Google Scholar 

  6. T. Masuzawa, State of the art of micromachining. Ann. CIRP Manuf. Technol. 49(2), 473–488 (2000)

    Article  Google Scholar 

  7. K.F. Ehmann, R.E. DeVor, S.G. Kapoor, Micro/Meso-Scale Mechanical Manufacturing—Opportunities and Challenges, in Proc. JSME/ASME Int. Conf. Mater. & Process, October 15–18, Honolulu, HI, 1, 6–13 (2002)

  8. X. Liu, R.E. DeVor, S.G. Kapoor, K.F. Ehmann, The mechanics of machining at the micro scale: assessment of the current state of the science. Trans. ASME J. Manuf. Sci. Eng. 126, 666–678 (2004)

    Article  Google Scholar 

  9. J. Chae, S.S. Park, T. Freiheit, Investigation of micro-cutting operations. Int. J. Mach. Tools Manuf. 46(3–4), 313–332 (2006)

    Article  Google Scholar 

  10. M.C. Shaw, The size effect in metal cutting. Sadhana: Acad. Proc. Eng. Sci. 28(5), 875–896 (2003)

    Article  Google Scholar 

  11. P.L.B. Oxley, Mechanics of metal cutting. Int. J. Mach. Tool Des. Res. 1(1–2), 89–97 (1961)

    Article  Google Scholar 

  12. P.L.B. Oxley, M.J.M. Welsh, Calculating shear angle in orthogonal metal cutting from fundamental shear strain and strain rate properties of work material, in Proc. 4th Int. Mach. Tool Des. Res. Conf., Manchester, U.K., 73–86 (1963)

  13. N. Tounsi, J. Vincenti, A. Otho, M.A. Elbestawi, From the basic mechanics of orthogonal metal cutting toward the identification of the constitutive equation. Int. J. Mach. Tools Manuf. 42, 1373–1383 (2002)

    Article  Google Scholar 

  14. J. Manjunathaiah, W.J. Endres, A new model and analysis of orthogonal machining with an edge radiused tool. Trans. ASME J. Manuf. Sci. Eng. 122, 384–390 (2000)

    Article  Google Scholar 

  15. N. Fang, Slip-line modeling of machining with a rounded-edge tool—parts I. J. Mech. Phys. Solids 51, 715–742 (2003)

    Article  MATH  Google Scholar 

  16. N. Fang, Slip-line modeling of machining with a rounded-edge tool—part II: analysis of the size effect and shear strain-rate. J. Mech. Phys. Solids 51, 743–762 (2003)

    Article  MATH  Google Scholar 

  17. B. Ackroyd, N.S. Akcan, P. Chhabra, K. Krishnamurthy, V. Madhavan, S. Chandrasekar, W.D. Compton, T.N. Farris, Exploration of contact conditions in machining. Proc. IMechE. 215(4), 493–507 (2001)

    Article  Google Scholar 

  18. E. Ozlu, E. Budak, A. Molinari, Analytical and experimental investigation of rake contact and friction behaviour in metal cutting. Int. J. Mach. Tools Manuf. 49, 865–875 (2009)

    Article  Google Scholar 

  19. R. Komanduri, Some aspects of machining with negative rake tools simulating grinding. Int. J. Mach. Tool Des. Res. 11, 223–233 (1971)

    Article  Google Scholar 

  20. M.E.S. Abdelmoneim, R.F. Scrutton, Tool edge roundness and stable build up formation in finish machining. Trans. ASME J. Eng. Ind. 96, 1258–1267 (1974)

    Article  Google Scholar 

  21. D.J. Waldorf, R.E. DeVor, S.G. Kapoor, Slip-line field for ploughing during orthogonal cutting. Trans. ASME J. Manuf. Sci. Eng. 120(4), 693–698 (1998)

    Article  Google Scholar 

  22. R.J. Schimmel, W.J. Endres, R. Stevenson, Application of an internally consistent material model to determine the effect of tool edge geometry in orthogonal cutting. Trans. ASME J. Manuf. Sci. Eng. 124, 536–543 (2002)

    Article  Google Scholar 

  23. A. Popov, A. Dugin, A comparison of experimental estimation methods of the ploughing force in orthogonal cutting. Int. J. Mach. Tools Manuf. 65, 37–40 (2013)

    Article  Google Scholar 

  24. P.K. Basuray, B.K. Misra, G.K. Lal, Transition from ploughing to cutting during machining with blunt tools. Wear 43, 314–349 (1977)

    Article  Google Scholar 

  25. R.K. Kountanya, W.J. Endres, A high magnification experimental study of orthogonal cutting with edge-honed tools, in Proc. ASME Int. Mech. Eng. Congr. Expo., November 11–16, New York, NY: MED-23317 (2001)

  26. E.J.A. Armarego, R.C. Whitfield, Computer based modeling of popular machining operations for force and power prediction. Ann. CIRP Manuf. Technol. 34(1), 45–49 (1985)

    Article  Google Scholar 

  27. E.J.A. Armarego, N.P. Deshpande, Computerized predictive cutting models for forces in end-milling including eccentricity effects. Ann. CIRP Manuf. Technol. 38, 45–49 (1989)

    Article  Google Scholar 

  28. E. Budak, Y. Altintas, E.J.A. Armarego, Prediction of milling force coefficients from orthogonal cutting data. Trans. ASME J. Manuf. Sci. Eng. 118, 216–224 (1996)

    Article  Google Scholar 

  29. Y. Altintas, P. Lee, A general mechanics and dynamics model for helical end mills. Ann. CIRP: Manuf. Technol. 45(1), 59–64 (1996)

    Article  Google Scholar 

  30. K. Komvopoulos, S.A. Erpenbeck, Finite element modeling of orthogonal metal cutting. ASME J. Eng. Ind. 113, 253–267 (1991)

    Article  Google Scholar 

  31. E. Ceretti, P. Fallböhmer, W.T. Wu, T. Altan, Application of 2D FEM to chip formation in orthogonal cutting. J. Mater. Process. Technol. 59, 169–180 (1996)

    Article  Google Scholar 

  32. Y.-C. Yen, A. Jain, T. Altan, Finite element analysis of orthogonal machining using different tool edge geometries. J. Mater. Process. Technol. 146, 72–81 (2004)

    Article  Google Scholar 

  33. T. Özel, The influence of friction models on finite element simulations of machining. Int. J. Mach. Tools Manuf. 46, 518–530 (2006)

    Article  Google Scholar 

  34. A.G. Mamalis, M. Horváth, A.S. Branis, D.E. Manolakos, Finite element simulation of chip formation in orthogonal metal cutting. J. Mater. Process. Technol. 110, 19–27 (2001)

    Article  Google Scholar 

  35. C. Shet, X. Deng, Finite element analysis of the orthogonal metal cutting process. J. Mater. Process. Technol. 105, 95–109 (2000)

    Article  Google Scholar 

  36. T.D. Marusich, Effects of friction and cutting speed on cutting force, in Proc. IMECE (ASME), 11–16 Nov, New York, Paper No. MED-23313 (2001)

  37. G.R. Johnson, W.H. Cook, A constitutive model and data for metals subjected to large strain, high strain rates and high temperatures, in Proc 7th Int. Symp. Ballistics, April, The Hague, Netherlands, 541–547 (1983)

  38. J. Mackerle, Finite-element analysis and simulation of machining: a bibliography (1976–1996). J. Mater. Process. Technol. 86, 17–44 (1999)

    Article  Google Scholar 

  39. J. Mackerle, Finite element analysis and simulation of machining: an addendum a bibliography (1996–2002). Int. J. Mach. Tools Manuf. 43, 103–114 (2003)

    Article  Google Scholar 

  40. A.G. Atkins, Modeling metal cutting using modern ductile fracture mechanics: quantitative explanations for some longstanding problems. Int. J. Mech. Sci. 45, 373–396 (2003)

    Article  Google Scholar 

  41. G. Gonzalo, H. Jauregi, L.G. Uriarte, L.N. Lόpez de Lacalle, Prediction of specific force coefficients from a FEM cutting model. Int. J. Adv. Manuf. Technol. 43, 348–356 (2009)

    Article  Google Scholar 

  42. M.C. Shaw, A quantized theory of strain hardening as applied to the cutting of metals. J. Appl. Phys. 21, 599–606 (1950)

    Article  Google Scholar 

  43. E.J.A. Armarego, R.H. Brown, On the size effect in metal cutting. Int. J. Prod. Res. 1(3), 75–99 (1962)

    Article  Google Scholar 

  44. K. Nakayama, K. Tamura, Size effect in metal-cutting force. Trans. ASME J. Eng. Ind. 90, 119–126 (1968)

    Article  Google Scholar 

  45. R.H. Brown, E.J.A. Armarego, Oblique machining with a single cutting edge. Int. J. Mach. Tool Des. Res. 4, 9–25 (1964)

    Article  Google Scholar 

  46. E.J.A. Armarego, R.H. Brown, The Machining of Metals (Prentice-Hall, Englewood Cliffs, 1969)

    Google Scholar 

  47. A.K. Pal, F. Koenigsberger, Some aspects of the oblique cutting process. Int. J. Mach. Tool Des. Res. 8, 45–57 (1968)

    Article  Google Scholar 

  48. P.K.V. Vinod, W. Lau, G. Barrow, On a new model of oblique cutting. Trans. ASME: J. Eng. Ind. 100, 287–292 (1978)

    Google Scholar 

  49. C. Rubenstein, The mechanics of continuous chip formation in oblique cutting in the absence of chip distortion. Part 1-Theory. Int. J. Mach. Tool Des. Res. 23(1), 11–20 (1983)

    Article  MathSciNet  Google Scholar 

  50. N. Fang, An improved model for oblique cutting and its application to chip-control research. J. Mater. Process. Technol. 79, 79–85 (1998)

    Article  Google Scholar 

  51. J. Tlusty, P. MacNeil, Dynamics of cutting forces in end milling. Ann. CIRP: Manuf. Technol. 24, 21–25 (1975)

    Google Scholar 

  52. E.J.A. Armarego, A generic mechanics of cutting approach to predictive technological performance modeling of the wide spectrum of machining operations. in Proc. CIRP, Int. Workshop on Modeling of Machining Operations, Atlanta, Georgia, USA, 95–107 (1998)

  53. Y. Altintas, Manufacturing Automation Metal Cutting Mechanics Machine tool Vibrations and CNC Design (Cambridge University Press, Cambridge, 2000)

    Google Scholar 

  54. L. Zheng, Y.S. Chiou, S.Y. Liang, Three dimensional cutting force analysis in end-milling. Int. J. Mech. Sci. 38(3), 259–269 (1996)

    Article  Google Scholar 

  55. H. Li, Y.C. Shin, A comprehensive dynamic end milling simulation model. J. Manuf. Sci. Eng. Trans. ASME 128, 86–95 (2006)

    Article  MathSciNet  Google Scholar 

  56. R.B. Jerard, B.K. Fussell, M. Xu, C. Yalcin, Process simulation and feedrate selection for three-axis sculptured surface machining. Int. J. Manuf. Res. 1(2), 136–156 (2006)

    Article  Google Scholar 

  57. P. Palanisamy, I. Rajendran, S. Shanmugasundaram, R. Saravanan, Prediction of cutting force and temperature rise in the end milling operation. Proc. IMechE—Part B: J. Eng. Manuf. 220(10), 1577–1587 (2006)

    Article  Google Scholar 

  58. E. Budak, E. Ozlu, Development of a thermomechanical cutting process model for machining process simulations. Ann. CIRP Manuf. Technol. 57, 97–100 (2008)

    Article  Google Scholar 

  59. W.A. Kline, R.E. DeVor, J.R. Lindberg, The prediction of cutting forces in end milling with application to cornering cuts. Int. J. Mach. Tool Des. Res. 22, 7–22 (1982)

    Article  Google Scholar 

  60. W.A. Kline, R.E. DeVor, Effect of runout on cutting geometry and forces in end milling. Int. J. Mach. Tool Des. Res. 23, 123–140 (1983)

    Article  Google Scholar 

  61. G. Yucesan, Q. Xie, A.E. Bayoumi, Determination of process parameters through a mechanistic force model of milling operations. Int. J. Mach. Tools Manuf. 33, 627–641 (1993)

    Article  Google Scholar 

  62. J. Gradisek, M. Kalveram, K. Weinert, Mechanistic identification of specific force coefficients for a general end mill. Int. J. Mach. Tools Manufact. 44, 401–414 (2004)

    Article  Google Scholar 

  63. O.B. Adetoro, P.H. Wen, Prediction of mechanistic cutting force coefficients using ALE formulation. Int. J. Adv. Manuf. Technol. 46(1–4), 79–90 (2010)

    Article  Google Scholar 

  64. O. Gonzalo, J. Beristain, H. Jauregi, C. Sanz, A method for the identification of the specific force coefficients for mechanistic milling simulation. Int. J. Mach. Tools Manuf. 50, 765–774 (2010)

    Article  Google Scholar 

  65. J.J.J. Wang, C.M. Zheng, Online identification of shearing and plowing constants in end milling. Trans. ASME J. Manuf. Sci. Eng. 125, 57–64 (2003)

    Article  Google Scholar 

  66. R.A. Ekanayake, P. Mathew, Force predictions for tooling speed limits in end milling using a variable flow stress machining theory. Trans. NAMRI SME 36, 429–436 (2008)

    Google Scholar 

  67. K.H. Fuh, R.M. Hwang, A predicted milling force model for high-speed for high-speed end milling operation. Int. J. Mach. Tools Manuf. 37, 969–979 (1997)

    Article  Google Scholar 

  68. K. Jemielniak, Commercial tool condition monitoring systems. Int. J. Adv. Manuf. Technol. 15, 711–721 (1999)

    Article  Google Scholar 

  69. R.E. Haber, J.E. Jimenez, C.R. Peres, J.R. Alique, An investigation of tool-wear monitoring in a high speed machining process. Sens. Actuators 116, 539–545 (2004)

    Article  Google Scholar 

  70. M. Kovacic, J. Balic, M. Brezocnik, Evolutionary approach for cutting forces prediction in milling. J. Mater. Process. Technol. 155–156(1), 1647–1652 (2004)

    Article  Google Scholar 

  71. A.J. Torabi, M.J. Er, L. Xiang, B.S. Lim, Z. Lianyin, S.J. Phua, Z. Junhong, S. Lin, H. Sheng, J.T.T. Tijo, A survey on artificial intelligence technologies in modeling of high speed end-milling processes, in Proc. IEEE/ASME Int. Conf. Adv. Intelligent Mechatronics, AIM, Singapore, 320–325 (2009)

  72. S.H. Ryu, D.K. Choi, C.N. Chu, Roughness and texture generation on end milled surfaces. Int. J. Mach. Tools Manuf. 46(3–4), 404–412 (2006)

    Article  Google Scholar 

  73. B. Ozcelik, M. Bayramoglu, The statistical modeling of surface roughness in high-speed flat end milling. Int. J. Mach. Tools Manufact. 46(12–13), 1395–1402 (2006)

    Article  Google Scholar 

  74. A.M. Zain, H. Haron, S. Sharif, Prediction of surface roughness in the end milling machining using artificial neural network. Expert Sys. Appl. 37(2), 1755–1768 (2010)

    Article  Google Scholar 

  75. S. Saikumar, M.S. Shunmugam, Parameter selection based on surface finish in high-speed end-milling using differential evolution. Mater. Manuf. Process. 21(4), 341–347 (2006)

    Article  Google Scholar 

  76. J.Z. Zhang, J.C. Chenb, E.D. Kirby, Surface roughness optimization in an end-milling operation using the Taguchi design method. J. Mater. Process. Technol. 184(1–3), 233–239 (2007)

    Article  Google Scholar 

  77. C. Prakasvudhisarn, S. Kunnapapdeelert, P. Yenradee, Optimal cutting condition determination for desired surface roughness in end milling. Int. J. Adv. Manuf. Technol. 41(5–6), 440–451 (2009)

    Article  Google Scholar 

  78. B.C. Routara, A. Bandyopadhyay, P. Sahoo, Roughness modeling and optimization in CNC end milling using response surface method: effect of workpiece material variation. Int. J. Adv. Manuf. Technol. 40(11–12), 1166–1180 (2009)

    Article  Google Scholar 

  79. P.T. Mativenga, K.K.B. Hon, An experimental study of cutting forces in high speed end milling and implications for dynamic force modeling. Trans. ASME J. Eng. Ind 127(2), 251–261 (2005)

    Article  Google Scholar 

  80. T. Schmitz, M. Davies, B. Dutterer, J. Ziegert, The application of high-speed CNC machining to prototype production. Int. J. Mach. Tools Manuf. 41(8), 1209–1228 (2001)

    Article  Google Scholar 

  81. R.C. Dewes, D.K. Aspinwall, A review of ultra high speed milling of hardened steels. J. Mater. Process. Technol. 69, 1–17 (1997)

    Article  Google Scholar 

  82. R. Werthiem, Future direction for R&D in manufacturing engineering in Ireland and UK, CIRP Workshop, Dublin (2002)

  83. I.S. Jawahir, A.K. Balaji, K.E. Rouch, J.R. Baker, Towards integration of hybrid models for optimized machining performance in intelligent manufacturing systems. J. Mat. Process. Technol. 139(1–3), 488–498 (2003)

    Article  Google Scholar 

  84. S. Saikumar, M.S. Shunmugam, Development of a feed rate adaption control system for high speed rough and finish end milling of hardened EN24 steel. Int. J. Adv. Manuf. Technol. 59(9–12), 869–884 (2011)

    Google Scholar 

  85. S. Saikumar, M.S. Shunmugam, Investigations into high speed rough and finish end milling of hardened EN24 steel for implementation of control strategies. Int. J. Adv. Manuf. Technol. 63(1–4), 391–406 (2012)

    Article  Google Scholar 

  86. D.C. Montgomery, Design and Analysis of Experiments, 5th edn. (Wiley, New york, 2000)

    Google Scholar 

  87. R. Storn, K. Price, Differential evolution—a simple and efficient heuristic for global optimization over continuous spaces. J. Global Optim. 11, 341–359 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  88. Matlab R, The Mathworks Incorporation, Natick, MA, USA (2007a)

  89. S. Saikumar, Investigations into high speed rough and finish end-milling of hardened EN24 steel and implementation of control strategies, Ph.D. Thesis, IIT Madras (2011)

  90. D.J.C. MacKay, A practical Bayesian framework for back-propagation networks. Neural Comput. 4, 448–472 (1992)

    Article  Google Scholar 

  91. D.A. Lucca, Y.W. Seo, Effect of tool edge geometry on energy dissipation in ultraprecision machining. Ann. CIRP: Manuf. Technol. 42(1), 83–86 (1993)

    Article  Google Scholar 

  92. N. Moronuki, Y. Liang, Y. Furukawa, Experiments on the effect of material properties on microcutting processes. Precis. Eng. 16(2), 124–131 (1994)

    Article  Google Scholar 

  93. H. Weule, V. Huntrup, H. Tritschle, Micro-cutting of steel to meet new requirements in miniaturization. Ann. CIRP: Manuf. Technol. 50(1), 61–64 (2001)

    Article  Google Scholar 

  94. J. Manuf, S. Venkatachalam, S.Y. Liang, Effects of ploughing forces and friction coefficient in microscale machining. Trans. ASME Sci. Eng. 129, 274–280 (2007)

    Article  Google Scholar 

  95. S. Venkatachalam, X. Li, S.Y. Liang, Predictive modeling of transition undeformed chip thickness in ductile-regime micro-machining of single crystal brittle materials. J. Mater. Process. Technol. 209, 3306–3319 (2009)

    Article  Google Scholar 

  96. J.D. Kim, D.S. Kim, Theoretical analysis of micro-cutting characteristics in ultra-precision machining. J. Mater. Process. Technol. 49(3–4), 387–398 (1995)

    Article  Google Scholar 

  97. G. Bissacco, H. Hansen, J. Slunsky, Modelling the cutting edge radius size effect for force prediction in micro milling. Ann. CIRP Manuf. Technol. 57, 113–116 (2008)

    Article  Google Scholar 

  98. N. Ikawa, S. Shimada, H. Tanaka, Minimum thickness of cut in micromachining. Nanotechnology 3, 6–9 (1992)

    Article  Google Scholar 

  99. Z.J. Yuan, M. Zhou, S. Dong, Effect of diamond tool sharpness on minimum cutting thickness and cutting surface integrity in ultra precision machining. J. Mater. Process. Technol. 62(4), 327–330 (1996)

    Article  Google Scholar 

  100. S.M. Son, H.S. Lim, J.H. Ahn, Effects of the friction coefficient on the minimum cutting thickness in micro cutting. Int. J. Mach. Tools Manuf. 45, 529–535 (2005)

    Article  Google Scholar 

  101. X. Liu, R.E. Devor, S.G. Kapoor, An analytical model for the prediction of minimum chip thickness in micromachining. Trans. ASME J. Manuf. Sci. Eng. 128, 474–481 (2006)

    Article  Google Scholar 

  102. M. Malekian, M.G. Mostofa, S.S. Park, M.B.G. Jun, Modeling of minimum uncut chip thickness in micro machining of aluminum. J. Mater. Process. Technol. 212(3), 553–559 (2012)

    Article  Google Scholar 

  103. K.S. Woon, M. Rahman, K.S. Neo, K. Liu, The effect of tool edge radius on the contact phenomenon of tool-based micromachining. Int. J. Mach. Tools Manuf. 48, 1395–1407 (2008)

    Article  Google Scholar 

  104. H. Gao, Y. Huang, W.D. Nix, J.W. Hutchinson, Mechanism based strain gradient plasticity-I. Theory. J. Mech. Phys. Solids 47(6), 1239–1263 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  105. A. Arsenlis, D.M. Parks, Crystallographic aspects of geometrically-necessary and statistically-stored dislocation density. Acta Mater. 47(5), 1597–1611 (1999)

    Article  Google Scholar 

  106. H. Gao, Y. Huang, Taylor-based nonlocal theory of plasticity. Int. J. Solids Struct. 38, 2615–2637 (2001)

    Article  MATH  Google Scholar 

  107. D. Dinesh, S. Swaminathan, S. Chandrasekar, T.N. Farris, An intrinsic size effect in machining due to the strain gradient, in Proc. ASME, IMECE, 11–16 Nov, NY, USA, 197–204 (2001)

  108. S.S. Joshi, S.N. Melkote, An explanation for the size-effect in machining using Strain gradient plasticity. Trans. ASME J. Manuf. Sci. Eng. 126(4), 679–684 (2004)

    Article  Google Scholar 

  109. K. Liu, S.N. Melkote, Material strengthening mechanisms and their contribution to size effect in micro-cutting. Trans. ASME J. Manuf. Sci. Eng. 128(3), 730–738 (2006)

    Article  Google Scholar 

  110. S. Rao, M.S. Shunmugam, Analytical modeling of micro end-milling forces with edge radius and material strengthening effect. Mach. Sci. Technol. 16(2), 205–227 (2012)

    Article  Google Scholar 

  111. S. Rao Analytical force modeling of macro and micro end-milling, Dual Degree Project Report, IIT Madras (2011)

  112. K.W. Kim, W.Y. Lee, H.C. Sin, A finite element analysis for the characteristics of temperature and stress in micro-machining considering the size effect. Int. J. Mach. Tools Manuf. 39, 1507–1524 (1999)

    Article  Google Scholar 

  113. K.W. Kim, W.Y. Lee, H.C. Sin, A finite element analysis of machining with the tool edge considered. J. Mater. Process. Technol. 86, 45–55 (1999)

    Article  Google Scholar 

  114. K. Liu, S.N. Melkote, Finite element analysis of the influence of tool edge radius on size effect in orthogonal micro-cutting process. Int. J. Mech. Sci. 49, 650–660 (2007)

    Article  Google Scholar 

  115. A. Simoneau, E. Ng, M.A. Elbestawi, Chip formation during microscale cutting of a medium carbon steel. Int. J. Mach. Tools Manuf. 46, 467–481 (2006)

    Article  Google Scholar 

  116. A. Simoneau, E. Ng, M.A. Elbestawi, The effect of microstructure on chip formation and surface defects in microscale, mesoacale, and macroscale cutting of steel. Ann. CIRP: Manuf. Technol. 55(1), 97–102 (2006)

    Article  Google Scholar 

  117. A. Simoneau, E. Ng, M.A. Elbestawi, Grain size and orientation effects when microcutting AISI 1045 steel. Ann. CIRP: Manuf. Technol. 56(1), 57–60 (2007)

    Article  Google Scholar 

  118. S.M. Afazov, S.M. Ratchev, J. Segal, Modelling and simulation of micro-milling cutting forces. J. Mater. Process. Technol. 210(15), 2154–2162 (2010)

    Article  Google Scholar 

  119. S. Subbiah, S.N. Melkote, Effect of finite edge radius on ductile fracture ahead of the cutting tool edge in micro-cutting of Al2024-T3. Mater. Sci. Eng. A 474(1–2), 283–300 (2008)

    Article  Google Scholar 

  120. T. Özel, T. Thepsonthi, D. Ulutan, B. Kaftanoğlu, Experiments and finite element simulations on micro-milling of Ti–6Al–4 V alloy with uncoated and cBN coated micro-tools. Ann. CIRP: Manuf. Technol. 60(1), 85–88 (2011)

    Article  Google Scholar 

  121. W.Y. Bao, I.N. Tansel, Analytical cutting force model. Modeling micro-end-milling operations. Part I. Int. J. Mach. Tools Manuf. 40, 2155–2173 (2000)

    Article  Google Scholar 

  122. C. Li, X. Lai, H. Li, J. Ni, Modeling of three-dimensional cutting forces in micro-end-milling. J. Micromech. Microeng. 17, 671–678 (2007)

    Article  Google Scholar 

  123. W.Y. Bao, I.N. Tansel, Modeling micro-end-milling operations. Part II: tool run-out. Int. J. Mach. Tool Manuf. 40, 2175–2192 (2000)

    Article  Google Scholar 

  124. W.Y. Bao, I.N. Tansel, Influence of tool wear Modeling micro-end-milling operations. Part III. Int. J. Mach. Tools Manuf. 40, 2193–2211 (2000)

    Article  Google Scholar 

  125. M.P. Vogler, R.E. DeVor, S.G. Kapoor, On the modeling and analysis of machining performance in micro-endmilling, Part I: surface generation. Trans. ASME, J. Manuf. Sci. Eng. 126, 685–694 (2004)

    Article  Google Scholar 

  126. M.P. Vogler, R.E. DeVor, S.G. Kapoor, On the modeling and analysis of machining performance in micro-endmilling, Part II: cutting force prediction. Trans. ASME J. Manuf. Sci. Eng. 126, 695–705 (2004)

    Article  Google Scholar 

  127. C.J. Kim, J.R. Mayor, J. Ni, A static model of chip formation in microscale milling. Trans. ASME J. Manuf. Sci. Eng. 126, 710–718 (2004)

    Article  Google Scholar 

  128. F.Z. Fang, H. Wu, X.D. Liu, Y.C. Liu, S.T. Ng, Tool geometry study in micromachining. J. Micromech. Microeng 13, 726–731 (2003)

    Article  Google Scholar 

  129. A. Aramcharoen, P.T. Mativenga, Size effect and tool geometry in micromilling of tool steel. Precis. Eng. 33, 402–407 (2009)

    Article  Google Scholar 

  130. D.P. Adams, M.J. Vasile, G. Benavides, A.N. Campbell, Micromilling of metal alloys with focused ion beam–fabricated tools. Precis. Eng. 25, 107–113 (2001)

    Article  Google Scholar 

  131. J.C. Aurich, I.G. Reichenbach, G.M. Schüler, Manufacture and application of ultra-small micro end mills. Ann. CIRP Manuf. Technol. 61(1), 83–86 (2012)

    Article  Google Scholar 

  132. M. Rahman, A.S. Kumar, J.R.S. Prakash, Micro milling of pure copper. J. Mater. Process. Technol. 116, 39–43 (2001)

    Article  Google Scholar 

  133. S. Filiz, C.M. Conley, M.B. Wasserman, O.B. Ozdoganlar, An experimental investigation of micro-machinability of copper 101 using tungsten carbide micro-endmills. Int. J. Mach. Tools Manuf. 47, 1088–1100 (2007)

    Article  Google Scholar 

  134. M. Takács, B. Vero, I. Meszaros, Micromilling of metallic materials. J. Mater. Process. Technol. 138, 152–155 (2003)

    Article  Google Scholar 

  135. J. Schmidt, H. Tritschler, Micro cutting of steel. Microsys. Technol. 10, 167–174 (2004)

    Article  Google Scholar 

  136. E. Uhlmann, S. Piltz, K. Schauer, Micro milling of sintered tungsten–copper composite materials. J. Mater. Process. Technol. 167, 402–407 (2005)

    Article  Google Scholar 

  137. M. Arif, M. Rahman, W.Y. San, Ulraprecision ductile mode machining of glass by micromilling process. J. Manuf. Process. 13(1), 50–59 (2011)

    Article  Google Scholar 

  138. K. Nakamoto, K. Katahira, H. Ohmori, K. Yamazaki, T. Aoyama, A study on the quality of micro-machined surfaces on tungsten carbide generated by PCD micro end-milling. Ann. CIRP: Manuf. Technol. 61(1), 567–570 (2012)

    Article  Google Scholar 

  139. G. Bissacco, H.N. Hansen, L. de Chiffre, Micromilling of hardened tool steel for mould making applications. J. Mater. Process. Technol. 167(2–3), 201–207 (2005)

    Article  Google Scholar 

  140. H. Ding, R. Ibrahim, K. Cheng, S.-J. Chen, Experimental study on machinability improvement of hardened tool steel using two dimensional vibration-assisted micro-end-milling. Int. J. Mach. Tools Manufact. 50(12), 1115–1118 (2010)

    Article  Google Scholar 

  141. S. Filiz, O.B. Ozdoganlar, A three-dimensional model for the dynamics of micro-endmills including bending, torsional and axial vibrations. Precis. Eng. 35(1), 24–37 (2011)

    Article  Google Scholar 

  142. K.B. Mustapha, Z.W. Zhong, A hybrid analytical model for the transverse vibration response of a micro-end mill. Mech Syst. Signal Process 34(1–2), 321–339 (2013)

    Article  Google Scholar 

  143. M.P. Vogler, R.E. DeVor, S.G. Kapoor, Microstructure-level force prediction model for micro-milling of multiphase materials. Trans. ASME J. Manuf. Sci. Eng. 125, 202–209 (2003)

    Article  Google Scholar 

  144. M.B.G. Jun, X. Liu, R.E. DeVor, S.G. Kapoor, Investigation of the dynamics of microend milling—part I: model development. Trans. ASME J. Manuf. Sci. Eng. 128, 893–900 (2006)

    Article  Google Scholar 

  145. M.B.G. Jun, X. Liu, R.E. DeVor, S.G. Kapoor, Investigation of the dynamics of microend milling—part II: model validation and interpretation. Trans. ASME J. Manuf. Sci. Eng. 128, 901–912 (2006)

    Article  Google Scholar 

  146. T. Özel, X. Liu, A. Dhanorker, Modelling and simulation of micro-milling process, The 4th Int. Conf. Exhib. Des. Prod. Machines and Dies/Molds, 21–23 June, Cesme, Turkey (2007)

  147. X. Lai, H. Li, C. Li, Z. Lin, J. Ni, Modeling and analysis of micro scale milling considering size effect, micro cutter edge radius and minimum chip thickness. Int. J. Mach. Tools Manuf. 48(1), 1–14 (2008)

    Article  Google Scholar 

  148. S.S. Park, M. Malekian, Mechanistic modeling and accurate measurement of micro end milling forces. Ann. CIRP: Manuf. Technol. 58, 49–52 (2009)

    Article  Google Scholar 

  149. M. Malekian, S.S. Park, M.B.G. Jun, Modeling of dynamic micro-milling cutting forces. Int. J. Mach. Tools Manuf. 49(7–8), 586–598 (2009)

    Article  Google Scholar 

  150. Y. Altintas, X. Jin, Mechanics of micro-milling with round edge tools. Ann. CIRP: Manuf. Technol. 60(1), 77–80 (2011)

    Article  Google Scholar 

  151. X. Jin, Y. Altintas, Prediction of micro-milling forces with finite element method. J. Mater. Process. Technol. 212(3), 542–552 (2012)

    Article  Google Scholar 

  152. M.T. Zaman, A.S. Kumar, M. Rahman, S. Sreeram, A three-dimensional analytical cutting force model for micro end milling operation. Int. J. Mach. Tools Manuf. 46, 353–366 (2006)

    Article  Google Scholar 

  153. I.S. Kang, J.S. Kim, J.H. Kim, M.C. Kang, Y.W. Seo, A mechanistic model of cutting force in the micro end milling process. J. Mater. Process. Technol. 187–188(12), 250–255 (2007)

    Article  Google Scholar 

  154. H. Perez, A. Vizan, J.C. Hernandez, M. Guzman, Estimation of cutting forces in micromilling through the determination of specific cutting pressures. J. Mater. Process. Technol. 190(1–3), 18–22 (2007)

    Article  Google Scholar 

  155. L. Uriarte, A. Herrero, A. Ivanov, H. Oosterling, L. Staemmler, P.T. Tang, D. Allen, Comparison between microfabrication technologies for metal tooling. Proc. IMechE. 220, 1665–1676 (2006)

    Google Scholar 

  156. W. Wang, S.H. Kweon, S.H. Yang, A study on roughness of the micro-end-milled surface produced by a miniatured machine tool. J. Mater. Process. Technol. 162–163, 702–708 (2005)

    Article  Google Scholar 

  157. H.T. Yun, S. Heo, M.K. Lee, B.-K. Min, S.J. Lee, Ploughing detection in micromilling processes using the cutting force signal. Int. J. Mach. Tools Manuf. 51(5), 377–382 (2011)

    Article  Google Scholar 

  158. X. Liu, R.E. Devor, S.G. Kapoor, Model based analysis of the surface generation in microendmilling-Part I: model development. Trans. ASME J. Manuf. Sci. Eng 129, 453–460 (2007)

    Article  Google Scholar 

  159. X. Liu, R.E. Devor, S.G. Kapoor, Model based analysis of the surface generation in microendmilling-Part II: experimental validation and analysis. Trans. ASME, J. Manuf. Sci. & Eng 129, 461–469 (2007)

    Article  Google Scholar 

  160. I.N. Tansel, O. Rodriguez, M. Trujillo, E. Paz, W. Li, Micro-end-milling-I. Wear and breakage. Int. J. Mach. Tools Manuf. 38, 1419–1436 (1998)

    Article  Google Scholar 

  161. I.N. Tansel, T.T. Arkan, W.Y. Bao, N. Mahendrakar, B. Shisler, D. Smith, M. McCool, Tool wear estimation in micro-machining, Part I: tool usage-cutting force relationship. Int. J. Mach. Tools Manuf. 40, 599–608 (2000)

    Article  Google Scholar 

  162. Y.V. Srinivasa, M.S. Shunmugam, Development and performance evaluation of miniaturised machine tool (MMT) system. Int. J. Nanomanuf. 3(1/2), 133–158 (2009)

    Article  Google Scholar 

  163. Y.V. Srinivasa, M.S. Shunmugam, Analysis of structural integrity of special purpose miniaturized machine tool and performance evaluation for micro machining applications. Int. J. Comput. Aided Eng. Technol. 6(4), 366–382 (2014)

    Article  Google Scholar 

  164. K. Vedantam, D. Bajaj, N. S. Brar, S. Hill, Johnson - Cook strength models for mild and DP 590 steels, in Proc. 14th Int. Conf. Shock Compression of Condensed Matter, Baltimore, MD, USA, 775-778 (2005)

  165. MatWeb material database (2009), http://www.matweb.com. Accessed 1 Nov 2011

  166. Y.V. Srinivasa, Investigations into micro end-milling and development of mechanistic model of cutting forces, Ph.D. Thesis, IIT Madras (2013)

  167. Y.V. Srinivasa, M.S. Shunmugam, Investigations into micro orthogonal cutting and material strengthening phenomenon. Int. J. Manuf. Res. 8(4), 394–421 (2013)

    Article  Google Scholar 

  168. M.E. Martellotti, An analysis of the milling process. Trans. ASME 63(8), 677–700 (1941)

    Google Scholar 

  169. Y.V. Srinivasa, M.S. Shunmugam, Mechanistic model for prediction of cutting forces in micro end-milling and experimental comparison. Int. J. Mach. Tools Manuf. 67, 18–27 (2013)

    Article  Google Scholar 

Download references

Acknowledgments

This paper is a revised version of an article entitled “Machining Challenges: Macro To Micro Cutting” presented as FW Taylor Memorial Lecture in the Twenty-ninth National Convention of Production Engineers held at Chennai during August 1–2, 2014 organised by Tamilnadu State Centre, The Institution of Engineers (India). The author would like to acknowledge the financial support received from Department of Science and Technology, New Delhi, Indian Institute of Technology Madras and Aeronautics Research and Development Board, New Delhi for establishing the micro-machining facility.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. S. Shunmugam.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shunmugam, M.S. Machining Challenges: Macro to Micro Cutting. J. Inst. Eng. India Ser. C 97, 223–241 (2016). https://doi.org/10.1007/s40032-015-0182-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40032-015-0182-0

Keywords

Navigation