Skip to main content

Advertisement

Log in

Characterisation of Tensile Behaviour of a Dielectric Elastomer at Large Deformation

  • Original Contribution
  • Published:
Journal of The Institution of Engineers (India): Series C Aims and scope Submit manuscript

Abstract

This paper reports experimental characterisation of a dielectric elastomer which is used as a base material for electro-active polymer actuators and sensors. Specific deformation energy has been experimentally determined to characterise a dielectric acrylic elastomer for large elastic deformation. Specific deformation energy value was estimated from the experimental stress–strain data in the range between zero and chosen strain using trapezoidal method. The coefficients of variation of specific deformation energy measured at different strain values are reasonably low. Results show that specific deformation energy can be better indicator to the differences in large deformations of such material compared to elastic modulus or the slope at the given strain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Y.B. Cohen, Electroactive Polymer (EAP) Actuators as Artificial Muscles Reality, Potential and Challenges, 2nd edn. (SPIE press, USA, 2004)

    Book  Google Scholar 

  2. G. Kofod, Dielectric Elastomer Actuator, PhD thesis, Technical University of Denmark, 2001

  3. R. Shankar, T.K. Ghosh, R.J. Spontak, Dielectric elastomers as next-generation polymeric actuators. Soft Matter 3, 1116–1129 (2007)

    Article  Google Scholar 

  4. F. Carpi, D.D. Rossi, R. Kornbluh, R. Pelrine, P. Sommer-Larsen, Dielectric Elastomers as Electromechanical Transducers, 1st edn. (Elsevier Publication, Hungry, 2008)

  5. N.C. Goulbourne, A constitutive model of polyacrylate interpenetrating polymer networks for dielectric elastomers. Int. J. Solids Struct. 48, 1085–1091 (2011)

    Article  MATH  Google Scholar 

  6. R. Pelrine, R. Kornbluh, Q. Pei, S. Stanford, S. Oh, J. Eckerle, Dielectric elastomer artificial muscle actuators: towards biometric motion. Smart Struct. Mater. 4695, 126–137 (2002)

    Google Scholar 

  7. R. Pelrine, R. Kornbluh, J.P. Joseph, Electrostriction of polymer dielectrics with compliant electrodes as a means of actuation. Sensors Actuators A 64, 77–85 (1998)

    Article  Google Scholar 

  8. J. Sheng, H. Chen, J. Qiang, B. Li, Y. Wang, Thermal, mechanical and dielectric properties of a dielectric elastomer for actuator applications. J. Mol. Sci. Part B Phys. 51, 2093–2104 (2012)

    Google Scholar 

  9. H.J. Qi, M.C. Boyce, Stress-strain behavior of thermoplastic polyurethanes. Mech. Mater. 37, 817–839 (2005)

    Article  Google Scholar 

  10. J.S. Plante Dielectric Elastomer Actuators for Binary Robotics and Mechatronics, PhD thesis, Massachusetts Institute of Technology, 2006

  11. S. Michel, X.Q. Zhang, M. Wissler, C. Löwe, G. Kovacs, A comparison between silicone and acrylic elastomers as dielectric materials in electroactive polymer actuators. Polym. Int. 59, 391–399 (2009)

    Article  Google Scholar 

  12. M. Wissler, E. Mazza, Mechanical behavior of an acrylic elastomers used in dielectric elastomers actuators. Sensors Actuators A 134, 494–504 (2007)

    Article  Google Scholar 

  13. J.E. Mark, B. Erman, F.R. Eirich, Science and Technology of Rubber, 3rd edn. (Elsevier Academic Press, London, 2005)

    Google Scholar 

  14. C. Harper, Handbook of plastics technologies, 2nd edn. (McGraw-Hill Comp, New York, 2006)

    Google Scholar 

  15. N. Hewitt, PDL Handbook Series: Compounding Precipitated Silica in Elastomers (William Andrew Publishers, New York, 2007)

    Google Scholar 

  16. J. Malac, Elastomers: characterization of tensile behaviour at lower deformations. Polym. Test. 24, 790–792 (2005)

    Article  Google Scholar 

  17. J. Malac, Initial tensile behaviour of elastomers. Polym. Test. 25, 650–655 (2006)

    Article  Google Scholar 

  18. F. Carpi, A. Migliore, G. Serra, D.D. Rossi, Helical dielectric elastomer actuators. Smart Mater. Struct. 14(06), 1210–1216 (2005)

  19. S. Son, N.C. Goulbourne, Finite deformations of tabular dielectric elastomer sensors. J. Intell. Mater. Syst. Struct. 20(18), 2187–2199 (2009)

    Article  Google Scholar 

  20. R.K. Sahu, K. Patra, Estimation of elastic modulus of dielectric elastomer materials using Mooney–Rivlin and Ogden Models. Adv. Mater. Res. 685, 331–335 (2013)

    Article  Google Scholar 

  21. C. Keplinger, T. Li, R. Baumgartner, Z. Suo, S. Bauer, Harnessing snap-through instability in soft dielectrics to achieve giant voltage-triggered deformation. Soft Matter 8, 285–288 (2012)

    Article  Google Scholar 

  22. E. Balagurusamy, Numerical Methods, 6th edn. (Tata McGraw-hill pub. Comp. ltd., New Delhi, 2001)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Patra.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sahu, R.K., Patra, K. Characterisation of Tensile Behaviour of a Dielectric Elastomer at Large Deformation. J. Inst. Eng. India Ser. C 95, 207–212 (2014). https://doi.org/10.1007/s40032-014-0119-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40032-014-0119-z

Keywords

Navigation