Skip to main content
Log in

Quality of Service Metrics in Wireless Sensor Networks: A Survey

  • Review Paper
  • Published:
Journal of The Institution of Engineers (India): Series B Aims and scope Submit manuscript

Abstract

Wireless ad hoc network is characterized by autonomous nodes communicating with each other by forming a multi hop radio network and maintaining connectivity in a decentralized manner. This paper presents a systematic approach to the interdependencies and the analogy of the various factors that affect and constrain the wireless sensor network. This article elaborates the quality of service parameters in terms of methods of deployment, coverage and connectivity which affect the lifetime of the network that have been addressed, till date by the different literatures. The analogy of the indispensable rudiments was discussed that are important factors to determine the varied quality of service achieved, yet have not been duly focused upon.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. X.Y. Li, Wireless Ad Hoc and Sensor Networks—Theory and Applications (Cambridge University Press, Cambridge, 2008), pp. 11–13

    Book  Google Scholar 

  2. W. Dargie, M. Zimmerling, Wireless sensor networks in the context of developing countries, in 3rd IFIP World Information Technology Forum (2007)

  3. D. Chen, P.K. Varshney, QoS support in wireless sensor networks: a survey. Int. Conf. Wirel. Netw. 233, 1–7 (2004)

    Google Scholar 

  4. E. Crawley, H. Sandick, R. Nair, B. Rajagopalan, A framework for QoS-based routing in the internet, RFC 2386. Internet Eng. Task Force, 1997, http://tools.ietf.org/pdf/draft-ietf-qosr-framework-03.pdf (1998)

  5. Y. Wang, X. Liu, J. Yin, Requirements of quality of service in wireless sensor network, in Networking, International Conference on Systems and International Conference on Mobile Communications and Learning Technologies (2006), p. 116

  6. M.Z. Hasan, T. Wan, Optimized quality of service for real-time wireless sensor networks using a partitioning multipath routing approach. J. Comput. Netw. Commun. 2013, 18 (2013). doi:10.1155/2013/497157

  7. D. Virmani, S. Jain, Stable routing for achieving quality of service in wireless sensor networks. arXiv:1301.3999 (2013)

  8. J.E. Mbowe, G.S. Oreku, Quality of service in wireless sensor networks. Wirel. Sens. Netw. 6(2), 19–26 (2014). doi:10.4236/wsn.2014.62003

  9. N. Aitsaadi, N. Achir, K. Boussetta, G. Pujolle, Multi-objective WSN deployment: quality of monitoring, connectivity and lifetime, in Communications IEEE International Conference on (ICC’10), pp. 1–6 (2010). doi:10.1109/ICC.2010.5502276

  10. R. Szewczyk, A. Mainwaring, J. Polastre, An analysis of a large scale habitat monitoring application, in Proceedings of ACM Conference on Embedded Networked Sensor Systems (2004), pp. 214–226

  11. B. Wang, H.B. Lim, D. Ma, A survey of movement strategies for improving network coverage in wireless sensor networks. Comput. Commun. 32, 1427–1436 (2009)

    Article  Google Scholar 

  12. D. Tian, N.D. Georganas, Connectivity maintenance and coverage preservation in WSN. Ad Hoc Netw. 3(6), 744–761 (2005)

    Article  Google Scholar 

  13. C.F. Huang, Y.C. Tseng, The coverage problem in a wireless sensor network. Mob. Netw. Appl. 10(4), 519–528 (2005)

    Article  MathSciNet  Google Scholar 

  14. D. Marsh, R. Tynan, G.M.P. O’Hare, A. Ruzzelli, Effect of deployment irregularity in coverage in WSN, in IEEE Conference on ISSNIP (2005), pp. 13–18

  15. Y.-T. Hou, T.-C. Lee, B.-C. Jeng, C.-M. Chen, Optimal coverage deployment for wsn. ICACT 1, 527 (2006)

    Google Scholar 

  16. D.P. Mehta, M.A. Lopez, L. Lin, Optimal coverage paths in ad-hoc sensor networks, in IEEE International Conference on Communications, 2003. ICC’03, vol. 1 (2003)

  17. V. Coskun, Relocating sensor nodes to maximize cumulative connected coverage in WSN. Sens. J. 8, 2792–2817 (2008)

    Article  Google Scholar 

  18. W. Choi, S.K. Das, Coverage adaptive for random sensor scheduling. Comput. Commun. 29, 3467–3482 (2006)

    Article  Google Scholar 

  19. S. Dhillon, K. Chakrabarty, Sensor placement for effective coverage and survellience. J. Parallel Distrib. Comput. 64(7), 788–798 (2004)

    Article  Google Scholar 

  20. A. Ghosh, S.K. Das, Coverage and connectivity issues in wireless sensor networks: a survey. Pervasive Mob. Comput. 4, 303–334 (2008)

    Article  Google Scholar 

  21. E. Kalayci, A. Uğur, Genetic algorithm-based sensor deployment with area priority. Cybern. Syst. 42(8), 605–620 (2011)

    Article  Google Scholar 

  22. P.K. Sahoo, C. Li, T.J.-Z. Tsai, H.-L. Ke, Vector method based coverage hole recovery in wireless sensor networks, in 2nd International Conference on Communication Systems and Networks, COMSNETS (2010), pp. 243–251

  23. M. Chopde, K. Ramteke, S. Kamble, Probabilistic model for intrusion detection in wireless sensor network. Int. J. Commun. Netw. Secur. (IJCNS) 1(3) (2011)

  24. J. Chen, J. Li, S. He, Y. Sun, H.-H. Chen, Energy-efficient coverage based on probabilistic sensing model in wireless sensor networks. Commun. Lett. IEEE 14(9), 833–835 (2010)

    Article  Google Scholar 

  25. N. Ahmed, S.S. Kanhere, S. Jha, Probabilistic coverage in wireless sensor networks, In The IEEE Conference on Local Computer Networks, 2005. 30th Anniversary, pp. 672–681 (2005)

  26. X. Liu, M. Haenggi, Towards quasi regular SN topology control for improved energy efficiency. IEEE Trans. Parallel Distrib. Syst. 17(9), 975–986 (2006)

    Article  Google Scholar 

  27. A. Warrier, S. Park, J. Min, I. Rhee, How much energy saving does topology control offer for wireless sensor networks—a practical study. Comput. Commun. 30(14), 2867–2879 (2006)

    Google Scholar 

  28. P.J. Vincent, M. Tummnala, J. Mceachen, A new method for distributing power usage across the sensor network. SECON 2, 518–526 (2006)

    Google Scholar 

  29. A. Boukerche, X. Cheng, J. Linus, Novel energy aware data centric routing algo in wsn. ACM J. Wirel. Netw. Arch. 11(5), 619–635 (2005)

    Article  Google Scholar 

  30. A. Salhieh, L. Schwiebert, Power-aware metrics for wireless sensor networks. Int. J. Comput. Appl. 26(2), 119–125 (2004)

  31. C.F. Chor, P. Low, Redundant coverage in wsn, in ICC Proceedings IEEE (2007), pp. 3535–3354

  32. G.J. Fan, S.Y. Jindoi, Coverage evaluating approach for wsn in arbitrary sensing areas. Inf. Process. Lett. (2008). doi:10.1016/j.ipl.2008

  33. G. Takahara, K. Xu, H. Hassane, How resilient is a grid-based WSN coverage to deployment errors? in IEEE Wireless Communications and Networking Conference (WCNC ’07), pp. 2872–2877 (2007)

  34. S. Shakkottai, R. Srikant, N. Shroff, Unreliable sensor grids. Ad Hoc Netw. 3(6), 702–716 (2003)

    Article  Google Scholar 

  35. S. Commuri, M.K. Watfa, Coverage strategies in wireless sensor networks. Int. J. Distrib. Sens. Netw. 2(4), 333–353 (2006)

    Article  Google Scholar 

  36. M.D. Francesco, K. Shah, M. Kumar, G. Anastasi, An adaptive strategy for energy-efficient data collection in sparse wireless sensor networks, in EWSN (2010), pp. 322–337

  37. F. Akyildiz, W. Su, Y. Sankarasubramaniam, E. Cayirci, Wireless sensor networks: a survey. Comput. Netw. 38, 393–422 (2002)

    Article  Google Scholar 

  38. L. Zhao, Q. Liang, Fuzzy deployment for wireless sensor networks, in Computational Intelligence for Homeland Security and Personal Safety, CIHSPS (2005), pp. 79–83

  39. Y. Chang, Y.C. Chen, H.R. Chang, Obstacle resistant deployment algorithm. IEEE Trans. Veh. Technol. 58(6), 2925–2941 (2009)

    Article  Google Scholar 

  40. Y. Chen, Q. Zhao, On the lifetime of wireless sensor networks. Commun. Lett. IEEE, 9(11), 976–978 (2005)

  41. K. Xu, H. Hassanein, G. Takahara, Q. Wang, Relay node deployment strategies in heterogeneous wireless sensor networks. IEEE Trans. Mob. Comput. 9(2), 145–159 (2010)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Itu Snigdh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Snigdh, I., Gupta, N. Quality of Service Metrics in Wireless Sensor Networks: A Survey. J. Inst. Eng. India Ser. B 97, 91–96 (2016). https://doi.org/10.1007/s40031-014-0160-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40031-014-0160-6

Keywords

Navigation