Skip to main content

Advertisement

Log in

Modified Perfect Harmonics Cancellation Control of a Grid Interfaced SPV Power Generation

  • Original Contribution
  • Published:
Journal of The Institution of Engineers (India): Series B Aims and scope Submit manuscript

Abstract

This paper deals with a grid interfaced solar photo voltaic (SPV) power generating system with modified perfect harmonic cancellation (MPHC) control for power quality improvement in terms of mitigation of the current harmonics, power factor correction, control of point of common coupling (PCC) voltage with reactive power compensation and load balancing in a three phase distribution system. The proposed grid interfaced SPV system consists of a SPV array, a dc-dc boost converter and a voltage source converter (VSC) used for the compensation of other connected linear and nonlinear loads at PCC. The reference grid currents are estimated using MPHC method and control signals are derived by using pulse width modulation (PWM) current controller of VSC. The SPV power is fed to the common dc bus of VSC and dc-dc boost converter using maximum power point tracking (MPPT). The dc link voltage of VSC is regulated by using dc voltage proportional integral (PI) controller. The analysis of the proposed SPV power generating system is carried out under dc/ac short circuit and severe SPV-SX and SPV-TX intrusion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Z. Sen, Solar energy fundamentals and modeling techniques atmosphere, environment, climate change and renewable energy (Springer, London, 2008)

    Google Scholar 

  2. R. Teodorescu, M. Liserre, P. Rodrıguez, Grid converters for photovoltaic and wind power system (Wiley, The Atrium, Southern Gate, Chichester, 2011)

    Book  Google Scholar 

  3. T. Markvart, Solar electricity (Wiley, Chichester, 1994)

    Google Scholar 

  4. S. Balathandayuthapani, C.S. Edrington, S.D. Henry, J. Cao, Analysis and control of a photovoltaic system: application to a high-penetration case study. IEEE Syst. J. 6(2), 213–219 (2012)

    Article  Google Scholar 

  5. B. Yang, W. Li, Y. Zhao, X. He, Design and analysis of a grid-connected photovoltaic power system. IEEE Trans. Power Electron. 25(4), 992–1000 (2010)

    Article  Google Scholar 

  6. R.-J. Wai, W.-H. Wang, Grid-connected photovoltaic generation system. IEEE Trans. Circuits Syst. I Regul. Pap. 55(3), 953–964 (2008)

    Article  MathSciNet  Google Scholar 

  7. J.Li, F.Zhuo, X.Wang, L.Wang, S,Ni, A grid-connected PV system with power quality improvement based on boost + dual-level four-leg inverter, Proceedings IEEE 6th International on Power Electronics and Motion Control Conference, 2009, IPEMC ‘09, 436–440, 2009

  8. A.K.Verma, B.Singh, D.T.Shahani, Grid interfaced solar photovoltaic power generating system with power quality improvement at ac mains, IEEE Third International Conference on Sustainable Energy Technologies (ICSET-2012), 177–182, 24–27 Sept 2012

  9. Y.-K. Lo, T.-P. Lee, K.-H. Wu, Grid-connected photovoltaic system with power factor correction. IEEE Trans. Ind. Electron. 55(5), 2630–2634 (2008)

    Google Scholar 

  10. R.A. Mastromauro, M. Liserre, T. Kerekes, A. Dell’Aquila, A single-phase voltage-controlled grid-connected photovoltaic system with power quality conditioner functionality. IEEE Trans. Ind. Electron. 56(11), 4436–4444 (2009)

    Article  Google Scholar 

  11. H. Akagi, Y. Kanazawa, A. Nabae, Instantaneous reactive power compensators comprising switching devices without energy storage components. IEEE Trans. Ind. Appl. IA-20, 625–632 (1984)

    Article  Google Scholar 

  12. G.D.Marques, A comparison of active power filter control methods in unbalanced and non-sinusoidal conditions, Proceedings of the 24th Annual Conference of the IEEE Industrial Electronics Society, (IECON ‘98), 1, 444-449, 31 Aug–4 Sept 1998

  13. V. Soares, P. Verdelho, G. Marques, An instantaneous active and reactive current component method of active filter. IEEE Trans. Power Electron. 15(4), 660–669 (2000)

    Article  Google Scholar 

  14. S. Jain, P. Agarwal, H. Gupta, Design, simulation and experimental investigations on a shunt active power filter for harmonics and reactive power compensation. Electr. Power Compon. Syst. 37(7), 671–692 (2003)

    Article  Google Scholar 

  15. S. Ko, S. Lee, S.R. Lee, C. Nayar, C. Won, A Grid current controlling active power filter. J. Power Electron. 9, 643–653 (2009)

    Google Scholar 

  16. A. Chandra, B. Singh, K. Al-Haddad, An improved algorithm of shunt active filter for voltage regulation, harmonic elimination, power-factor correction, and balancing of nonlinear loads. IEEE Trans. Power Electron. 15(3), 495–507 (2000)

    Article  Google Scholar 

  17. M. Kale, E. Ozdemir, Harmonic and reactive power compensation with shunt active power filter under non-ideal mains voltage. Electr. Power Syst. Res. 74, 363–370 (2005)

    Article  Google Scholar 

  18. A. Eid, M. Abdel-Salam, H. El-Kishky, T. El-Mohandes, Active power filters for harmonic cancellation in conventional and advanced aircraft electric power systems. Electr. Power Syst. Res. 79, 80–88 (2009)

    Article  Google Scholar 

  19. M. Montero, R. Cadaval, F. Gonzalez, Comparison of control strategies for shunt active power filters in three-phase four-wire systems. IEEE Trans. Power Electron. 22(1), 229–236 (2007)

    Article  Google Scholar 

  20. K.H. Hussein, I. Mota, Maximum photovoltaic power tracking: an algorithm for rapidly changing atmospheric conditions. IEE Proc. Gener. Transm. Distrib. 142(1), 59–64 (1995)

    Article  Google Scholar 

  21. Y.-C. Kuo, T.-J. Liang, J.-F. Chen, Novel maximum-power-point tracking controller for photovoltaic energy conversion system. IEEE Trans. Ind. Electron. 48(3), 594–601 (2001)

    Article  Google Scholar 

  22. T. Esram, P.L. Chapman, Comparison of photovoltaic array maximum power point tracking techniques. IEEE Trans. Energy Convers. 22(2), 439–449 (2007)

    Article  Google Scholar 

  23. Y.T. Tan, D.S. Kirschen, N. Jenkins, A model of PV generation suitable for stability analysis. IEEE Trans. Energy Con. 19(4), 748–755 (2004)

    Article  Google Scholar 

  24. M.G. Villalva, J.R. Gazoli, E.F. Ruppert, Comprehensive approach to modelling and simulation of photovoltaic arrays. IEEE Trans. Power Electron. 24, 1198–1208 (2009)

    Article  Google Scholar 

  25. B.N. Singh, P. Rastgoufard, B. Singh, A. Chandra, K.A. Haddad, Design, simulation and implementation of three pole/four pole topologies for active filters. Inst. Electr. Eng. Proc. Electr. Power Appl. 151(4), 467–476 (2004)

    Article  Google Scholar 

  26. N. Mohan, T.M. Undeland, W.P. Robbins, Power electronics converters, applications, and design, vol. 3 (Wiley, India, 2009)

    Google Scholar 

  27. IEEE Std. 519, IEEE recommended practices and requirements for harmonic control in electrical power systems, http://ieeexplore.ieee.org

Download references

Acknowledgements

Authors are thankful to DST (Department of Science and Technology), Govt. of India for supporting this work under Grant No. RP02583.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. K. Verma.

Appendix

Appendix

Design Parameters of a 45 kW Solar Photovoltaic System

Voltage/temperature coefficient (K v ) = –80e–3 V/K,

Current/temperature coefficient (K ti ) = 0.003 A/K,

The open circuit voltage of a single crystalline solar cell is 0.5 to 0.62 V, 1042 cells in series and 30 in parallel.

Parameters for dc-dc Boost Converter

45 kW, f swb = 10 kHz, L b  = 2.45 mH.

Parameters for VSC

dc bus voltage of VSC: 750 V,

dc bus capacitance of VSC: 3000 μF,

ac inductor: L a L b L c = 5 mH,

dc voltage PI controller: K pd  = –4, K id  = 0.016,

PCC voltage PI controller: K pq  = 2, K iq  = 1,

ac line voltage: 415 V, 50 Hz,

PWM switching frequency: 10 kHz,

Line impedance: Rs = 0.002 Ω, Ls = 1.6 mH,

Loads: (i) linear: 45 kVA, 0.8 pF lag, (ii) Nonlinear: Three phase bridge rectifier with R = 7 Ω and L = 300 mH, Ripple filter: R f = 5 Ω, C f = 10 μF.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, B., Shahani, D.T. & Verma, A.K. Modified Perfect Harmonics Cancellation Control of a Grid Interfaced SPV Power Generation. J. Inst. Eng. India Ser. B 96, 69–82 (2015). https://doi.org/10.1007/s40031-014-0118-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40031-014-0118-8

Keywords

Navigation