Skip to main content

Advertisement

Log in

Review on Current Research Status on Bottom Ash: An Indian Prospective

  • Review Paper
  • Published:
Journal of The Institution of Engineers (India): Series A Aims and scope Submit manuscript

Abstract

India focuses on attention towards “greener and cleaner” environment surrounding us. For that, the engineers and scientists have joined hands together to accept the challenges for recycling wastes from industries. The generation of Bottom Ash (BA) from thermal power plants which are being increased day by day and facing disposal and environmental problems. In spite of that, it is being used as landfills which has no commercial value, but now needs to think on its utilization as useable supplementary materials. But from the literature survey, it was found that a little amount of research have been carried out on BA in the area based on its adsorption capability of dyes; pelletization efficiency of cold bonded aggregate; compressive strength, durability, water absorption characteristics and density variation in concrete and mortar; in order to ensure its usage as adsorption as well as construction material. The present paper deals with a critical review on BA as an adsorbent, light weight aggregate as well as partial replacement of fine aggregate in concrete. In addition, physical and chemical properties, transportation and disposal mechanism and environmental effects are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. O. Kincay, R. Ozturk, Thermal power plants in Turkey. Energy Sources 25, 135–151 (2003). doi:10.1080/00908310390142190

    Article  Google Scholar 

  2. C. Sayin, N.M. Mencet, B. Ozkan, Assessing of energy policies based on Turkish agriculture: current status and some implications. Energy Policy 33, 2361–2373 (2005). doi:10.1016/j.enpol.2004.05.005

    Article  Google Scholar 

  3. M. Singh, R. Siddique, Effect of coal bottom ash as partial replacement of sand on properties of concrete. Resour. Conserv. Recycl. 72, 20–32 (2013). doi:10.1016/j.resconrec.2012.12.006

    Article  Google Scholar 

  4. M.L. Gray, K.J. Champagne, Y. Soong, P.R. Kiimeyer, M.M. Maroto-valer, J.M. Andresen, M.V. Ciocco, P.H. Zandhuis, Physical cleaning of high carbon fly ash. Fuel Process. Technol. 76, 11–21 (2002). doi:10.1016/S0378-3820(02)00006-1

    Article  Google Scholar 

  5. K. Murakami, T. Yamada, K. Fuda, T. Matsunaga, Selectivity in cation exchange property of heat-treated brown coals. Fuel 80, 599–605 (2001). doi:10.1016/S0016-2361(00)00124-1

    Article  Google Scholar 

  6. CEA,Central Electricity Authority annual report, India, 2007–2013. http://www.cea.nic.in/reports/yearly

  7. IEB, India Energy Book, 2012. http://indiaenergycongress.in/iec2012/ieb2012/ieb2012.pdf

  8. R. Mathur, S. Chand, T. Tezuka, Optimal use of coal for the power generation in India. Energy Policy 31, 319–331 (2003). doi:10.1016/S0301-4215(02)00067-8

    Article  Google Scholar 

  9. P.K. Senapati, B.K. Mishra, A. Parida, Analysis of friction mechanism and homogeneity of suspended load for high concentration fly ash and bottom ash mixture slurry using rheological and pipeline experimental data. Powder Technol. 250, 154–163 (2013). doi:10.1016/j.powtec.2013.10.014

    Article  Google Scholar 

  10. CEA, Annual Report of Central Electricity Authority, 2011–2012. http://www.cea.nic.in/reports/articles/thermal/report_flyash_240412.pdf

  11. N. K. Sharma, S. Mitra, V. Sehgal, S. Mishra, An assessment of physical properties of coal combustion residues w.r.to their utilization aspects. Int. J. Env. Prot. 2, 31–38 (2012), ISSN: 2224-7777, http://www.academicpub.org/DownLoadPaper.aspx?PaperID=566

  12. A. Ghosh, Compaction characteristics and bearing ratio of pond ash stabilized with lime and phosphogypsum. J. Mater. Civ. Eng. 22(4), 343–351 (2010). doi:10.1061/_ASCE_MT.1943-5533.0000028

    Article  Google Scholar 

  13. S. Chandel, S.N. Singh, V. Seshadri, Deposition characteristics of coal ash slurries at higher concentrations. Adv. Powder Technol. 20, 383–389 (2009). doi:10.1016/j.apt.2009.06.004

    Article  Google Scholar 

  14. NETL-2006, National Energy Technology Laboratory. “Clean coal technology: Coal utilization by-products”, Washington, DC, Department of Energy Office of Fossil Energy. Topical report No. 24, (2006)

  15. P.K. Senapati, R. Mohapatra, G.K. Pani, B.K. Mishra, Studies on rheological and leaching characteristics of heavy metals through selective additive in high concentration ash slurry. J. Hazard. Mater. 229–230, 390–397 (2012). doi:10.1016/j.jhazmat.2012.06.022

    Article  Google Scholar 

  16. U.C. Mishra, Environmental impact of coal industry and thermal power plants in India. J. Environ. Radioact. 72, 35–40 (2004). doi:10.1016/S0265-931X(03)00183-8

    Article  Google Scholar 

  17. P.K. Senapati, B.K. Mishra, A. Parida, Modeling of viscosity for power plant ash slurry at higher concentrations: effect of solids volume fraction, particle size and hydrodynamic interactions. Powder Technol. 197, 1–8 (2010). doi:10.1016/j.powtec.2009.07.005

    Article  Google Scholar 

  18. P.K. Senapati, B.K. Mishra, Design consideration for hydraulic backfilling with coal combustion products (CCPs) at high solids concentrations. Powder Technol. 229, 119–125 (2012). doi:10.1016/j.powtec.2012.06.018

    Article  Google Scholar 

  19. S.R. Michalski, R.E. Gray, Ash disposal—mine fires—environment: an Indian dilemma. Bull. Eng. Geol. Environ. 60, 23–29 (2001). doi:10.1007/PL00011169PB

    Article  Google Scholar 

  20. M. Spadoni, M. Voltaggio, E. Sacchi, R. Sanamd, P.R. Pujari, C. Padmakar, P.K. Labhasetwar, S.R. Wate, Impact of the disposal and re-use of fly ash on water quality: the case of the Koradi and Khaperkheda thermal power plants (Maharashtra, India). Sci. Total Environ. 2014(479–480), 159–170 (2014). doi:10.1016/j.scitotenv.2014.01.111

    Article  Google Scholar 

  21. MEF-1999, Ministry of Environment and Forests-Gazette Notification 1999. http://envfor.nic.in/legis/hsm/2623.pdf

  22. B.V.V. Reddy, K. Gourav, Strength of lime–fly ash compacts using different curing techniques and gypsum additive. Mater. Struct. 44, 1793–1808 (2011). doi:10.1617/s11527-011-9738-5

    Article  Google Scholar 

  23. A. Rai, A.K. Mandal, K.K. Singh, T.R. Mankhand, Preparation and characterization of lime activated unfired bricks made with industrial wastes. Int. J. Waste Resour. 3(1), 40–46 (2013). doi:10.12777/ijwr.v3.i1.p40

    Google Scholar 

  24. A. Ghosh, C. Subbarao, Deformation modulus of fly ash modified with lime and gypsum. Geotech. Geol. Eng. 30(2), 299–311 (2012). doi:10.1007/s10706-011-9468-z

    Article  Google Scholar 

  25. S.K. Nath, S. Kumar, Influence of iron making slags on strength and microstructure of fly ash geopolymer. Constr. Build. Mater. 38, 924–930 (2013). doi:10.1016/j.conbuildmat.2012.09.070

    Article  Google Scholar 

  26. A.S. Sayyad, S.V. Patankar, Effect of steel fibres and low calcium fly ash on mechanical and elastic properties of geopolymer concrete composites. Indian J. Mater. Sci. 17(11), 1–8 (2013). doi:10.1155/2013/357563

  27. S.K. Pal, A. Ghosh, Hydraulic conductivity of fly ash-montmorillonite clay Mixtures. Indian Geotech. J. 43(1), 47–61 (2013). doi:10.1007/s40098-012-0033-3

    Article  MathSciNet  Google Scholar 

  28. P. Nath, P.K. Sarker, Effect of mixture proportions on the drying shrinkage and permeation properties of high strength concrete containing class F fly ash. KSCE J. Civ. Eng. 17(6), 1437–1445 (2013). doi:10.1007/s12205-013-0487-6

    Article  Google Scholar 

  29. B.A. Mir, A. Sridharan, Physical and compaction behaviour of clay soil-fly ash mixtures. Geotech. Geol. Eng. 31, 1059–1072 (2013). doi:10.1007/s10706-013-9632-8

    Article  Google Scholar 

  30. R.K. Ghosh, N. Singh, Adsorption–desorption of metolachlor and atrazine in Indian soils: effect of fly ash amendment. Environ. Monit. Assess. 185, 1833–1845 (2013). doi:10.1007/s10661-012-2671-4

    Article  Google Scholar 

  31. P. Kathirvel, V. Saraswathy, S.P. Karthik, A.S.S. Sekar, Strength and durability properties of quaternary cement concrete made with fly ash, rice husk ash and limestone powder. Arab. J. Sci. Eng. 38(3), 589–598 (2013). doi:10.1007/s13369-012-0331-1

    Article  Google Scholar 

  32. V.K. Gupta, A. Mittal, L. Krishnan, V. Gajbe, Adsorption kinetics and column operations for the removal and recovery of malachite green from wastewater using bottom ash. Sep. Purif. Technol. 40, 87–96 (2004). doi:10.1016/j.seppur.2004.01.008

    Article  Google Scholar 

  33. A. Mittal, L. Kurup (Krishnan), V.K. Gupta, Use of waste materials—bottom ash and de-oiled soya, as potential adsorbents for the removal of Amaranth from aqueous solutions. J. Hazard Mater. 117, 171–178 (2005). doi:10.1016/j.jhazmat.2004.09.016

    Article  Google Scholar 

  34. V.K. Gupta, I. Ali, V.K. Saini, T.V. Gerven, B. Van der Bruggen, C. Vandecasteele, Removal of dyes from wastewater using bottom ash. Ind. Eng. Chem. Res. 44, 3655–3664 (2005). doi:10.1021/ie0500220

    Article  Google Scholar 

  35. V.K. Gupta, A. Mittal, V. Gajbe, J. Mittal, Removal and recovery of the hazardous azo dye acid orange 7 through adsorption over waste materials: bottom ash and de-oiled soya. Ind. Eng. Chem. Res. 45, 1446–1453 (2006). doi:10.1021/ie051111f

    Article  Google Scholar 

  36. V.K. Gupta, A. Mittal, L. Krishnan, J. Mittal, Adsorption treatment and recovery of the hazardous dye, brilliant blue FCF, over bottom ash and de-oiled soya. J. Colloid Interface Sci. 293, 16–26 (2006). doi:10.1016/j.jcis.2005.06.021

    Article  Google Scholar 

  37. A. Mittal, J. Mittal, L. Kurup, Adsorption isotherms, kinetics and column operations for the removal of hazardous dye, Tartrazine from aqueous solutions using waste materials—bottom ash and de-oiled soya, as adsorbents. J. Hazard. Mater. 136, 567–578 (2006). doi:10.1016/j.jhazmat.2005.12.037

    Article  Google Scholar 

  38. A. Mittal, J. Mittal, L. Kurup, A.K. Singh, Process development for the removal and recovery of hazardous dye erythrosine from wastewater by waste materials—bottom ash and de-oiled soya as adsorbents. J. Hazard. Mater. 138, 95–105 (2006). doi:10.1016/j.jhazmat.2006.05.038

    Article  Google Scholar 

  39. P. Aggarwal, Y. Aggarwal, S.M. Gupta, Effect of bottom ash as replacement of fine aggregates in concrete. Asian J. Civ. Eng. (Building and Housing), 8, 49–62 (2007). http://www.bhrc.ac.ir/portal/Portals/2/pdf/asian%20jornal/February%202007/49.pdf

  40. V.K. Gupta, I.A. Mittal, V. Gajbe, J. Mittal, Adsorption of basic fuchsin using waste materials—bottom ash and deoiled soya—as adsorbents. J. Colloid Interface Sci. 319, 30–39 (2008). doi:10.1016/j.jcis.2007.09.091

    Article  Google Scholar 

  41. A. Mittal, V.K. Gupta, A. Malviya, J. Mittal, Process development for the batch and bulk removal and recovery of a hazardous, water-soluble azo dye (metanil yellow) by adsorption over waste materials (bottom ash and de-oiled soya. J. Hazard. Mater. 151, 821–832 (2008). doi:10.1016/j.jhazmat.2007.06.059

    Article  Google Scholar 

  42. A. Mittal, D. Kaur, J. Mittal, Applicability of waste materials—bottom ash and de-oiled soya—as adsorbents for the removal and recovery of a hazardous dye, brilliant green. J. Colloid Interface Sci. 326, 8–17 (2008). doi:10.1016/j.jcis.2008.07.005

    Article  Google Scholar 

  43. V.K. Gupta, A. Mittal, A. Malviya, J. Mittal, Adsorption of carmoisine A from wastewater using waste materials—bottom ash and de-oiled soya. J. Colloid Interface Sci. 335, 24–33 (2009). doi:10.1016/j.jcis.2009.03.056

    Article  Google Scholar 

  44. S. Geetha, K. Ramamurthy, Reuse potential of low-calcium bottom ash as aggregate through pelletization. Waste Manag. 30, 1528–1535 (2010). doi:10.1016/j.wasman.2010.03.027

    Article  Google Scholar 

  45. S. Geetha, K. Ramamurthy, Properties of sintered low calcium bottom ash aggregate with clay binders. Constr. Build. Mater. 25, 2002–2013 (2011). doi:10.1016/j.conbuildmat.2010.11.051

    Article  Google Scholar 

  46. R. Siddique, P. Aggarwal, Y. Aggarwal, Influence of water/powder ratio on strength properties of self-compacting concrete containing coal fly ash and bottom ash. Constr. Build. Mater. 29, 73–81 (2012). doi:10.1016/j.conbuildmat.2011.10.035

    Article  Google Scholar 

  47. J. Mittal, D. Jhare, H. Vardhan, A. Mittal, Utilization of bottom ash as a low-cost sorbent for the removal and recovery of a toxic halogen containing dye eosin yellow. Desalin. Water Treat. 51, 1–12 (2013). doi:10.1080/19443994.2013.803265

    Article  Google Scholar 

  48. R. Gandhimathi, S.T. Ramesh, V. Sindhu, P.V. Nidheesh, Bottom ash adsorption of basic dyes from their binary aqueous solutions. Songklanakarin J. Sci. Technol. 35(3), 339–347 (2013). http://www.sjst.psu.ac.th

  49. R. Siddique, Compressive strength, water absorption, sorptivity, abrasion resistance and permeability of self-compacting concrete containing coal bottom ash. Constr. Build. Mater. 47, 1444–1450 (2013). doi:10.1016/j.conbuildmat.2013.06.081

    Article  Google Scholar 

  50. M. Singh, R. Siddique, Strength properties and micro-structural properties of concrete containing coal bottom ash as partial replacement of fine aggregate. Constr. Build. Mater. 50, 246–256 (2014). doi:10.1016/j.conbuildmat.2013.09.026

    Article  Google Scholar 

  51. M. Tiwari, S.K. Sahu, R.C. Bhangare, P.Y. Ajmal, G.G. Pandit, Elemental characterization of coal, fly ash, and bottom ash using an energy dispersive X-ray fluorescence technique. Appl. Radiat. Isot. 90, 53–57 (2014). doi:10.1016/j.apradiso.2014.03.002

    Article  Google Scholar 

  52. P. Ramadoss, T. Sundararajan, Utilization of lignite-based bottom ash as partial replacement of fine aggregate in masonry mortar. Arab. J. Sci. Eng. 39(2), 737–745 (2014). doi:10.1007/s13369-013-0703-1

    Article  Google Scholar 

  53. Y. Aggarwal, R. Siddique, Microstructure and properties of concrete using bottom ash and waste foundry sand as partial replacement of fine aggregates. Constr. Build. Mater. 54, 210–223 (2014). doi:10.1016/j.conbuildmat.2013.12.051

    Article  Google Scholar 

  54. D. Panda, B. Pradhan, Hydraulic transport of fly ash and fly ash- bottom ash mixtures at high concentrations. Int. J. Chem. Eng. Appl. Sci. 4(1), 1–4 (2014). http://www.urpjournals.com

  55. A. Trivedi, V.K. Sud, Collapse behavior of coal ash. J. Geotech. Geoenviron. Eng. 130, 403–415 (2004). doi:10.1061/(ASCE)1090-0241(2004)130:4(403

    Article  Google Scholar 

  56. K. Prakash, A. Sridharan, A geotechnical classification system for coal ashes. Geotech. Eng. Proc. Inst. Civ. Eng. (UK) 159, 91–98 (2006). doi:10.1680/geng.2006.159.2.91

    Article  Google Scholar 

  57. K. Prakash, A. Sridharan, Beneficial properties of coal ashes and effective solid waste management. Pract. Period. Hazard. Toxic Radioact. Waste Manage 13, 239–248 (2009). doi:10.1061/(ASCE)HZ.1944-8376.0000014

    Article  Google Scholar 

  58. K. Arumugam, R. Ilangovan, M.D. James, Study on characterization and use of pond ash as fine aggregate in concrete. Int. J. Civil Struct. Eng. 2(2), 466–474 (2011). doi:10.6088/ijcser.00202010125

    Google Scholar 

  59. BS EN 12620, Aggregates for concrete, 2013. http://shop.bsigroup.com

  60. M. Ahmaruzzaman, A review on the utilization of fly ash. Prog. Energy Combust. Sci. 36, 327–363 (2010). doi:10.1016/j.pecs.2009.11.003

    Article  Google Scholar 

  61. L.B. Clarke, The fate of trace elements during coal combustion and gasification: an overview. Fuel 72(6), 731–733 (1993). doi:10.1016/0016-2361(93)90072-A

    Article  Google Scholar 

  62. C.L. Senior, J.J. Helbe, A.F. Sarofim, Emissions of mercury, trace elements, and fine particles from stationary combustion sources. Fuel Process. Technol. 65–66, 263–288 (2000). doi:10.1016/S0378-3820(00)00082-5

    Article  Google Scholar 

  63. R. Meij, The distribution of trace elements during the combustion of coal, in Environmental Aspects of Trace Elements in Coal, eds. by D.J Swaine, F. Goodarzi (Kluwer Academic Publication, Dordrecht, 1995), pp. 111–127. http://link.springer.com/chapter/10.1007/978-94-015-8496-8_7

  64. R.C. Bhangare, P.Y. Ajmal, S.K. Sahu, G.G. Pandit, V.D. Puranik, Distribution of trace elements in coal and combustion residues from five thermal power plants in India. Int. J. Coal Geol. 86, 349–356 (2011). doi:10.1016/j.coal.2011.03.008

    Article  Google Scholar 

  65. X. Querol, J.C. Umana, A. Alastuey, C. Bertrana, A. Lopez-Soler, F. Plana, Physico-chemical characterization of Spanish fly ashes. Energy Sources 21, 883–898 (1999). doi:10.1080/00908319950014263

    Article  Google Scholar 

  66. US EPA, US Environment Protection Agency: Emission Standards Reference Guide, 1976. http://www.epa.gov

  67. S. Dai, D. Ren, C.L. Chou, R.B. Finkelman, V.V. Seredin, Y. Zhou, Geochemistry of trace elements in Chinese coals: a review of abundances, genetic types, impacts on human health, and industrial utilization. Int. J. Coal Geol. 94, 3–21 (2012). doi:10.1016/j.coal.2011.02.003

    Article  Google Scholar 

  68. R.B. Finkelman, W. Orem, V. Castranova, C.A. Tatu, H.E. Belkin, B. Zheng, H.E. Lerch, S.V. Maharaj, A.L. Bates, Health impacts of coal and coal use: possible solutions. Int. J. Coal Geol. 50, 425–443 (2002). doi:10.1016/S0166-5162(02)00125-8

    Article  Google Scholar 

  69. S. Dai, D. Ren, Y. Tang, M. Yue, L. Hao, Concentration and distribution of elements in Late Permian coals from western Guizhou Province, China. Int. J. Coal Geol. 61, 119–137 (2005). doi:10.1016/j.coal.2004.07.003

    Article  Google Scholar 

  70. G.C. Kisku, S. Yadav, R.K. Sharma, M.P.S. Negi, Potential environmental pollution hazards by coal based power plant at Jhansi (UP) India. Environ. Earth Sci. 67, 2109–2120 (2012). doi:10.1007/s12665-012-1651-x

    Article  Google Scholar 

  71. A.D. Bhanarkar, A.G. Gavane, D.S. Tajne, S.M. Tamhane, P. Nema, Composition and size distribution of particules emissions from a coal-fired power plant in India. Fuel 87, 2095–2101 (2008). doi:10.1016/j.fuel.2007.11.001

    Article  Google Scholar 

  72. S. Sushil, V.S. Batra, Analysis of fly ash heavy metal content and disposal in three thermal power plants in India. Fuel 85, 2676–2679 (2006). doi:10.1016/j.fuel.2006.04.031

    Article  Google Scholar 

  73. D.S. Sivakumar, M. Dutta, Assessment of groundwater contamination potential around ash ponds through field sampling: a review, in Ash Ponds and Ash Disposal Systems, ed. by V.S. Raju (Narosa Publishing House, New Delhi, 1996), pp. 311–325

    Google Scholar 

  74. BS 3892-1, Pulverized-fuel ash. Specification for pulverized-fuel ash for use with Portland cement, 1997. http://shop.bsigroup.com

  75. ASTM C618-12a. Standard Specification for Coal Fly Ash and Raw or Calcined Natural Pozzolan for Use in Concrete 2012. http://enterprise1.astm.org/DOWNLOAD/C618.617670-1.pdf; doi: 10.1520/C0618-12a

  76. B.J. Mathew, M. Sudhakar, C. Natarajan. Development of Coal Ash—GGBS based geopolymer bricks. Eur. Int. J. S. Technol. 2(5), 133–139 (2013), ISSN: 2304-9693 www.cekinfo.org.uk/EIJST)

  77. IS: 1727, Method of test for pozzolanic materials, BIS, New Delhi, India; UDC 666.95.014/.017 : 691.545, 1967

  78. A. Sridharan, N.S. Pandian, S. Srinivas. Compaction behaviour of Indian coal ashes, Proceedings of the ICE—ground improvement 5, 13–22 (2001). ISSN: 1755-0750. doi: 10.1680/grim.2001.5.1.13

  79. P.V. Sivapulliah, J.P. Prashanth, A. Sridharan, Effect of delay between mixing and compaction on strength and compaction properties of fly ash. Geotech. Eng. Bull. 7, 277–285 (1998). ISSN: 0858-4869, http://worldcat.org/issn/08584869

  80. A. Sridharan, N.S. Pandian, P. Srinivasa Rao, Shear strength characteristics of some Indian fly ashes. Proc. ICE-Ground Improv. 2, 141–146 (1998). doi:10.1680/grim.1998.2.3.141

    Google Scholar 

  81. N.S. Pandian, A. Sridharan, G. Chittibabu, Shear strength of coal ashes for geotechnical applications. Proc. Indian Geotech. Conf. Indore 1, 466–469 (2001)

    Google Scholar 

  82. N.S. Pandian, A. Sridharan, G. Chittibabu, Strength behavior of compacted coal ashes for geotechnical applications. Proceedings of International Symposium on Geotechnical and Environmental Challenges in Mountainous Terrain, Kathmandu, Nepal (2001)

  83. A. Sridharan, G. Chittibabu, N.S. Pandian, Strength behavior of over consolidated fly ashes. Proc. Indian Geotech. Conf. Allahabad 1, 3–6 (2002)

    Google Scholar 

  84. B. Indraratna, P. Nutalaya, Engineering behavior of a low carbon, pozzolanic fly ash and its potential as a construction fill. Can. Geotech. J. 28, 542–555 (1991). doi:10.1139/t91-070

    Article  Google Scholar 

  85. A. Sridharan, K. Prakash, Classification procedures for expansive soils. Proc. Inst. Civ. Eng. (UK) 143, 235–240 (2000)

    Article  Google Scholar 

  86. A. Sridharan, K. Prakash, Shrinkage limit of soil mixtures. Geotech. Test. J. 23, 3–8 (2000). doi:10.1520/GTJ11118J

    Article  Google Scholar 

  87. IS: 2720, Part V, , Indian standard: method of test for soil, Part V: determination of liquid and plastic limit (second revision); UDC 624-113-532-3, 1985, reffirmed 1995

  88. BS 1377-2, Methods of test for soils for civil engineering purposes: determination of the liquid limit by a one-point cone penetration test; ISBN: 0 580 17867 6, 1990

  89. A. Sridharan, K. Prakash, Percussion and cone methods of determining the liquid limit of soils, Geotech. Test. J. GTJODJ 23(2), 242–250 (2000). doi:10.1520/GTJ11048J

  90. G.G. Pandit, S.K. Sahu, V.D. Puranik, Natural radio-nuclides from coal fired thermal power plants—estimation of atmospheric release and inhalation risk. Radioprotection 46(6), S173–S179 (2011). doi:10.1051/radiopro/20116982s

    Article  Google Scholar 

  91. A. Biswas, B.K. Gandhi, S.N. Singh, V. Seshadri, Characteristics of coal ash and their role in hydraulic design of ash disposal pipelines. Indian J. Eng. Mater. Sci. 7, 1–7 (2000) http://nopr.niscair.res.in/handle/123456789/21296)

  92. S. Kumar, B.K. Gandhi, S.K. Mohapatra, Performance characteristics of centrifugal slurry pump with multi-sized particulate bottom and fly ash mixtures, particulate science and technology. Int. J. 32(5), 466–476 (2014). doi:10.1080/02726351.2014.894163

    Google Scholar 

  93. S. Geetha, K. Ramamurthy, Characteristics of low calcium bottom ash aggregate using conventional geopolymerisation, Cem. Concr. Compos. (2014). doi: 10.1016/j.cemconcomp.2014.01.010 (2014)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. K. Mandal.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mandal, A.K., Sinha, O.P. Review on Current Research Status on Bottom Ash: An Indian Prospective. J. Inst. Eng. India Ser. A 95, 277–297 (2014). https://doi.org/10.1007/s40030-014-0100-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40030-014-0100-0

Keywords

Navigation