Skip to main content
Log in

Nanostructured Metal Oxides: Low Temperature Synthesis and Biomimetic Approaches

  • Review
  • Published:
Proceedings of the National Academy of Sciences, India Section B: Biological Sciences Aims and scope Submit manuscript

An Erratum to this article was published on 27 November 2012

Abstract

The last few decades have seen tremendous explosion of activity in the area of Nanoscience and Nanotechnology. Semiconducting metal oxides and their composites form an important class of materials for the envisaged cutting edge applications. Several approaches have been attempted by researchers to prepare nanocrystalline metal oxides, study the material properties and explore their feasibility for a variety of applications. In this review, the highlights of authors’ research efforts vis-à-vis the global state of nanomaterial research is discussed briefly. A comprehensive outlook on some of the important metal oxides, the various strategies practiced to synthesize them, along with a bird’s eye view of the results, important breakthroughs and achievements in the last decade are briefly discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Chikazumi S, Taketomi S, Ukita M, Mizukami M, Miyajima H, Setogawa M, Kurihara Y (1987) Physics of magnetic fluids. J Magn Magn Mater 65:245–251

    Article  CAS  Google Scholar 

  2. Lu A-H, Schmidt W, Matoussevitch N, Pnnermann HB, Spliethoff B, Tesche B, Bill E, Kiefer W, SchVth F (2004) Nanoengineering of a magnetically separable hydrogenation catalyst. Angew Chem 43:4303–4306

    Article  CAS  Google Scholar 

  3. Tsang SC, Caps V, Paraskevas I, Chadwick D, Thompsett D (2004) Magnetically separable, carbon-supported nanocatalysts for the manufacture of fine chemicals. Angew Chem 43:5645–5649

    Article  CAS  Google Scholar 

  4. Tsang SC, Caps V, Paraskevas I, Chadwick D, Thompsett D (2004) Carbon-supported nanocatalysts for the manufacture of fine chemicals. Angew Chem Int Ed 43:5645–5649

    Article  CAS  Google Scholar 

  5. Gupta AK, Gupta M (2005) Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications. Biomaterials 26:3995–4021

    Article  PubMed  CAS  Google Scholar 

  6. Mornet S, Vasseur S, Grasset F, Verveka P, Goglio G, Demourgues A, Portier J, Pollert E, Duguet E (2006) Magnetic nanoparticle design for medical applications. Prog Solid State Chem 34:237–247

    Article  CAS  Google Scholar 

  7. Li Z, Wei L, Gao MY, Lei H (2005) One-pot reaction to synthesize biocompatible magnetite nanoparticles. Adv Mater 17:1001–1005

    Article  CAS  Google Scholar 

  8. Hyeon T (2003) Chemical synthesis of magnetic nanoparticles. Chem Commun pp 927–934

  9. Elliott DW, Zhang W-X (2001) Field assessment of nanoscale bimetallic particles for groundwater treatment. Environ Sci Technol 35:4922–4926

    Article  PubMed  CAS  Google Scholar 

  10. Takafuji M, Ide S, Ihara H, Xu Z (2004) Preparation of poly(1-vinylimidazole)-grafted magnetic nanoparticles and their application for removal of metal Ions. Chem Mater 16:1977–1983

    Article  CAS  Google Scholar 

  11. Beck HP, Eiser W, Haberkorn R (2001) Pitfalls in the synthesis of nanoscaled perovskite type compounds. Part I: Influence of different sol–gel preparation methods and characterization of nanoscaled BaTiO3. J Eur Ceramic Soc 21:687–693

    Article  CAS  Google Scholar 

  12. Tang ZX, Sorensen CM, Klabunde KJ, Hadjipanayis GC (1991) Preparation of manganese ferrite fine particles from aqueous solution. J Colloid Interface Sci 146:38–52

    Article  CAS  Google Scholar 

  13. Massart R (1981) Preparation of aqueous magnetic liquids in alkaline and acidic media. IEEE Trans Magn 17:1247–1248

    Article  Google Scholar 

  14. Chen Q, Rondinone AJ, Chakoumakos BC, Zhang JZ (1999) Synthesis of superparamagnetic MgFe2O4 nanoparticles by co-precipitation. J Magn Magn Mater 194:1–7

    Article  CAS  Google Scholar 

  15. Sun S, Zeng H, Robinson DB, Raoux S, Rice PM, Wang SX (2004) Monodisperse MFe2O4 (M = Fe, Co., Mn) nanoparticles. J Am Chem Soc 126:273–279

    Article  PubMed  CAS  Google Scholar 

  16. Zhang JZ, Wang ZL, Chakoumakos BC, Yin JS (1998) Temperature dependence of cation distribution and oxidation state in magnetic Mn–Fe ferrite nanocrystals. J Am Chem Soc 120:1800–1804

    Article  CAS  Google Scholar 

  17. Pillai V, Kumar P, Hou MJ, Ayyub P, Shah DO (1995) Preparation of nanoparticles of Silver-halides, superconductors and magnetic-materials using water-in-oil microemulsions as nano-reactors. Adv Colloid Interface Sci 55:241–269

    Article  CAS  Google Scholar 

  18. Pillai V, Shah DO (1996) Synthesis of high-coercivity cobalt ferrite particles using water-in-oil microemulsions. J Magn Magn Mater 163:243–248

    Article  CAS  Google Scholar 

  19. Hench LL, West JK (1990) The sol-gel process. Chem Rev 90:33–72

    Article  CAS  Google Scholar 

  20. Ghosh NN, Pramanik P (2001) Aqueous sol–gel synthesis of nanosized ceramic composite powders with metal-formate precursors. Mat Sci and Eng 16:113–117

    Article  Google Scholar 

  21. Bessekhouad Y, Robert D, Weber JV (2003) Synthesis of photocatalytic TiO2 nanoparticles: optimization of the preparation conditions. J Photochem Photobiol 157:47–53

    Article  CAS  Google Scholar 

  22. Reddy KM, Reddy CVG, Manorama SV (2001) Preparation, characterization, and spectral studies on nanocrystalline anatase TiO2. J Solid State Chem 158:180–186

    Article  CAS  Google Scholar 

  23. Zhang H, Banfield JF (2005) Size dependence of the kinetic rate constant for Phase transformation in TiO2 nanoparticles. Chem Mater 17:3421–3425

    Article  CAS  Google Scholar 

  24. Tang J, Redl F, Zhu Y, Siegrist T, Brus LE, Steigerwald ML (2005) An organometallic synthesis of TiO2 nanoparticles. Nano Lett 5:543–548

    Article  PubMed  CAS  Google Scholar 

  25. Davis JT, Rideal EK (1963) Interfacial Phenomena. Academic Press, New York

    Google Scholar 

  26. Iler RK (1982) Silica chemistry. American Chemical Society, Washington

    Google Scholar 

  27. Iler RK (1986) Science of ceramic chemical processing. In: Hench LL, Ulrich DR (eds) Wiley, New York

  28. Makovec D, Drofenik M, Znidarsic A (1999) Hydrothermal synthesis of manganese zinc ferrite powders from oxides. J Am Ceram Soc 82:1113–1120

    Article  CAS  Google Scholar 

  29. Lu A-H, Salabas EL, Schiith F (2007) Magnetic nanoparticles: synthesis, protection, functionalization, and application. Angew Chem Int Ed 46:1222–1244

    Article  CAS  Google Scholar 

  30. Sridhar K, D’Arrigo MC, Leonelli C, Pellacan GC, Katsuki H (1998) Microwave-hydrothermal synthesis of nanophase ferrites. J Am Ceram Soc 81:3041–3043

    Google Scholar 

  31. Rozman M, Drofenik M (1995) Hydrothermal synthesis of manganese zinc ferrites. J Am Ceram Soc 78:2449–2455

    Article  CAS  Google Scholar 

  32. Wang X, Zhuang J, Peng Q, Li Y (2005) A general strategy for nanocrystal synthesis. Nature 437:121–124

    Article  PubMed  CAS  Google Scholar 

  33. Xu J, Ge JP, Li YD (2006) Solvothermal synthesis of monodisperse PbSe nanocrystals. J Phys Chem 110:2497–2501

    Article  CAS  Google Scholar 

  34. Wen B, Liu C, Liu Y (2005) Depositional characteristics of metal coating on single-crystal TiO2 nanowires. J Phys Chem 109:12372–12375

    Article  CAS  Google Scholar 

  35. Yang SW, Gao L (2006) Fabrication and shape-evolution of nanostructured TiO2 via a sol–solvothermal process based on benzene–water interfaces. Mater Chem Phys 99:437–440

    Article  CAS  Google Scholar 

  36. Song Q, Zhang ZJ (2004) Shape control and associated magnetic properties of spinel cobalt ferrite nanocrystals. J Am Chem Soc 126:6164–6168

    Article  PubMed  CAS  Google Scholar 

  37. Suslick KS (1990) Sonochemistry. Science 247:1439–1445

    Article  PubMed  CAS  Google Scholar 

  38. Suslick KS (1998) Ultrasound: its chemical, physical, and biological effects. Wiley-VCH, New York

    Google Scholar 

  39. Xia H, Wang Q (2002) Ultrasonic irradiation: a novel approach to prepare conductive polyaniline/Nanocrystalline Titanium Oxide Composites. Chem Mater 14:2158–2165

    Article  CAS  Google Scholar 

  40. Yu JC, Zhang L, Li Q, Kwong KW, Xu AW, Lin J (2003) Sonochemical preparation of nanoporous composites of Titanium Oxide and Size-Tunable Strontium Titanate Crystals. Langmuir 19:7673–7675

    Article  CAS  Google Scholar 

  41. Prozorov T, Prozorov R, Koltypin Y, Felner I, Gendanken A (1998) Sonochemistry under an applied magnetic field: determining the shape of a magnetic particle. J Phys Chem 102:10165–10168

    Article  CAS  Google Scholar 

  42. Lei Y, Zhang LD, Fan JC (2001) Fabrication, characterization and Raman study of TiO2 nanowire arrays prepared by anodic oxidative hydrolysis of TiCl3. Chem Phys Lett 338:231–236

    Article  CAS  Google Scholar 

  43. Liu S, Huang K (2004) Straightforward fabrication of highly ordered TiO2 nanowire arrays in AAM on aluminum substrate. Sol Energy Mater Sol Cells 85:125–131

    CAS  Google Scholar 

  44. Corradi AB, Bondioli F, Focher B, Ferrari AM, Grippo C, Mariani E, Villa C (2005) Conventional and microwave-hydrothermal synthesis of TiO2 nanopowders. J Am Ceram Soc 88:2639–2641

    Article  CAS  Google Scholar 

  45. Wu X, Jiang QZ, Ma ZF, Fu M, Shangguan WF (2005) Synthesis of Titania nanotubes by microwave irradiation. Solid State Commun 36:513–517

    Article  CAS  Google Scholar 

  46. Yamamoto T, Wada Y, Yin H, Sakata T, Mori H, Yanagida S (2002) Microwave-driven polyol method for preparation of TiO2 nanocrystallites. Chem Lett 10:964–965

    Article  Google Scholar 

  47. O’Regan B, Gra¨tzel M (1991) A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature 353:737–740

    Article  Google Scholar 

  48. Fujishima Rao TN, Tryk DA (2000) Titanium dioxide photocatalysis. J Photochem Photobiol C Photochem Rev 1:1–21

    Article  CAS  Google Scholar 

  49. Rajh T, Saponjic Z, Liu J, Dimitrijevic NM, Scherer NF, Vega-Arroyo M, Zapol P, Curtiss LA, Thurnauer MC (2004) Charge transfer across the nanocrystalline-DNA interface: probing DNA recognition. Nano Lett 4:1017–1023

    Article  CAS  Google Scholar 

  50. Tokuhisa H, Hammond PT (2003) Solid state photovoltaic thin films using TiO2, organic dyes and layer-by-layer polyelectrolyte nanocomposites. Adv Funct Mater 13:831–839

    Article  CAS  Google Scholar 

  51. Gerfin T, Gra¨tzel M, Walder L (1997) Molecular and supermolecular surface modification of nanocrystalline TiO2 films: charge separating and charge injecting devices. In: Karlin KD (eds) John Wiley and Sons Inc., New York pp 345–353

  52. Kamat PV (1993) Photochemistry on nonreactive and reactive (semiconductor) surfaces. Chem Rev 93:267–300

    Article  CAS  Google Scholar 

  53. Wells F (1975) Structural inorganic chemistry. Clarendon Press, Oxford

    Google Scholar 

  54. Kormann C, Bahnemann DW, Hoffmann MR (1988) Preparation and characterization of quantum-size titanium dioxide. J Phys Chem 92:5196–5201

    Article  CAS  Google Scholar 

  55. Prasad K, Bally AR, Schmid PE, Levy F, Benoit J, Barthou C, Benalloul JP (1997) Ce-doped TiO2 insulators in thin film electroluminescent devices. J Appl Phys 36:5696–5702

    Article  CAS  Google Scholar 

  56. Kim S, Park S, Jeong YH (1999) Homogeneous precipitation of TiO2 ultrafine powders from aqueous TiOCl2 solution. J Am Ceram Soc 82:927–932

    Article  CAS  Google Scholar 

  57. Wang W, Gu B, Liang L, Hamilton WA, Wesolowski DJ (2004) Synthesis of rutile (α-TiO2) nanocrystals with highly controlled size and shape by low temperature hydrolysis: effects of solvent composition. J Phys Chem 108:14789–14792

    Article  CAS  Google Scholar 

  58. Visca M, Matijevic′ EJ (1979) Preparation of uniform colloidal dispersions by chemical reactions in aerosols. I. Spherical particles of titanium dioxide. J Colloid Interface Sci 68:308–319

    Article  CAS  Google Scholar 

  59. Park HK, Moon YT, Kim DK, Kim CH (1996) Formation of monodisperse spherical TiO2 powders by thermal hydrolysis of Ti(SO4)2. J Am Ceram Soc 79(10):2727–2732

    Article  CAS  Google Scholar 

  60. Barringer EA, Bowen HK (1998) High-purity, monodisperse TiO2 powders by hydrolysis of titanium tetraethoxide. 1. Synthesis and physical properties. Langmuir 1:414–420

    Article  Google Scholar 

  61. Zhang H, Banfield JF (2000) Understanding polymorphic phase transformation behavior during growth of nanocrystalline aggregates: insights from TiO2. J Phys Chem 104:3481–3487

    CAS  Google Scholar 

  62. Wu MM, Lin G, Chen DH, Wang GG, He D, Feng SH, Xu RR (2002) Sol-hydrothermal synthesis and hydrothermally structural evolution of nanocrystal Titanium Dioxide. Chem Mater 14(5):1974–1980

    Article  CAS  Google Scholar 

  63. Zhang Q-H, Gao L, Guo J-K (1999) Preparation and characterization of nanosized TiO2 powders from aqueous TiCl4 solution. Nanostruct Mater 11:1293–1300

    Article  CAS  Google Scholar 

  64. Cavani F, Foresti E, Parrinello F, Trifiro F (1988) Role of the chemistry of solutions of titanium ions in determining the structure of V/Ti/O catalysts. Appl Catal 38:311–325

    Article  CAS  Google Scholar 

  65. Kumar K-NP, Keizer K, Burggraaf A (1992) Densification of nanostructured titania assisted by a phase transformation. Nature 358:48–51

    Article  CAS  Google Scholar 

  66. Manuel O, Josev GR, Carlos S (1992) Low-temperature nucleation of rutile observed by Raman Spectroscopy during crystallization of TiO2. J Am Ceram Soc 75:2010–2012

    Article  Google Scholar 

  67. Kumar K-NP, Keizer K, Burggraaf AJ (1994) Stabilization of the porous texture of nanostructured Titania by avoiding a phase transformation. J Mater Sci Lett 13:59–61

    CAS  Google Scholar 

  68. Luo H, Wang C, Yan Y (2003) Synthesis of mesostructured Titania with controlled crystalline framework. Chem Mater 15:3841–3846

    Article  CAS  Google Scholar 

  69. Liu W, Chen A, Lin J, Dai Z, Qiu W, Liu W, Zhu M, Usuday S (2004) Preparation of controllable crystalline Nano-TiO2 by homogeneous hydrolysis. Chem Lett 33:390–391

    Article  Google Scholar 

  70. Yin S, Li R, He Q, Sato T (2002) Low temperature synthesis of nanosize rutile Titania crystal in liquid media. Mater Chem Phys 75:76–80

    Article  CAS  Google Scholar 

  71. Chu R, Yan J, Lian S, Wang Y, Yan F, Chen D (2004) Shape-controlled synthesis of nanocrystalline Titania at low temperature. Solid State Commun 130:789–792

    Article  CAS  Google Scholar 

  72. Yin S, Hasegawa H, Maeda D, Ishitsuka M, Sato T (2004) Synthesis of visible-light-active nanosize rutile Titania photocatalyst by low temperature dissolution–reprecipitation process. J Photochem Photobiol A Chem 163:1–8

    Article  CAS  Google Scholar 

  73. Aruna ST, Tirosh S, Zaban AJ (2000) Nanosize rutile Titania particle synthesis via a hydrothermal method without mineralizers. J Mater Chem 10:2388–2391

    Article  CAS  Google Scholar 

  74. Zhang Q, Gao L (2003) Preparation of oxide nanocrystals with tunable morphologies by the moderate hydrothermal method: insights from Rutile TiO2. Langmuir 19:967–971

    Article  CAS  Google Scholar 

  75. Pedraza F, Vazquez A (1999) Obtention of TiO2 rutile at room temperature through direct Oxidation of TiCl3. J Phys Chem Solids 60:445–448

    Article  CAS  Google Scholar 

  76. Yang J, Mei S, Ferreira JMF (2000) Hydrothermal synthesis of nanosized Titania powders: influence of peptization and peptizing agents on the crystalline phases and phase transitions. J Am Ceram Soc 83:1361–1368

    Article  CAS  Google Scholar 

  77. Cheng H, Ma J, Zhou Z, Qi L (1995) Hydrothermal preparation of uniform nanosize rutile and anatase particles. Chem Mater 7:663–671

    Article  CAS  Google Scholar 

  78. Bacsa RR, Gra¨tzel M (1996) Rutile formation in hydrothermally crystallized nanosized Titania. J Am Ceram Soc 79:2185–2188

    Article  CAS  Google Scholar 

  79. Wang C-C, Ying JY (1999) Sol–Gel synthesis and hydrothermal porocessing of anatase and rutile Titania nanocrystals. Chem Mater 11:3113–3120

    Article  CAS  Google Scholar 

  80. Sasamoto T, Enomoto S, Shimoda Z, Saeki Y (1993) Effect of hydrolysis conditions on thermal transformation of alkoxide-derived titanium dioxide. J Ceram Soc 101:230–232

    Article  CAS  Google Scholar 

  81. Park N-G, Schlichtho¨rl G, van de Lagemaat J, Cheong HM, Mascarenhas A, Frank J (1999) Dye-sensitized TiO2 solar cells: structural and photoelectrochemical characterization of nanocrystalline electrodes formed from the hydrolysis of TiCl4. J Phys Chem 103:3308–3314

    Article  CAS  Google Scholar 

  82. Nag M, Basak P, Manorama SV (2007) Low-temperature hydrothermal synthesis of phase-pure rutile titania nanocrystals: time temperature tuning of morphology and photocatalytic activity. Mater Res Bull 42(9):1691–1704

    Article  CAS  Google Scholar 

  83. Nag M, Guin D, Basak P, Manorama SV (2008) Influence of morphology and surface characteristics on the photocatalytic activity of Rutile Titania Nanocrystals. Mater Res Bull 43(12):3270–3285

    Article  CAS  Google Scholar 

  84. Chen X, Gu G, Liu H, Cao Z (2004) Synthesis of nanocrystalline TiO2 particles by hydrolysis of Titanyl organic compounds at low temperature. J Am Ceram Soc 87:1035–1039

    Article  CAS  Google Scholar 

  85. Yang S, Liu Y, Guo Y, Zhao J, Xu H, Wang Z (2002) Preparation of rutile Titania nanocrystals by liquid method at room temperature. Mater Chem Phys 77:501–507

    Article  Google Scholar 

  86. Yin H, Wada Y, Kitamura T, Kambe S, Murasawa S, Mori H, Sakata T, Yanagida S (2001) Hydrothermal synthesis of nanosized anatase and rutile TiO2 using amorphous phase TiO2. J Mater Chem 11:1694–1703

    Article  CAS  Google Scholar 

  87. Li WJ, Shi EW, Zhong WZ, Yin ZW (1999) Growth mechanism and growth habit of oxide crystals. J Cryst Growth 203(1–2):186–196

    Article  CAS  Google Scholar 

  88. Dube GR, Darshana VS (1993) Decomposition of 1-octanol on the spinel system Ga1−x FexCuMnO4. J Mol Catal 79:285–296

    Article  CAS  Google Scholar 

  89. Rennard RJ, Kehl WL (1971) Oxidative dehydrogenation of butenes over ferrite catalysts. J Catal 21:282–293

    Article  CAS  Google Scholar 

  90. Zhihao Y, Zhang L (1998) Synthesis and structural characterization of capped ZnFe2O4 nanoparticles. Mat Res Bull 33:1587–1592

    Article  CAS  Google Scholar 

  91. Zhang T, Shen Y, Zhang R (1995) Ilmenite structure-type Beta-CdSnO used as an ethanol sensing. Material Mat Letts 23:69–71

    Article  Google Scholar 

  92. Yamazoe N, Miura N (1992) Some basic aspects of semiconductor gas sensors in chemical sensor technology. Kodansha and Elsevier, Tokyo

    Google Scholar 

  93. Holtz RL, Provenzano V, Imam MA (1996) Overview of nanophase metals and alloys for gas sensors, getters, and hydrogen storage. Nanostruct Mater 7:259–264

    Article  CAS  Google Scholar 

  94. Waingankar US, Kulkarni SG, Sagare MS (1997) Humidity sensing using soft ferrites. J Phy pp 155–156

  95. Arai H, Seiyama T (1991) Sensors: a comprehensive survey. In: Gopel W, Hesse J, Zemal JN (eds) Vct verlag spesell schaft. Wen-heim, Weinheim

    Google Scholar 

  96. Liu XQ, Xu ZL, Liu YF, Shen YS (1998) A novel high performance ethanol gas sensor based on CdO-Fe2O3 semiconducting materials. Sensor Actuat B-Chem 52(3):270–273

    Article  Google Scholar 

  97. Liu XQ, Fang B, Gao F (1999) The electrical conductance and gas-sensing properties of Sb-modified CdFe2O4 semiconductor material. Sensor Actuat B-Chem 61:138–142

    Article  Google Scholar 

  98. Reddy CVG, Manorama SV, Rao VJ (1999) Semiconducting gas sensor for chlorine based on inverse spinel nickel ferrite. Sensor Actuat B-Chem 55:90–95

    Article  Google Scholar 

  99. Reddy CVG, Manorama SV, Rao VJ (2000) Preparation and characterization of ferrites as gas sensor materials. J Mat Sci Letts 19:775–778

    Article  CAS  Google Scholar 

  100. Tao S, Gao F, Liu X, Sorensen OT (2000) Preparation and gas-sensing properties of CuFe2O4 at reduced temperature. Mat Sci and Engg B 77:172–176

    Article  Google Scholar 

  101. Xiangfeng C, Liu X, Guangyo M (1999) Study on gas-sensing properties of Cd1-xAgxIn2O4 semiconductor materials. Sensor Actuat B-Chem 55:19–22

    Article  Google Scholar 

  102. Xiangdong L, Shuping L, Dongyang S, Wenfei C (2007) Ethanol-sensing characteristics of CdFe2O4 sensor prepared by sol–gel method. Mater Chem Phys 105(1):67–70

    Article  CAS  Google Scholar 

  103. Chen N-S, Yang X-J, Liu E-S, Huang J-L (2000) Reducing gas-sensing properties of ferrite compounds MFe2O4 (M = Cu, Zn, Cd and Mg). Sensor Actuat B-Chem 66:178–180

    Article  Google Scholar 

  104. Shafi Kurikka VPM, Koltypin Y, Gedanken A, Prozorou R, Balogh J, Lendvai J, Felner I (1997) Sonochemical preparation of nanosized amorphous NiFe2O4 particles. J Phys Chem 101:6409–6414

    Article  Google Scholar 

  105. Turner CW (1991) Sol-gel process–principles applications. Am Ceram Soc Bull 70:1487–1490

    CAS  Google Scholar 

  106. Ataie A, Piramoon MR, Harris IR, Ponton CB (1995) Effect of Hydrothermal synthesis environment on the particle morphology, chemistry and magnetic-properties of barium hexaferrite. J Mater Sci 30:5600–5606

    Article  CAS  Google Scholar 

  107. Adachi GY, Imanaka N (1998) The binary rare earth oxides. Chem Rev 98:1479–1541

    Article  CAS  Google Scholar 

  108. Somiya S, Roy B (2000) Hydrothermal synthesis of fine oxide powders. Bull Mater Sci 23:453–460

    Article  CAS  Google Scholar 

  109. Ravindranathan P, Patil K (1987) Low-temperature path to the preparation of ultrafine ferrites. Am Cer Soc Bull 66:688–692

    CAS  Google Scholar 

  110. Regazzoni E, Urutia GA, Blesa MA, Maroto AJG (1981) Some observations on the composition and morphology of synthetic magnetites obtained by different routes. J Inorg Nucl Chem 43:1489–1493

    Article  CAS  Google Scholar 

  111. Chen J, Brinder K, Winzer SR, Paivernerker V (1988) A novel low-temperature preparation of Ni-Zn ferrite and the properties of the ultrafine particles formed. J Appl Phys 63:3786–3788

    Article  CAS  Google Scholar 

  112. Ueda M, Shimada S, Inagaki M (1995) Low temperature synthesis of zinc ferrite using hydrazine monohydrate. J Euro Cera Soc 15:265–269

    Article  CAS  Google Scholar 

  113. Reddy CVG, Kalyana Seela K, Manorama SV (2000) Preparation of gamma-Fe2O3 by the hydrazine method: application as an alcohol sensor. Int J Inorg Mat 12:301–307

    Article  Google Scholar 

  114. Reddy CVG, Cao W, Tan OK, Zhu W (2002) Preparation of Fe2O3 (0.9)-SnO2 (0.1) by hydrazine method: application as an alcohol sensor. Sensor Actuat B-Chem 81:170–175

    Article  Google Scholar 

  115. Mukhopadhyay AK, Mitra P, Chatterjee AP, Maiti HS (2000) Tin dioxide thin film gas sensor. Ceram Int 26:123–132

    Article  CAS  Google Scholar 

  116. Matsushima S, Teraoka Y, Miura N, Yamazoe N (1988) Electronic interaction between metal additives and tin dioxide in tin dioxide based gas sensors. Jpn J Appl Phys 27:1798–1802

    Article  CAS  Google Scholar 

  117. Ogawa H, Abe A, Nishikawa M, Hayakawa S (1981) Electrical properties of tin oxide ultrafine particle films. J Electrochem Soc 128:2020–2025

    Article  CAS  Google Scholar 

  118. Shukla S, Patil S, Kuiry SC, Rahamn Z, Du T, Ludwig L, Parish C, Seal S (2003) Synthesis and characterization of sol-gel derived nanocrystalline tin oxide thin film as hydrogen sensor. Sensor Actuat B-Chem 96:343–353

    Article  CAS  Google Scholar 

  119. Chopra KL, Major S, Pandya DK (1983) Transparent conductors: a status review. Thin Solid Films 102:1–46

    Article  CAS  Google Scholar 

  120. Zhang Y, Hu Q, Hu B, Fang Z, Qian Y, Zhang Z (2006) Preparation, characterization and application of a new kind of mesoporous composite. Mater Chem Phys 96:16–21

    Article  CAS  Google Scholar 

  121. Choudhary TV, Goodman DW (2002) Oxidation catalysis by supported gold nanoclusters. Top Catal 21:25–34

    Article  CAS  Google Scholar 

  122. Cebolla VC, Bacaud R, Besson M, Cagniant D, Charcosset H, Oberson M (1987) Analytical methods for the study of the influence of catalysts on the nature of liquefaction products of a bituminous coal. Bull Soc Chim Fr 6:935

    Google Scholar 

  123. Harrison PG, Bailey C, Bowering N (2003) Evolution of microstructure during the thermal processing of manganese-promoted Tin(IV) oxide catalysts. Chem Mater 15:979–987

    Article  CAS  Google Scholar 

  124. Ekerdt JG, Klabunde KJ, Shapley JR, White JM, Yates JT (1988) Surface chemistry of organophosphorus compounds. J Phys Chem 92:6182–6188

    Article  CAS  Google Scholar 

  125. Ginley DS, Bright C (2000) Transparent conducting oxides. Mater Res Soc Bull 25:15–18

    Article  CAS  Google Scholar 

  126. Granqvist CG (1993) Transparent conductive electrodes for electrochromic devices: a review. Appl Phys A Mater Sci Process 57:19–24

    Article  Google Scholar 

  127. Robert JC (1996) Method for preparing particles of metal oxide. (Tin Oxide). US Patent 5494652, USA

  128. Bellingham JR, Philips WA, Adkins CJ (1992) Intrinsic performance limits in transparent conducting oxides. J Mater Sci Lett 11:263–265

    Article  CAS  Google Scholar 

  129. Haa HW, Kima K, de Borniol M, Toupance T (2006) Fluorine-doped nanocrystalline SnO2 powders prepared via a single molecular precursor method as anode materials for Li-ion batteries. J Solid State Chem 179:702–707

    Article  CAS  Google Scholar 

  130. Chaudhary VA, Mulla IS, Vijayamohanan K, Hegde SG, Srinivas D (2001) Hydrocarbon sensing mechanism of surface ruthenated Tin Oxide: an in situ IR, ESR, and adsorption kinetics study. J Phys Chem 105:2565–2571

    Article  CAS  Google Scholar 

  131. Robert WJS, Yang SM, Chabanis G, Coombs N, Williams DE, Ozin GA (2001) Tin dioxide opals and inverted opals: near-ideal microstructures for gas sensors. Adv Mater 13:1468–1472

    Article  Google Scholar 

  132. Davis SR, Chadwick AV, Wright JD (1998) The effects of crystallite growth and dopant migration on the carbon monoxide sensing characteristics of nanocrystalline tin oxide based sensor materials. J Mater Chem 8:2065–2071

    Article  CAS  Google Scholar 

  133. Kılıc C, Zunger A (2002) Origins of coexistence of conductivity and transparency in SnO2. Phys Rev Lett 88(1–4):095501–095505

    Article  PubMed  CAS  Google Scholar 

  134. Yamazoe N, Miura N (1992) Some basic aspect of semiconductor gas sensors. Chem Sens Technol 4:19–42

    CAS  Google Scholar 

  135. Xu C, Tamaki J, Miura N, Yamazoe N (1992) Stabilization of SnO2 ultrafine particles by additives. J Mater Sci 27:963–971

    Article  CAS  Google Scholar 

  136. Xu C, Tamaki J, Miura N, Yamazoe N (1991) Grain size effects on gas sensitivity of porous SnO2-based elements. Sensor Actuat B-Chem 3:147–155

    Article  Google Scholar 

  137. Comini E, Faglia G, Sberveglieri G, Pan Z, Wang ZL (2002) Stable and highly sensitive gas sensors based on semiconducting oxide nanobelts. Appl Phys Lett 81:1869–1871

    Article  CAS  Google Scholar 

  138. Chowdhuri A, Gupta V, Sreenivas K, Kumar R, Mozumdar S, Patanjali PK (2004) Response speed of SnO2-based H2S gas sensors with CuO nanoparticles. Appl Phys Lett 84:1180–1182

    Article  CAS  Google Scholar 

  139. Wang Y, Jiang X, Xia Y (2003) A solution-phase, precursor route to polycrystalline SnO2 nanowires that can be used for gas sensing under ambient conditions. J Am Chem Soc 125:16176–16177

    Article  PubMed  CAS  Google Scholar 

  140. Liu Y, Koep E, Liu M (2005) A highly sensitive and fast-responding SnO2 sensor fabricated by combustion chemical vapour deposition. Chem Mater 17:3997–4000

    Article  CAS  Google Scholar 

  141. Wang X, Yee SS, Carey WP (1995) Transition between neck-controlled and grain-boundary-controlled sensitivity of metal-oxide gas sensors. Sensor Actuat B-Chem 25:454–457

    Article  Google Scholar 

  142. Zhang G, Liu ML (2000) Effect of particle size and dopant on properties of SnO2-based gas sensors. Sensor Actuat B-Chem 69:144–152

    Article  Google Scholar 

  143. Wang HC, Li Y, Yang MJ (2006) Fast response thin film SnO2 gas sensors operating at room temperature. Sensor Actuat B-Chem 119:380–383

    Article  CAS  Google Scholar 

  144. Chen YJ, Nie L, Xue XY, Wang YG, Wang TH (2006) Linear ethanol sensing of SnO2 nanorods with extremely high sensitivity. Appl Phys Lett 88:083105

    Article  CAS  Google Scholar 

  145. Manjula P, Satyanarayana L, Swarnalatha Y, Manorama SV (2009) Raman and MASNMR studies to support the mechanism of low temperature hydrogen sensing by Pd doped mesoporous SnO2. Sensor Actuat B-Chem 138:28–34

    Article  CAS  Google Scholar 

  146. Micocci G, Serra A, Siciliano P, Tepore A, Ali-Adib Z (1996) CO sensing characteristics of reactively sputtered SnO2 thin films prepared under different oxygen partial pressure values. Vacuum 47:1175–1177

    Article  CAS  Google Scholar 

  147. Geoffroy C, Campet G, Menil F, Portier J, Salardenne J, Couturier G (1991) Optical and electrical properties of SnO:F thin films obtained by R.F. sputtering with various targets. Act Passive Elec Comput 14:111–118

    Article  Google Scholar 

  148. Demarne V, Grisel A (1993) A new SnO2 low temperature deposition technique for integrated gas sensors. Sensor Actuat B-Chem 15:63–67

    Article  CAS  Google Scholar 

  149. Jiang L, Sun G, Zhou Z, Sun S, Wang Q, Yan S, Li H, Tian J, Guo J, Zhou B, Xin Q (2005) Size-controllable synthesis of monodispersed SnO2 nanoparticles and application in electrocatalysts. J Phys Chem 109:8774–8778

    CAS  Google Scholar 

  150. Suh S, Zhang Z, Chu W-K, Hoffmann DM (1999) Atmospheric-pressure chemical vapor deposition of fluorine-doped tin oxide thin films. Thin Solid Films 345:240–243

    Article  CAS  Google Scholar 

  151. Park SH, Son YC, Willis WS, Suib SL, Creasy KE (1998) Tin oxide films made by physical vapor deposition-thermal oxidation and spray pyrolysis. Chem Mater 10:2389–2398

    Article  CAS  Google Scholar 

  152. Shanthi S, Subramanian C, Ramasamy P (1999) Preparation and properties of sprayed undoped and fluorine doped tin oxide films. Mater Sci Eng, B 57:127–134

    Article  Google Scholar 

  153. Nayral C, Ould-Ely T, Maisonnat A, Chaudret B, Fau P, Lescouze`re L, Peyre-Lavigne A (1999) A novel mechanism for the synthesis of Tin/Tin oxide nanoparticles of low size dispersion and of nanostructured SnO2 for the sensitive layers of gas sensors. Adv Mater 11:61–63

    Article  CAS  Google Scholar 

  154. Nakamoto M, Yamamoto M (2004) Tin oxide and indium oxide nanoparticles prepared by the controlled thermolysis of tin and indium complexes. Kagaku Kogyo 78:503–508

    CAS  Google Scholar 

  155. Briois V, Belin S, Chalaca MZ, Santos RHA, Santilli CV, Pulcinelli SH (2004) Solid-State and solution structural study of acetylacetone-modified Tin(IV) chloride used as a precursor of SnO2 nanoparticles prepared by a Sol–Gel route. Chem Mater 16:3885–3894

    Article  CAS  Google Scholar 

  156. Zhu J, Lu Z, Aruna ST, Aurbach D, Gedanken A (2000) Sonochemical synthesis of SnO2 nanoparticles and their preliminary study as li insertion electrodes. Chem Mater 12:2557–2566

    Article  CAS  Google Scholar 

  157. Shen E, Wang C, Wang E, Kang Z, Gao L, Hu C, Xu L (2004) PEG-assisted synthesis of SnO2 nanoparticles. Mater Lett 58:3761–3764

    Article  CAS  Google Scholar 

  158. Chen D, Gao L (2004) Novel synthesis of well-dispersed crystalline SnO2 nanoparticles by water-in-oil microemulsion-assisted hydrothermal process. J Colloid Interface Sci 279:137–142

    Article  PubMed  CAS  Google Scholar 

  159. Kröger N, Lorenz S, Brunner E, Sumper M (2002) Self-assembly of highly phosphorylated silaffins and their function in biosilica morphogenesis. Science 298:584–586

    Article  PubMed  CAS  Google Scholar 

  160. Poulsen N, Sumper M, Kröger N (2003) Biosilica formation in diatoms: characterization of native silaffin-2 and its role in silica morphogenesis. Proc Natl Acad Sci USA 100:12075–12080

    Article  PubMed  CAS  Google Scholar 

  161. Cha JN, Shimizu K, Zhou Y, Christiansen SC, Chmelka BF, Stucky GD, Morse DE (1999) Silicate in filaments and subunits from a marine sponge direct the polymerization of silica and silicones in vitro. Proc Natl Acad Sci USA 96:361–365

    Article  PubMed  CAS  Google Scholar 

  162. Mizutani T, Nagase H, Ogoshi H (1998) Silicic acid polymerization catalyzed by amines and polyamines. Chem Lett 27:133–134

    Article  Google Scholar 

  163. Coradin T, Durupthy O, Livage J (2002) Interactions of amino-containing peptides with sodium silicate and colloidal silica: a biomimetic approach of silicification. Langmuir 18:2331–2336

    Article  CAS  Google Scholar 

  164. Patwardhan SV, Clarson SJ (2003) Silicification and biosilicification: Part 5. An investigation of the silica structures formed at weakly acidic pH and neutral pH as facilitated by cationically charged macromolecules. Mater Sci Engin C 23:495–499

    Article  CAS  Google Scholar 

  165. Hawkins KM, Wang SS-S, Ford DM, Shantz DF (2004) Poly-l-lysine templated silicas: using polypeptide secondary structure to control oxide pore architectures. J Am Chem Soc 126:9112–9119

    Article  PubMed  CAS  Google Scholar 

  166. Begum G, Rana RK, Singh S, Satyanarayana L (2010) Bioinspired silicification of functional materials: fluorescent monodisperse mesostructure silica nanospheres. Chem Mater 22:551–556

    Article  CAS  Google Scholar 

  167. Rana RK, Murthy VS, Yu J, Wong MS (2005) Nanoparticle self-assembly of hierarchically ordered microcapsule structures. Adv Mater 17:1145–1150

    Article  CAS  Google Scholar 

  168. Han Y, Ying JY (2005) Generalized fluorocarbon-surfactant-mediated synthesis of nanoparticles with various mesoporous structures. Angew Chem Int Ed 44:288–292

    Article  CAS  Google Scholar 

  169. Suzuki K, Ikari K, Imai H (2004) Synthesis of silica nanoparticles having a well-ordered mesostructure using a double surfactant system. J Am Chem Soc 126:462–463

    Article  PubMed  CAS  Google Scholar 

  170. Nooney RI, Thirunavukkarasu D, Chen Y, Josephs R, Ostafin AE (2002) Synthesis of nanoscale mesoporous silica spheres with controlled particle size. Chem Mater 14:4721–4728

    Article  CAS  Google Scholar 

  171. Rana RK, Mastai Y, Gedanken A (2002) Acoustic cavitation leading to the morphosynthesis of mesoporous silica vesicles. Adv Mater 14:1414–1418

    Article  CAS  Google Scholar 

  172. Umetsu M, Mizuta M, Tsumoto K, Ohara S, Takami S, Watanabe H, Kumagai I, Adschiri T (2005) Bioassisted room-temperature immobilization and mineralization of zinc Oxide-the structural ordering of ZnO nanoparticles into a flower-type morphology. Adv Mater 17:2571–2575

    Article  CAS  Google Scholar 

  173. Begum G, Manorama SV, Singh S, Rana RK (2008) Morphology-controlled assembly of ZnO nanostructures: a bioinspired method and visible luminescence. Chem Eur J 14:6421–6427

    Article  PubMed  CAS  Google Scholar 

  174. Dickerson MB, Naik RR, Stone MO, Cai Y, Sandhage KH (2004) Identification of peptides that promote the rapid precipitation of germania nanoparticle networks via use of a peptide display library. Chem Commun 15:1776–1777

    Article  CAS  Google Scholar 

  175. Naik RR, Brott LL, Clarson SJ, Stone MO (2002) Silica- precipitating peptides isolated from a combinatorial phage display peptide library. J Nanosci Nanotechnol 1:95–100

    Article  CAS  Google Scholar 

  176. Dickerson MB, Cai Y, Sandhage KH, Naik RR, Stone MO (2005) Sequence specific morphological control over the formation of germanium oxide during peptide mediated synthesis. Ceram Eng Sci Proc 26:25–32

    Article  CAS  Google Scholar 

  177. Patwardhan SV, Clarson SJ (2005) Bioinspired mineralisation: macromolecule mediated synthesis of amorphous germania structures. Polymer 46:4474–4479

    Article  CAS  Google Scholar 

  178. Davis TM, Snyder MA, Tsapatsis M (2007) Germania nanoparticles and nanocrystals at room temperature in aqueous lysine Sols. Langmuir 23:12469–12472

    Article  PubMed  CAS  Google Scholar 

  179. Sumerel JL, Yang W, Kisailus D, Weaver JC, Choi JH, Morse DE (2003) Biocatalytically templated synthesis of Titanium Dioxide. Chem Mater 15:4804–4809

    Article  CAS  Google Scholar 

  180. Kisailus D, Choi JH, Weaver JC, Yang W, Morse DE (2005) Enzymatic synthesis and nanostructural control of gallium oxide at low temperature. Adv Mater 17:314–318

    Article  CAS  Google Scholar 

  181. Lee S-Y, Gao X, Matsui H (2007) Biomimetic and aggregation-driven crystallization route for room-temperature material synthesis: Growth of β-Ga2O3 nanoparticles on peptide assemblies as nanoreactors. J Am Chem Soc 129:2954–2958

    Article  PubMed  CAS  Google Scholar 

  182. Amali AJ, Rana RK (2008) Trapping Pd(0) in nanoparticle-assembled microcapsules: an efficient and reusable catalyst. Chem Commun 4165–4167

  183. Shah MSAS, Nag M, Kalagara T, Singh S, Manorama SV (2008) Silver on PEG-PU-TiO2 polymer nanocomposite films: an excellent system for antibacterial applications. Chem Mater 20:2455–2460

    Article  CAS  Google Scholar 

  184. Jianrong C, Yuqing M, Nongyue H, Xiaohua W, Sijao L (2004) Nanotechnology and biosensors. Biotech Adv 22:505–518

    Article  CAS  Google Scholar 

  185. Vijayalakshmi A, Tarunashree Y, Baruwati B, Manorama SV, Narayana BL, Johnson REC, Rao NM (2008) Enzyme field effect transistor (ENFET) for estimation of triglycerides using magnetic nanoparticles. Biosens Bioelectron 23:1708–1714

    Article  PubMed  CAS  Google Scholar 

  186. Guin D, Manorama SV (2008) Room temperature synthesis of monodispersed iron oxide nanoparticles. Mat Lett 62:3139–3142

    Article  CAS  Google Scholar 

  187. Begum G, Singh S, Rangaraj N, Srinivas G, Rana RK (2010) Cellular permeation with nuclear infiltration capability of biomimetically synthesised fluorescent monodisperse mesoporous silica nanospheres in HeLa and human stem cells. J Mater Chem 20:8563–8570

    Article  CAS  Google Scholar 

  188. Feynmann R (1960) There’s plenty of room at the bottom. Engg Sci 23:22–36

    Google Scholar 

Download references

Acknowledgments

The authors thank all the students whose invaluable participation in the projects over the years has generated a wealth of scientific information on the topics discussed. SVM, RKR and MLK acknowledge the strong financial supports for several projects: DST (GAP-0153), DBT (GAP-0209), and CSIR Network Projects (CMM-0011, NWP-0035), EU sponsored under FP6 program (GAP-0183). PB gratefully acknowledges the support of DST, India and IICT, Hyderabad for providing assistance in form of the Ramanujan Fellowship (GAP-0248) and Fast-Track Grant (GAP-0268).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Lakshmi Kantam.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Manorama, S.V., Basak, P., Rana, R.K. et al. Nanostructured Metal Oxides: Low Temperature Synthesis and Biomimetic Approaches. Proc. Natl. Acad. Sci., India, Sect. B Biol. Sci. 82 (Suppl 1), 83–97 (2012). https://doi.org/10.1007/s40011-012-0081-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40011-012-0081-6

Keywords

Navigation