Skip to main content

Advertisement

Log in

Polymer-Based Nanoparticulate Systems as Versatile Agents in the Prognosis and Therapy of Cancer

  • Review
  • Published:
Proceedings of the National Academy of Sciences, India Section B: Biological Sciences Aims and scope Submit manuscript

Abstract

Polymeric nanoparticulate systems have garnered wide interest as vehicles for intracellular reporter agents and anti-cancer drugs, in anti-cancer gene therapy, and in reducing the adverse toxic effects of metal nanoparticles. These wide ranging applications have been possible due to a favourable blend of polymer properties such as facile chemistry, diverse synthesis options, and amenability towards functionalization. An array of polymeric nanosystems have been developed which exhibit better encapsulation, higher bioavailability, and controlled release of therapeutic agents. In this review, we discuss strategies for synthesizing, tailoring and targeting polymeric nanoparticles, schemes for reducing metal nanoparticle toxicity by using polymers, and recent aspects of internalization and biodistribution of nanoparticulate systems with reference to cancer. We also present the recent clinical status of certain key nanoparticulate anti-cancer drug and gene formulations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Gref R, Minamitake Y, Peracchia M, Trubetskoy V, Torchilin V, Langer R (1994) Biodegradable long-circulating polymeric nanospheres. Science 263:1600–1603

    PubMed  CAS  Google Scholar 

  2. Avgoustakis K (2004) Pegylated poly(lactide) and poly(lactide-co-glycolide) nanoparticles: preparation, properties and possible applications in drug delivery. Curr Drug Del 1:321–333

    CAS  Google Scholar 

  3. Upadhyay KK, Agrawal HG, Upadhyay C, Schatz C, Le Meins JF, Misra A, Lecommandoux S (2009) Role of block copolymer nanoconstructs in cancer therapy. Crit Rev Ther Drug 26:157–205

    CAS  Google Scholar 

  4. Couvreur P, Barratt G, Fattal E, Legrand P, Vauthier C (2002) Nanocapsule technology: a review. Crit Rev Ther Drug 19:99–134

    CAS  Google Scholar 

  5. Parveen S, Sahoo SK (2008) Polymeric nanoparticles for cancer therapy. J Drug Target 16:108–123

    PubMed  CAS  Google Scholar 

  6. Otsuka H, Nagasaki Y, Kataoka K (2003) PEGylated nanoparticles for biological and pharmaceutical applications. Adv Drug Deliv Rev 55:403–419

    PubMed  CAS  Google Scholar 

  7. Nel AE, Madler L, Velegol D, Xia T, Hoek EMV, Somasundaran P, Klaessig F, Castranova V, Thompson M (2009) Understanding biophysicochemical interactions at the nano–bio interface. Nat Mater 8:543–557

    PubMed  CAS  Google Scholar 

  8. Angeles Villanueva MC, Alejandro GR, Macarena C, Sabino V-V, Carlos JS, del María PM, Rodolfo M (2009) The influence of surface functionalization on the enhanced internalization of magnetic nanoparticles in cancer cells. Nanotechnology 20:103–115

    Google Scholar 

  9. Arvizo RR, Miranda OR, Thompson MA, Pabelick CM, Bhattacharya R, Robertson JD, Rotello VM, Prakash YS, Mukherjee P (2010) Effect of nanoparticle surface charge at the plasma membrane and beyond. Nano Lett 10:2543–2548

    PubMed  CAS  Google Scholar 

  10. Baca HK, Carnes E, Singh S, Ashley C, Lopez D, Brinker CJ (2007) Cell-directed assembly of bio/nano interfaces: a new scheme for cell immobilization. Acc Chem Res 40:836–845

    PubMed  CAS  Google Scholar 

  11. Lynch I, Dawson KA (2008) Protein-nanoparticle interactions. Nano Today 3:40–47

    CAS  Google Scholar 

  12. Mahmoudi M, Lynch I, Ejtehadi MR, Monopoli MP, Bombelli FB, Laurent S (2011) Protein–nanoparticle interactions: opportunities and challenges. Chem Rev 111:5610–5637

    PubMed  CAS  Google Scholar 

  13. Lundqvist M, Stigler J, Elia G, Lynch I, Cedervall T, Dawson KA (2008) Nanoparticle size and surface properties determine the protein corona with possible implications for biological impacts. Proc Natl Acad Sci USA 105:14265–14270

    PubMed  CAS  Google Scholar 

  14. Akbulut M, Alig ARG, Min Y, Belman N, Reynolds M, Golan Y, Israelachvili J (2007) Forces between surfaces across nanoparticle solutions: role of size, shape, and concentration. Langmuir 23:3961–3969

    PubMed  CAS  Google Scholar 

  15. Vasir JK, Labhasetwar V (2008) Quantification of the force of nanoparticle–cell membrane interactions and its influence on intracellular trafficking of nanoparticles. Biomaterials 29:4244–4252

    PubMed  CAS  Google Scholar 

  16. Miller DC, Haberstroh KM, Webster TJ (2007) PLGA nanometer surface features manipulate fibronectin interactions for improved vascular cell adhesion. J Biomed Mater Res A 81:678–684

    PubMed  Google Scholar 

  17. Wang MS, Palmer LB, Schwartz JD, Razatos A (2004) Evaluating protein attraction and adhesion to biomaterials with the atomic force microscope. Langmuir 20:7753–7759

    PubMed  CAS  Google Scholar 

  18. Ramanaviciene A, Schuhmann W, Ramanavicius A (2006) AFM study of conducting polymer polypyrrole nanoparticles formed by redox enzyme—glucose oxidase—initiated polymerisation. Colloids Surface B 48:159–166

    CAS  Google Scholar 

  19. Costanzo PJ, Patten TE, Seery TAP (2004) Protein–ligand mediated aggregation of nanoparticles: a study of synthesis and assembly mechanism. Chem Mater 16:1775–1785

    CAS  Google Scholar 

  20. Dwivedi N, Arunagirinathan, Sharma S, Bellare J (2009) Ferrite–Silica–Insulin nanocomposites (FeSINC) for glucose reduction. Langmuir 26:357–361

    Google Scholar 

  21. Viguié J-R, Sukmanowski J, Nölting B, Royer F-X (2007) Study of agglomeration of alumina nanoparticles by atomic force microscopy (AFM) and photon correlation spectroscopy (PCS). Colloid Surface A 302:269–275

    Google Scholar 

  22. Saraf S (2009) Process optimization for the production of nanoparticles for drug delivery applications. Expert Opin Drug Deliv 6:187–196

    PubMed  CAS  Google Scholar 

  23. Kumar P (2010) Directed self-assembly: expectations and achievements. Nanoscale Res Lett 5:1367–1376

    PubMed  Google Scholar 

  24. Pochan DJ, Chen Z, Cui H, Hales K, Qi K, Wooley KL (2004) Toroidal triblock copolymer assemblies. Science 306:94–97

    PubMed  CAS  Google Scholar 

  25. Vijayan K, Geng Y, Discher D (2005) Electric field manipulation of charged copolymer worm micelles. J Phys Chem B 110:3831–3834

    Google Scholar 

  26. Norman AI, Fei Y, Ho DL, Gree SC (2007) Folding and unfolding of polymer helices in solution. Macromolecules 40:2559–2567

    CAS  Google Scholar 

  27. Alexandridis P, Spontak RJ (1999) Solvent-regulated ordering in block copolymers. Curr Opin Colloid Interface 4:130–139

    CAS  Google Scholar 

  28. Israelachvili JN (1991) Intermolecular and surface forces, 2nd edn. Academic Press, London, pp 366–393

    Google Scholar 

  29. Smart T, Lomas H, Massignani M, Flores-Merino MV, Perez LR, Battaglia G (2008) Block copolymer nanostructures. Nano Today 3:38–46

    CAS  Google Scholar 

  30. Bhadra D, Bhadra S, Jain P, Jain NK (2002) Pegnology: a review of PEG-ylated systems. Pharmazie 57:5–29

    PubMed  CAS  Google Scholar 

  31. Bala I, Hariharan S, Kumar MNVR (2004) PLGA nanoparticles in drug delivery: the state of the art. Crit Rev Ther Drug 21:387–422

    CAS  Google Scholar 

  32. Muthu MS, Rawat MK, Mishra A, Singh S (2009) PLGA nanoparticle formulations of risperidone: preparation and neuropharmacological evaluation. Nanomedicine 5:323–333

    PubMed  CAS  Google Scholar 

  33. Leroux J-C, Allemann E, Doelker E, Gurny R (1995) New approach for the preparation of nanoparticles by an emulsification-diffusion method. Eur J Pharm Biopharm 41:14–18

    CAS  Google Scholar 

  34. Arshady R (1991) Preparation of biodegradable microspheres and microcapsules: 2. Polylactides and related polyesters. J Control Release 17:1–21

    CAS  Google Scholar 

  35. De Jaeghere F, Allemann E, Feijen J, Kissel T, Doelker E, Gurny R (2000) Cellular uptake of PEO surface-modified nanoparticles: evaluation of nanoparticles made of PLA: PEO diblock and triblock copolymers. J Drug Target 8:143–153

    PubMed  Google Scholar 

  36. Reis CP, Neufeld RJ, Ribeiro AJ, Veiga F (2006) Nanoencapsulation I. Methods for preparation of drug-loaded polymeric nanoparticles. Nanomedicine 2:8–21

    CAS  Google Scholar 

  37. Byrappa K, Ohara S, Adschiri T (2008) Nanoparticles synthesis using supercritical fluid technology- towards biomedical applications. Adv Drug Deliv Rev 60:299–327

    PubMed  CAS  Google Scholar 

  38. Thakkar FT, Soni TG, Gohel MC, Gandhi TR (2009) Supercritical fluid technology: a promising approach to enhance the drug solubility. J Pharm Sci Res 1:1–14

    CAS  Google Scholar 

  39. Chattopadhyay P, Gupta RB (2001) Production of griseofulvin nanoparticles using supercritical CO2 antisolvent with enhanced mass transfer. Int J Pharm 228:19–31

    PubMed  CAS  Google Scholar 

  40. Matsuyama K, Mishima K, Hayashi K-I, Ishikawa H, Matsuyama H, Harada T (2003) Formation of microcapsules of medicines by the rapid expansion of a supercritical solution with a non-solvent. J Appl Polym Sci 89:742–752

    CAS  Google Scholar 

  41. Vauthier C, Dubernet C, Fattal E, Pinto-Alphandary H, Couvreur P (2003) Poly(alkylcyanoacrylates) as biodegradable materials for biomedical applications. Adv Drug Deliv Rev 55:519–548

    PubMed  CAS  Google Scholar 

  42. Sairam M, Babu VR, Rao K, Aminabhavi TM (2007) Poly(methylmethacrylate)-poly(vinyl pyrrolidone) microspheres as drug delivery systems: indomethacin/cefadroxil loading and in vitro release study. J Appl Polym Sci 104:1860–1865

    CAS  Google Scholar 

  43. Mulik R, Mahadik K, Paradkar A (2009) Development of curcuminoids loaded poly(butyl) cyanoacrylate nanoparticles: physicochemical characterization and stability study. Eur J Pharm Sci 37:395–404

    PubMed  CAS  Google Scholar 

  44. Bereznowski Z (1995) In vivo assessment of methyl methacrylate metabolism and toxicity. Int J Biochem Cell Biol 27:1311–1316

    PubMed  CAS  Google Scholar 

  45. Reddy LH, Murthy RR (2004) Influence of polymerization technique and experimental variables on the particle properties and release kinetics of methotrexate from poly(butylcyanoacrylate) nanoparticles. Acta Pharm 54:103–118

    PubMed  CAS  Google Scholar 

  46. Namati F, Dubernet C, Verdière AC, Poupon MF, Treupel-Acar L, Puisieux F, Couvreur P (1994) Some parameters influencing cytotoxicity of free doxorubicin and doxorubicin-loaded nanoparticles in sensitive and multi-drug resistant leucemic murine cells: incubation time, number of nanoparticles per cell. Int J Pharm 102:55–62

    Google Scholar 

  47. Breton P, Larras V, Roy D, Sagodira S, Limal D, Bonnafous D, Colin N, Bru N, Fattal E, Couvreur P (2008) Biocompatible poly(methylidene malonate)-made materials for pharmaceutical and biomedical applications. Eur J Pharm Biopharm 68:479–495

    PubMed  CAS  Google Scholar 

  48. Lambert G (2003) Polyalkylcyanoacrylate nanospheres and nanocapsules for the delivery of antisense oligonucleotides. J Dispers Sci Technol 24:439–452

    CAS  Google Scholar 

  49. Watnasirichaikul S, Davies NM, Rades T, Tucker IG (2000) Preparation of biodegradable insulin nanocapsules from biocompatible microemulsions. Pharm Res 17:684–689

    PubMed  CAS  Google Scholar 

  50. Al Khouri Fallouh N, Roblot-Treupel L, Fessi H, Devissaguet JP, Puisieux F (1986) Development of a new process for the manufacture of polyisobutylcyanoacrylate nanocapsules. Int J Pharm 28:125–132

    CAS  Google Scholar 

  51. Lambert G, Fattal E, Pinto-Alphandary H, Gulik A, Couvreur P (2001) Polyisobutylcyanoacrylate nanocapsules containing an aqueous core for the delivery of oligonucleotides. Int J Pharm 214:13–16

    PubMed  CAS  Google Scholar 

  52. Tiwari MD (2012) Nanoparticle mediated differentiation of HL-60 cells. PhD Thesis, Indian Institute of Technology Bombay, Mumbai (in progress)

  53. Griffin WC (1949) Classification of surface-active agents by HLB. J Soc Cosmet Chem 1:311–326

    Google Scholar 

  54. Lee ES, Shin HJ, Na K, Bae YH (2003) Poly(l-histidine)-PEG block copolymer micelles and pH-induced destabilization. J Control Release 90:363–374

    PubMed  CAS  Google Scholar 

  55. Liu SQ, Tong YW, Yang Y-Y (2005) Incorporation and in vitro release of doxorubicin in thermally sensitive micelles made from poly(N-isopropylacrylamide-co-N,N-dimethylacrylamide)-b-poly(d,l-lactide-co-glycolide) with varying compositions. Biomaterials 26:5064–5074

    PubMed  CAS  Google Scholar 

  56. Nederberg F, Appel E, Tan JPK, Sung HK, Fukushima K, Sly J, Miller RD, Waymouth RM, Yang Y-Y, Hedrick JL (2009) Simple approach to stabilized micelles employing miktoarm terpolymers and stereocomplexes with application in paclitaxel delivery. Biomacromolecules 10:1460–1468

    PubMed  CAS  Google Scholar 

  57. Astafieva I, Zhong XF, Eisenberg A (1993) Critical micellization phenomena in block polyelectrolyte solutions. Macromolecules 26:7339–7352

    CAS  Google Scholar 

  58. Liu J, Zeng F, Allen C (2007) In vivo fate of unimers and micelles of a poly(ethylene glycol)-block-poly(caprolactone) copolymer in mice following intravenous administration. Eur J Pharm Biopharm 65:309–319

    PubMed  CAS  Google Scholar 

  59. Fukushima K, Pratt RC, Nederberg F, Tan JPK, Yang YY, Waymouth RM, Hedrick JL (2008) Organocatalytic approach to amphiphilic comb-block copolymers capable of stereocomplexation and self-assembly. Biomacromolecules 9:3051–3056

    PubMed  CAS  Google Scholar 

  60. Song B, Wang Z, Chen S, Zhang X, Fu Y, Smet M, Dehaen W (2005) The introduction of π–π stacking moieties for fabricating stable micellar structure: formation and dynamics of disklike micelles. Angew Chem Int Ed 44:4731–4735

    CAS  Google Scholar 

  61. Kim SH, Tan JPK, Nederberg F, Fukushima K, Yang YY, Waymouth RM, Hedrick JL (2009) Mixed micelle formation through stereocomplexation between enantiomeric poly(lactide) block copolymers. Macromolecules 42:25–29

    CAS  Google Scholar 

  62. Iijima M, Nagasaki Y, Okada T, Kato M, Kataoka K (1999) Core-polymerized reactive micelles from heterotelechelic amphiphilic block copolymers. Macromolecules 32:1140–1146

    CAS  Google Scholar 

  63. Jaturanpinyo M, Harada A, Yuan X, Kataoka K (2004) Preparation of bionanoreactor based on core-shell structured polyion complex micelles entrapping trypsin in the core cross-linked with glutaraldehyde. Bioconjug Chem 15:344–348

    PubMed  CAS  Google Scholar 

  64. Flory PJ (1965) Statistical thermodynamics of liquid mixtures. J Am Chem Soc 87:1833–1838

    CAS  Google Scholar 

  65. Liu J, Xiao Y, Allen C (2004) Polymer–drug compatibility: a guide to the development of delivery systems for the anticancer agent, ellipticine. J Pharm Sci 93:132–143

    PubMed  CAS  Google Scholar 

  66. Engin K, Leeper DB, Cater JR, Thistlethwaite AJ, Tupchong L, McFarlane JD (1995) Extracellular pH distribution in human tumours. Int J Hyperther 11:211–216

    CAS  Google Scholar 

  67. Li J, Wang B, Liu P (2008) Possibility of active targeting to tumor by local hyperthermia with temperature-sensitive nanoparticles. Med Hypotheses 71:249–251

    PubMed  CAS  Google Scholar 

  68. Soppimath KS, Tan DC-W, Yang Y-Y (2005) pH-triggered thermally responsive polymer core–shell nanoparticles for drug delivery. Adv Mater 17:318–323

    CAS  Google Scholar 

  69. Gulati N, Rastogi R, Dinda AK, Saxena R, Koul V (2010) Characterization and cell material interactions of PEGylated PNIPAAM nanoparticles. Colloid Surface B 79:164–173

    CAS  Google Scholar 

  70. Rastogi R, Gulati N, Kotnala RK, Sharma U, Jayasundar R, Koul V (2011) Evaluation of folate conjugated pegylated thermosensitive magnetic nanocomposites for tumor imaging and therapy. Colloid Surface B 82:160–167

    CAS  Google Scholar 

  71. Sharma P, Brown S, Walter G, Santra S, Moudgil B (2006) Nanoparticles for bioimaging. Adv Colloid Interface 123–126:471–485

    Google Scholar 

  72. Loo C, Lowery A, Halas N, West J, Drezek R (2005) Immunotargeted nanoshells for integrated cancer imaging and therapy. Nano Lett 5:709–711

    PubMed  CAS  Google Scholar 

  73. Jain PK, Huang X, El-Sayed IH, El-Sayed MA (2008) Noble metals on the nanoscale: optical and photothermal properties and some applications in imaging, sensing, biology, and medicine. Acc Chem Res 41:1578–1586

    PubMed  CAS  Google Scholar 

  74. Lewinski N, Colvin V, Drezek R (2008) Cytotoxicity of nanoparticles. Small 4:26–49

    PubMed  CAS  Google Scholar 

  75. Ahmad MZ, Akhter S, Jain GK, Rahman M, Pathan SA, Ahmad FJ, Khar RK (2010) Metallic nanoparticles: technology overview and drug delivery applications in oncology. Expert Opin Drug Del 7:927–942

    CAS  Google Scholar 

  76. Gupta AK, Gupta M (2005) Cytotoxicity suppression and cellular uptake enhancement of surface modified magnetic nanoparticles. Biomaterials 26:1565–1573

    PubMed  CAS  Google Scholar 

  77. Bryaskova R, Pencheva D, Kyulavska M, Bozukova D, Debuigne A, Detrembleur C (2010) Antibacterial activity of poly(vinyl alcohol)-b-poly(acrylonitrile) based micelles loaded with silver nanoparticles. J Colloid Interface Sci 344:424–428

    PubMed  CAS  Google Scholar 

  78. Gazit O, Cohen Y, Tannenbaum R (2010) Periodic nanocomposites: a simple path for the preferential self-assembly of nanoparticles in block-copolymers. Polymer 51:2185–2190

    CAS  Google Scholar 

  79. Kumar R, Pandey AK, Tyagi AK, Dey GK, Ramagiri SV, Bellare JR, Goswami A (2009) In situ formation of stable gold nanoparticles in polymer inclusion membranes. J Colloid Interface Sci 337:523–530

    PubMed  CAS  Google Scholar 

  80. Simpson CA, Agrawal AC, Balinski A, Harkness KM, Cliffel DE (2011) Short-chain PEG mixed monolayer protected gold clusters increase clearance and red blood cell counts. ACS Nano 5:3577–3584

    PubMed  CAS  Google Scholar 

  81. Ballou B, Lagerholm BC, Ernst LA, Bruchez MP, Waggoner AS (2004) Non-invasive imaging of quantum dots in mice. Bioconjug Chem 15:79–86

    PubMed  CAS  Google Scholar 

  82. Madhavan RV, Rosemary MJ, Nandkumar MA, Krishnan KV, Krishnan LK (2011) Silver nanoparticle impregnated poly (ε-caprolactone) scaffolds: optimization of antimicrobial and noncytotoxic concentrations. Tissue Eng Pt A 17:439–449

    CAS  Google Scholar 

  83. Kojima H, Mukai Y, Yoshikawa M, Kamei K, Yoshikawa T, Morita M, Inubushi T, Yamamoto TA, Yoshioka Y, Okada N, Seino S, Nakagawa S (2010) Simple PEG conjugation of SPIO via an Au-S Bond improves its tumor targeting potency as a novel MR tumor imaging agent. Bioconjug Chem 21:1026–1031

    PubMed  CAS  Google Scholar 

  84. Li YF, Chen C (2011) Fate and toxicity of metallic and metal-containing nanoparticles for biomedical applications. Small 7:2965–2980

    PubMed  CAS  Google Scholar 

  85. Jana NR, Erathodiyil N, Jiang J, Ying JY (2010) Cysteine-functionalized polyaspartic acid: a polymer for coating and bioconjugation of nanoparticles and quantum dots. Langmuir 26:6503–6507

    PubMed  CAS  Google Scholar 

  86. Namdeo M, Saxena S, Tankhiwale R, Bajpai M, Mohan YM, Bajpai SK (2008) Magnetic nanoparticles for drug delivery applications. J Nanosci Nanotechnol 8:3247–3271

    PubMed  CAS  Google Scholar 

  87. Prabhakar PK, Vijayaraghavan S, Philip J, Doble M (2011) Biocompatibility studies of functionalized CoFe2O4 magnetic nanoparticles. Curr Nanosci 7:371–376

    CAS  Google Scholar 

  88. Lee H, Lee E, Kim DK, Jang NK, Jeong YY, Jon S (2006) Antibiofouling polymer-coated superparamagnetic iron oxide nanoparticles as potential magnetic resonance contrast agents for in vivo cancer imaging. J Am Chem Soc 128:7383–7389

    PubMed  CAS  Google Scholar 

  89. Kievit FM, Veiseh O, Bhattarai N, Fang C, Gunn JW, Lee D, Ellenbogen RG, Olson JM, Zhang M (2009) PEI-PEG-chitosan-copolymer-coated iron oxide nanoparticles for safe gene delivery: synthesis, complexation, and transfection. Adv Funct Mater 19:2244–2251

    PubMed  CAS  Google Scholar 

  90. Konwarh R, Saikia JP, Karak N, Konwar BK (2010) ‘Poly(ethylene glycol)-magnetic nanoparticles-curcumin’ trio: directed morphogenesis and synergistic free-radical scavenging. Colloid Surface B 81:578–586

    CAS  Google Scholar 

  91. Wong JE, Krishnakumar GA, Müller-Schulte D, Bahadur D, Richtering W (2007) Layer-by-layer assembly of a magnetic nanoparticle shell on a thermoresponsive microgel core. J Magn Magn Mater 311:219–223

    CAS  Google Scholar 

  92. Conner SD, Schmid SL (2003) Regulated portals of entry into the cell. Nature 422:37–44

    PubMed  CAS  Google Scholar 

  93. Rabinovitch M (1995) Professional and non-professional phagocytes: an introduction. Trends Cell Biol 5:85–87

    PubMed  CAS  Google Scholar 

  94. Lenaerts V, Couvreur P, Christiaens-Leyh D, Joiris E, Roland M, Rollman B, Speiser P (1984) Degradation of poly (isobutyl cyanoacrylate) nanoparticles. Biomaterials 5:65–68

    PubMed  CAS  Google Scholar 

  95. Anderson JM, Shive MS (1997) Biodegradation and biocompatibility of PLA and PLGA microspheres. Adv Drug Deliv Rev 28:5–24

    PubMed  CAS  Google Scholar 

  96. Bareford LM, Swaan PW (2007) Endocytic mechanisms for targeted drug delivery. Adv Drug Deliv Rev 59:748–758

    PubMed  CAS  Google Scholar 

  97. Swanson JA, Watts C (1995) Macropinocytosis. Trends Cell Biol 5:424–428

    PubMed  CAS  Google Scholar 

  98. Desai MP, Labhasetwar V, Walter E, Levy RJ, Amidon GL (1997) The mechanism of uptake of biodegradable microparticles in Caco-2 cells is size dependent. Pharm Res 14:1568–1573

    PubMed  CAS  Google Scholar 

  99. Byrne JD, Betancourt T, Brannon-Peppas L (2008) Active targeting schemes for nanoparticle systems in cancer therapeutics. Adv Drug Deliv Rev 60:1615–1626

    PubMed  CAS  Google Scholar 

  100. Matsumura Y, Maeda H (1986) A new concept for macromolecular therapeutics in cancer chemotherapy: mechanism of tumoritropic accumulation of proteins and the antitumor agent smancs. Cancer Res 46:6387–6392

    PubMed  CAS  Google Scholar 

  101. Rejman J, Oberle V, Zuhorn IS, Hoekstra D (2004) Size-dependent internalization of particles via the pathways of clathrin-and caveolae-mediated endocytosis. Biochemical J 377:159–169

    CAS  Google Scholar 

  102. Lai SK, Hida K, Man ST, Chen C, Machamer C, Schroer TA, Hanes J (2007) Privileged delivery of polymer nanoparticles to the perinuclear region of live cells via a non-clathrin, non-degradative pathway. Biomaterials 28:2876–2884

    PubMed  CAS  Google Scholar 

  103. Beningo KA, Wang Y-l (2002) Fc-receptor-mediated phagocytosis is regulated by mechanical properties of the target. J Cell Sci 115:849–856

    PubMed  CAS  Google Scholar 

  104. Sun X, Rossin R, Turner JL, Becker ML, Joralemon MJ, Welch MJ, Wooley KL (2005) An assessment of the effects of shell cross-linked nanoparticle size, core composition, and surface PEGylation on in vivo biodistribution. Biomacromolecules 6:2541–2554

    PubMed  CAS  Google Scholar 

  105. Chithrani BD, Ghazani AA, Chan WCW (2006) Determining the size and shape dependence of gold nanoparticle uptake into mammalian cells. Nano Lett 6:662–668

    PubMed  CAS  Google Scholar 

  106. Gratton SEA, Ropp PA, Pohlhaus PD, Luft JC, Madden VJ, Napier ME, DeSimone JM (2008) The effect of particle design on cellular internalization pathways. Proc Natl Acad Sci USA 105:11613–11618

    PubMed  CAS  Google Scholar 

  107. Parveen S, Mitra M, Krishnakumar S, Sahoo SK (2010) Enhanced antiproliferative activity of carboplatin-loaded chitosan-alginate nanoparticles in a retinoblastoma cell line. Acta Biomater 6:3120–3131

    PubMed  CAS  Google Scholar 

  108. Paliwal R, Paliwal SR, Agrawal GP, Vyas SP (2012) Chitosan nanoconstructs for improved oral delivery of low molecular weight heparin: in vitro and in vivo evaluation. Int J Pharm 422:179–184

    PubMed  CAS  Google Scholar 

  109. Bravo-Osuna I, Vauthier C, Farabollini A, Palmieri GF, Ponchel G (2007) Mucoadhesion mechanism of chitosan and thiolated chitosan-poly(isobutyl cyanoacrylate) core-shell nanoparticles. Biomaterials 28:2233–2243

    PubMed  CAS  Google Scholar 

  110. Ogris M, Walker G, Blessing T, Kircheis R, Wolschek M, Wagner E (2003) Tumor-targeted gene therapy: strategies for the preparation of ligand–polyethylene glycol–polyethylenimine/DNA complexes. J Control Release 91:173–181

    PubMed  CAS  Google Scholar 

  111. Huang M, Ma Z, Khor E, Lim L-Y (2008) Effective insulin delivery using starch nanoparticles as a potential trans-nasal mucoadhesive carrier. Eur J Pharm Biopharm 69:426–435

    Google Scholar 

  112. Batrakova EV, Li S, Li Y, Alakhov VY, Elmquist WF, Kabanov AV (2004) Distribution kinetics of a micelle-forming block copolymer Pluronic P85. J Control Release 100:389–397

    PubMed  CAS  Google Scholar 

  113. Lee PW, Hsu SH, Wang JJ, Tsai JS, Lin KJ, Wey SP, Chen FR, Lai CH, Yen TC, Sung HW (2010) The characteristics, biodistribution, magnetic resonance imaging and biodegradability of superparamagnetic core-shell nanoparticles. Biomaterials 31:1316–1324

    PubMed  CAS  Google Scholar 

  114. Snehalatha M, Venugopal K, Saha RN, Babbar AK, Sharma RK (2008) Etoposide loaded PLGA and PCL nanoparticles II: biodistribution and pharmacokinetics after radiolabeling with Tc-99m. Drug Deliv 15:277–287

    PubMed  CAS  Google Scholar 

  115. Kumar A, Pandey AK, Singh SS, Shanker R, Dhawan A (2011) A flow cytometric method to assess nanoparticle uptake in bacteria. Cytometry A 79:707–712

    PubMed  Google Scholar 

  116. Retnakumari A, Jayasimhan J, Chandran P, Menon D, Nair S, Mony U, Koyakutty M (2011) CD33 monoclonal antibody conjugated Au cluster nano-bioprobe for targeted flow-cytometric detection of acute myeloid leukaemia. Nanotechnology 22:285102

    Google Scholar 

  117. Suzuki H, Toyooka T, Ibuki Y (2007) Simple and easy method to evaluate uptake potential of nanoparticles in mammalian cells using a flow cytometric light scatter analysis. Environ Sci Technol 41:3018–3024

    PubMed  CAS  Google Scholar 

  118. Harris AL (2002) Hypoxia—a key regulatory factor in tumour growth. Nat Rev Cancer 2:38–47

    PubMed  CAS  Google Scholar 

  119. Tradan O, Galmarini CM, Patel K, Tannock IF (2007) Drug resistance and the solid tumor microenvironment. J Natl Cancer I 99:1441–1454

    Google Scholar 

  120. Misra R, Sahoo SK (2011) Coformulation of doxorubicin and curcumin in poly(d,l-lactide-co-glycolide) nanoparticles suppresses the development of multidrug resistance in K562 cells. Mol Pharm 8:852–866

    PubMed  CAS  Google Scholar 

  121. Rawat A, Vaidya B, Khatri K, Goyal AK, Gupta PN, Mahor S, Paliwal R, Rai S, Vyas SP (2007) Targeted intracellular delivery of therapeutics: an overview. Pharmazie 62:643–658

    PubMed  CAS  Google Scholar 

  122. Antony AC (1992) The biological chemistry of folate receptors. Blood 79:2807–2820

    PubMed  CAS  Google Scholar 

  123. Sahu SK, Maiti S, Maiti TK, Ghosh SK, Pramanik P (2011) Folate-decorated succinylchitosan nanoparticles conjugated with doxorubicin for targeted drug delivery. Macromol Biosci 11:285–295

    PubMed  CAS  Google Scholar 

  124. Murugesan S, Mishra P, Jain NK (2008) Development of folate-conjugated PEGylated poly (d,l-lactide-co-glycolide) nanoparticulate carrier for docetaxel. Curr Nanosci 4:402–408

    CAS  Google Scholar 

  125. Jain S, Mathur R, Das M, Swarnakar NK, Mishra AK (2011) Synthesis, pharmacoscintigraphic evaluation and antitumor efficacy of methotrexate-loaded, folate-conjugated, stealth albumin nanoparticles. Nanomedicine 6:1733–1754

    PubMed  CAS  Google Scholar 

  126. Zhang P, Zhang Z, Yang Y, Li Y (2010) Folate-PEG modified poly(2-(2-aminoethoxy)ethoxy) phosphazene/DNA nanoparticles for gene delivery: synthesis, preparation and in vitro transfection efficiency. Int J Pharm 392:241–248

    PubMed  CAS  Google Scholar 

  127. Sun C, Sze R, Zhang M (2011) Folate receptor targeted, carboxymethyl chitosan functionalized iron oxide nanoparticles: a novel ultradispersed nanoconjugates for bimodal imaging. Nanoscale 3:1653–1662

    Google Scholar 

  128. Rossin R, Pan D, Qi K, Turner JL, Sun X, Wooley KL, Welch MJ (2005) 64Cu-labeled folate-conjugated shell cross-linked nanoparticles for tumor imaging and radiotherapy: synthesis, radiolabeling and biologic evaluation. J Nucl Med 46:1210–1218

    PubMed  Google Scholar 

  129. Hilgenbrink AR, Low PS (2005) Folate receptor-mediated drug targeting: from therapeutics to diagnostics. J Pharm Sci 94:2135–2146

    PubMed  CAS  Google Scholar 

  130. Nobs L, Buchegger F, Gurny R, Allmann E (2006) Biodegradable nanoparticles for direct or two-step tumor immunotargeting. Bioconjug Chem 17:139–145

    PubMed  CAS  Google Scholar 

  131. Mitra M, Misra R, Harilal A, Sahoo SK, Krishnakumar S (2011) Enhanced in vitro antiproliferative effects of EpCAM antibody functionalized paclitaxel-loaded PLGA nanoparticles in retinoblastoma cells. Mol Vis 17:2724–2737

    PubMed  CAS  Google Scholar 

  132. Yadav AK, Mishra P, Agrawal GP (2008) An insight on hyaluronic acid in drug targeting and drug delivery. J Drug Target 16:91–107

    PubMed  CAS  Google Scholar 

  133. Naor D, Nedvetzki S, Golan I, Melnik L, Faitelson Y (2002) CD44 in cancer. Crit Rev Clin Lab Sci 39:527–579

    PubMed  CAS  Google Scholar 

  134. Upadhyay KK, Bhatt AN, Mishra AK, Dwarakanath BS, Jain S, Schatz C, Le Meins JF, Farooque A, Chandraiah G, Jain AK, Misra A, Lecommandoux S (2010) The intracellular drug delivery and anti tumor activity of doxorubicin loaded poly(γ-benzyl l-glutamate)-b-hyaluronan polymersomes. Biomaterials 31:2882–2892

    PubMed  CAS  Google Scholar 

  135. Luo Y, Bernshaw NJ, Lu Z-R, Kopecek J, Prestwich GD (2002) Targeted delivery of doxorubicin by HPMA copolymer-hyaluronan bioconjugates. Pharm Res 19:396–402

    PubMed  CAS  Google Scholar 

  136. Yadav AK, Mishra P, Mishra AK, Mishra P, Jain S, Agrawal GP (2007) Development and characterization of hyaluronic acid-anchored PLGA nanoparticulate carriers of doxorubicin. Nanomedicine 3:246–257

    PubMed  CAS  Google Scholar 

  137. Farokhzad OC, Jon S, Khademhosseini A, Tran T-NT, LaVan DA, Langer R (2004) Nanoparticle-aptamer bioconjugates: a new approach for targeting prostate cancer cells. Cancer Res 64:7668–7672

    PubMed  CAS  Google Scholar 

  138. Dhar S, Gu FX, Langer R, Farokhzad OC, Lippard SJ (2008) Targeted delivery of cisplatin to prostate cancer cells by aptamer functionalized Pt(IV) prodrug-PLGA-PEG nanoparticles. Proc Natl Acad Sci USA 105:17356–17361

    PubMed  CAS  Google Scholar 

  139. Yadav KS, Chuttani K, Mishra AK, Sawant KK (2011) Effect of size on the biodistribution and blood clearance of etoposide-loaded PLGA nanoparticles. PDA J Pharm Sci Technol 65:131–139

    PubMed  CAS  Google Scholar 

  140. De Jong WH, Hagens WI, Krystek P, Burger MC, Sips AJAM, Geertsma RE (2008) Particle size-dependent organ distribution of gold nanoparticles after intravenous administration. Biomaterials 29:1912–1919

    PubMed  Google Scholar 

  141. Fang C, Shi B, Pei Y-Y, Hong M-H, Wu J, Chen H-Z (2006) In vivo tumor targeting of tumor necrosis factor-[alpha]-loaded stealth nanoparticles: effect of MePEG molecular weight and particle size. Eur J Pharm Sci 27:27–36

    PubMed  CAS  Google Scholar 

  142. Shenoy D, Little S, Langer R, Amiji MP (2005) Poly(ethylene oxide)-modified poly(amino ester) nanoparticles as a pH-sensitive system for tumor-targeted delivery of hydrophobic drugs: part 2. In vivo distribution and tumor localization studies. Pharm Res 22:2107–2114

    PubMed  CAS  Google Scholar 

  143. Shah N, Chaudhari K, Dantuluri P, Murthy RS, Das S (2009) Paclitaxel-loaded PLGA nanoparticles surface modified with transferrin and Pluronic((R)) P85, an in vitro cell line and in vivo biodistribution studies on rat model. J Drug Target 17:533–542

    PubMed  CAS  Google Scholar 

  144. Gulyaev AE, Gelperina SE, Skidan IN, Antropov AS, Kivman GY, Kreuter Jr (1999) Significant transport of doxorubicin into the brain with polysorbate 80-coated nanoparticles. Pharm Res 16:1564–1569

    PubMed  CAS  Google Scholar 

  145. Calvo P, Gouritin B, Villarroya H, Eclancher F, Giannavola C, Klein C, Andreux JP, Couvreur P (2012) Improved transnasal transport and brain uptake of tizanidine HCl-loaded thiolated chitosan nanoparticles for alleviation of pain. J Pharm Sci 101:690–706

    Google Scholar 

  146. Singh P, Bhardwaj A (2008) Mechanism of action of key enzymes associated with cancer propagation and their inhibition by various chemotherapeutic agents. Mini Rev Med Chem 8:388–398

    PubMed  CAS  Google Scholar 

  147. Danson S, Ferry D, Alakhov V, Margison J, Kerr D, Jowle D, Brampton M, Halbert G, Ranson M (2004) Phase I dose escalation and pharmacokinetic study of pluronic polymer-bound doxorubicin (SP1049C) in patients with advanced cancer. Brit J Cancer 90:2085–2091

    PubMed  CAS  Google Scholar 

  148. Matsumura Y, Hamaguchi T, Ura T, Muro K, Yamada Y, Shimada Y, Shirao K, Okusaka T, Ueno H, Ikeda M, Watanabe N (2004) Phase I clinical trial and pharmacokinetic evaluation of NK911, a micelle-encapsulated doxorubicin. Brit J Cancer 91:1775–1781

    PubMed  CAS  Google Scholar 

  149. Vasey PA, Kaye SB, Morrison R, Twelves C, Wilson P, Duncan R, Thomson AH, Murray LS, Hilditch TE, Murray T, Burtles S, Fraier D, Frigerio E, Cassidy J (1999) Phase I clinical and pharmacokinetic study of PK1 [N-(2-Hydroxypropyl) methacrylamide copolymer Doxorubicin]: first member of a new class of chemotherapeutic agents drug-polymer conjugates. Clin Cancer Res 5:83–94

    PubMed  CAS  Google Scholar 

  150. Singh P, Rathinasamy K, Mohan R, Panda D (2008) Microtubule assembly dynamics: an attractive target for anticancer drugs. IUBMB Life 60:368–375

    PubMed  CAS  Google Scholar 

  151. Stinchcombe TE (2007) Nanoparticle albumin-bound paclitaxel: a novel Cremphor-EL®-free formulation of paclitaxel. Nanomedicine 2:415–423

    PubMed  CAS  Google Scholar 

  152. Kim T-Y, Kim D-W, Chung J-Y, Shin SG, Kim S-C, Heo DS, Kim NK, Bang Y-J (2004) Phase I and pharmacokinetic study of Genexol-PM, a Cremophor-free, polymeric micelle-formulated Paclitaxel, in patients with advanced malignancies. Clin Cancer Res 10:3708–3716

    PubMed  CAS  Google Scholar 

  153. Mirtsching B, Cosgriff T, Harker G, Keaton M, Chidiac T, Min M (2011) A phase II study of weekly nanoparticle albumin-bound paclitaxel with or without trastuzumab in metastatic breast cancer. Clin Breast Cancer 11:121–128

    PubMed  CAS  Google Scholar 

  154. Coleman RL, Brady WE, McMeekin DS, Rose PG, Soper JT, Lentz SS, Hoffman JS, Shahin MS (2011) A phase II evaluation of nanoparticle, albumin-bound (nab) paclitaxel in the treatment of recurrent or persistent platinum-resistant ovarian, fallopian tube, or primary peritoneal cancer: a Gynecologic Oncology Group Study. Gynecol Oncol 122:111–115

    PubMed  CAS  Google Scholar 

  155. Sriram D, Yogeeswari P, Thirumurugan R, Ratan Bal T (2005) Camptothecin and its analogues: a review on their chemotherapeutic potential. Nat Prod Res 19:393–412

    PubMed  CAS  Google Scholar 

  156. Homsi J, Simon GR, Garrett CR, Springett G, De Conti R, Chiappori AA, Munster PN, Burton MK, Stromatt S, Allievi C, Angiuli P, Eisenfeld A, Sullivan DM, Daud AI (2007) Phase I trial of poly-l-glutamate Camptothecin (CT-2106) administered weekly in patients with advanced solid malignancies. Clin Cancer Res 13:5855–5861

    PubMed  CAS  Google Scholar 

  157. Hamaguchi T, Doi T, Eguchi-Nakajima T, Kato K, Yamada Y, Shimada Y, Fuse N, Ohtsu A, Matsumoto S-I, Takanashi M, Matsumura Y (2010) Phase I study of NK012, a novel SN-38-incorporating micellar nanoparticle, in adult patients with solid tumors. Clin Cancer Res 16:5058–5066

    PubMed  CAS  Google Scholar 

  158. Archana J, Vijaya Bhargavi C (2010) Retinoids-an overview of clinical applications in dermatology. J Pharm Sci Res 2:376–383

    CAS  Google Scholar 

  159. Siddikuzzaman, Guruvayoorappan C, Berlin Grace VM (2011) All trans retinoic acid and cancer. Immunopharmacol Immunotoxicol 33:241–249

    PubMed  CAS  Google Scholar 

  160. Jeong Y-I, Kang M-K, Sun H-S, Kang S-S, Kim H-W, Moon K-S, Lee K-J, Kim S-H, Jung S (2004) All-trans-retinoic acid release from core-shell type nanoparticles of poly(caprolactone)/poly(ethylene glycol) diblock copolymer. Int J Pharm 273:95–107

    PubMed  CAS  Google Scholar 

  161. Li Y, Qi XR, Maitani Y, Nagai T (2009) PEG-PLA diblock copolymer micelle-like nanoparticles as all-trans-retinoic acid carrier: in vitro and in vivo characterizations. Nanotechnology 20:055106–055115

    PubMed  Google Scholar 

  162. Tiwari MD, Mehra S, Jadhav S, Bellare JR (2011) All-trans retinoic acid loaded block copolymer nanoparticles efficiently induce cellular differentiation in HL-60 cells. Eur J Pharm Sci 44:643–652

    PubMed  CAS  Google Scholar 

  163. Bharti SK, Singh SK (2009) Mechanism of cytotoxicity of anticancer platinum drugs: recent developments in the field of anticancer metallopharmaceuticals. Int J PharmTech Res 1:1406–1420

    CAS  Google Scholar 

  164. Shome D, Poddar N, Sharma V, Sheorey U, Maru GB, Ingle A, Sarin R, Banavali S, Dikshit R, Jain V, Honavar S, Bellare J (2009) Does a nanomolecule of Carboplatin injected periocularly help in attaining higher intravitreal concentrations? Invest Ophthalmol Vis Sci 50:5896–5900

    PubMed  Google Scholar 

  165. Li F-R, Yan W-H, Guo Y-H, Qi H, Zhou H-X (2009) Preparation of carboplatin-Fe-C-loaded chitosan nanoparticles and study on hyperthermia combined with pharmacotherapy for liver cancer. Int J Hyperthermia 25:383–391

    PubMed  CAS  Google Scholar 

  166. Avgoustakis K, Beletsi A, Panagi Z, Klepetsanis P, Karydas AG, Ithakissios DS (2002) PLGA-mPEG nanoparticles of cisplatin: in vitro nanoparticle degradation, in vitro drug release and in vivo drug residence in blood properties. J Control Release 79:123–135

    PubMed  CAS  Google Scholar 

  167. Xu P, Van Kirk EA, Murdoch WJ, Zhan Y, Isaak DD, Radosz M, Shen Y (2006) Anticancer efficacies of Cisplatin-releasing pH-responsive nanoparticles. Biomacromolecules 7:829–835

    PubMed  CAS  Google Scholar 

  168. Walko CM, Lindley C (2005) Capecitabine: a review. Clin Ther 27:23–44

    PubMed  CAS  Google Scholar 

  169. Simeonova M, Velichkova R, Ivanova G, Enchev V, Abrahams I (2003) Poly(butylcyanoacrylate) nanoparticles for topical delivery of 5-fluorouracil. Int J Pharm 263:133–140

    PubMed  CAS  Google Scholar 

  170. Xing J, Deng L, Dong A (2010) Chitosan/alginate nanoparticles stabilized by poloxamer for the controlled release of 5-fluorouracil. J Appl Polym Sci 117:2354–2359

    CAS  Google Scholar 

  171. Nair LK, Jagadeeshan S, Nair SA, Vinod Kumar GS (2011) Biological evaluation of 5-fluorouracil nanoparticles for cancer chemotherapy and its dependence on the carrier, PLGA. Int J Nanomed 6:1685–1697

    CAS  Google Scholar 

  172. Khan ZA, Tripathi R, Mishra B (2012) Methotrexate: a detailed review on drug delivery and clinical aspects. Expert Opin Drug Deliv 2:151–169

    Google Scholar 

  173. Gao K, Jiang X (2006) Influence of particle size on transport of methotrexate across blood brain barrier by polysorbate 80-coated polybutylcyanoacrylate nanoparticles. Int J Pharm 310:213–219

    PubMed  CAS  Google Scholar 

  174. Patnaik S, Arif M, Pathak A, Kurupati R, Singh Y, Gupta KC (2010) Cross-linked polyethylenimine-hexametaphosphate nanoparticles to deliver nucleic acids therapeutics. Nanomedicine 6:344–354

    PubMed  CAS  Google Scholar 

  175. Nimesh S, Chandra R (2008) Guanidinium-grafted polyethylenimine: an efficient transfecting agent for mammalian cells. Eur J Pharm Biopharm 68:647–655

    PubMed  CAS  Google Scholar 

  176. Wang Y, Gao S, Ye W-H, Yoon HS, Yang Y-Y (2006) Co-delivery of drugs and DNA from cationic core-shell nanoparticles self-assembled from a biodegradable copolymer. Nat Mater 5:791–796

    PubMed  CAS  Google Scholar 

  177. Lee ALZ, Wang Y, Cheng HY, Pervaiz S, Yang Y-Y (2009) The co-delivery of paclitaxel and Herceptin using cationic micellar nanoparticles. Biomaterials 30:919–927

    PubMed  CAS  Google Scholar 

  178. Zhu J-L, Cheng H, Jin Y, Cheng S-X, Zhang X-Z, Zhuo R-X (2008) Novel polycationic micelles for drug delivery and gene transfer. J Mater Chem 18:4433–4441

    CAS  Google Scholar 

  179. Pille J-Y, Li H, Blot E, Bertrand J-R, Pritchard L-L, Opolon P, Maksimenko A, Lu H, Vannier J-P, Soria J, Malvy C, Soria C (2006) Intravenous delivery of anti-RhoA small interfering RNA loaded in nanoparticles of chitosan in mice: safety and efficacy in xenografted aggressive breast cancer. Hum Gene Ther 17:1019–1026

    PubMed  CAS  Google Scholar 

  180. Patnaik S, Tripathi SK, Goyal R, Arora A, Mitra K, Villaverde A, Vázquez E, Shukla Y, Kumar P, Gupta KC (2011) Polyethylenimine-polyethyleneglycol-bis(aminoethyl phosphate) nanoparticles mediated efficient DNA and siRNA transfection in mammalian cells. Soft Matter 7:6103–6112

    CAS  Google Scholar 

  181. Urban-Klein B, Werth S, Abuharbeid S, Czubayko F, Aigner A (2004) RNAi-mediated gene-targeting through systemic application of polyethylenimine (PEI)-complexed siRNA in vivo. Gene Ther 12:461–466

    Google Scholar 

Download references

Acknowledgments

The authors thankfully acknowledge financial support from Centre for Research in Nanoscience and Technology (CRNTS), Indian Institute of Technology, Bombay through the Department of Science and Technology (DST), Government of India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jayesh R. Bellare.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tiwari, M.D., Bellare, J.R. Polymer-Based Nanoparticulate Systems as Versatile Agents in the Prognosis and Therapy of Cancer. Proc. Natl. Acad. Sci., India, Sect. B Biol. Sci. 82 (Suppl 1), 37–58 (2012). https://doi.org/10.1007/s40011-012-0075-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40011-012-0075-4

Keywords

Navigation