Skip to main content
Log in

Pomegranate Borne Fungicidal Lactic Acid Bacteria and their Biodiversity

  • Research Article
  • Published:
Proceedings of the National Academy of Sciences, India Section B: Biological Sciences Aims and scope Submit manuscript

Abstract

The present work was aimed at the determination of distribution of lactic acid bacteria on aerial surfaces of pomegranate, and evaluation of the antifungal potential for their possible use as biocontrol agent. Maximum population of lactic acid bacteria was detected on flowers of Bhagwa and Ganesh variety, although the count was higher in Bhagwa (P < 0.05). The population of lactic acid bacteria on different sample types was significant (P < 0.05) during April and October season, and the count was always higher in October season. Potent antifungal isolates were identified by phenotypic characters (Gram positive card kit) and partial 16S rDNA sequencing as Lactobacillus brevis, Enterococcus faecium, Lactococcus lactis ssp. cremoris and Lactococcus lactis ssp. lactis. Of the 200 lactic acid bacteria isolates, 124 were antagonistic towards Fusarium graminearum as determined by agar overlay technique. Out of these, 26 were able to retain the antifungal activity after long term storage of 12 months at 4 °C. Thus, pomegranate plant is an excellent source for diverse antifungal lactic acid bacteria.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Franz D, Supo O, Schillinger U, Hozapfel WH (1998) Plantaricin D, a bacteriocin produced by Lactobacillus plantarum BFE 905 from ready to eat salad. Lett Appl Microbiol 26:232–234

    Article  Google Scholar 

  2. O’Sullivan L, Ross RP, Hill C (2002) Potential of bacteriocins producing lactic acid bacteria for improvements in food safety. Biochimie 84:593–604

    Article  PubMed  Google Scholar 

  3. Carr FJ, Chill D, Maida N (2002) The lactic acid bacteria: a literature. Crit Rev Microbiol 28:281–370

    Article  PubMed  CAS  Google Scholar 

  4. Sathe SJ, Nawani NN, Dhakephalkar PK, Kapadnis BP (2007) Antifungal lactic acid bacteria with potential to prolong shelf-life of fresh vegetables. J Appl Microbiol 103:2622–2628

    Article  PubMed  CAS  Google Scholar 

  5. Magnusson J, Strom K, Roos S, Sjogren J, Schnurer J (2003) Broad and complex antifungal activity among environmental isolates of lactic acid bacteria. FEMS Microbiol Lett 219:129–135

    Article  PubMed  CAS  Google Scholar 

  6. Laitila A, Alakomi H-L, Mattila-Sandholm T, Haikara A (2002) Antifungal activities of two Lactobacillus plantarum strains against Fusarium molds in vitro and in malting of barley. J Appl Microbiol 93:566–576

    Article  PubMed  CAS  Google Scholar 

  7. Strom K, Sjogren J, Broberg A, Schnurer J (2002) Lactobacillus plantarum MiLAB 393 produces the antifungal cyclic dipeptides cyclo (l-phe-l-pro) and cyclo (l-phe-trans-4-oh-Lpro) and 3-phenyllactic acid. Appl Environ Microbiol 68:4322–4327

    Article  PubMed  CAS  Google Scholar 

  8. Rouse S, Harnett D, Vaughan A, van Sinderen D (2008) Lactic acid bacteria with potential to eliminate fungal spoilage in foods. J Appl Microbiol 104:915–923

    Article  PubMed  CAS  Google Scholar 

  9. Chen YS, Yanagida F, Shinohara T (2005) Isolation and identification of lactic acid bacteria from soil using an enrichment procedure. Lett Appl Microbiol 40:195–200

    Article  PubMed  CAS  Google Scholar 

  10. Contreras BG, DeVuyst L, Devreese B, Busanyova K, Raymaeckers J, Bosman F, Sablon E, Vandamme EJ (1997) Isolation, purification and amino acid sequence of lactobin A, one of the two bacteriocins produced by Lactobacillus amylovorus LMG P-13139. Appl Environ Microbiol 63:13–20

    PubMed  CAS  Google Scholar 

  11. Corsetti A, Settanni L, Van Sinderen D (2004) Characterization of bacteriocin-like inhibitory substances (BLIS) from sourdough lactic acid bacteria and evaluation of their in vitro and in situ activity. J Appl Microbiol 96:521–534

    Article  PubMed  CAS  Google Scholar 

  12. Stiles ME (1996) Biopreservation by lactic acid bacteria. Antonie Van Leeuwenhoek 70:331–345

    Article  PubMed  CAS  Google Scholar 

  13. Batish VK, Roy U, Lal R, Grover S (1997) Antifungal attributes of lactic acid bacteria: a review. Crit Rev Biotechnol 17:209–225

    Article  PubMed  CAS  Google Scholar 

  14. Lavermicocca P, Valerio F, Evidente A, Lazzaron S, Corsetti A, Gobbetti M (2000) Purification and characterization of novel antifungal compounds from the sourdough Lactobacillus plantarum strain 21B. Appl Environ Microbiol 66:4084–4090

    Article  PubMed  CAS  Google Scholar 

  15. Leslie SB, Israeli E, Lighthart B, Crowe JH, Crowe LM (1995) Trehalose and sucrose protect both membranes and proteins in intact bacteria during drying. Appl Environ Microbiol 61:3592–3597

    PubMed  CAS  Google Scholar 

  16. Magnusson J, Schnurer J (2001) Lactobacillus coryniformis subsp. coryniformis strain Si3 produces a broad spectrum proteinaceous antifungal compound. Appl Environ Microbiol 67:1–5

    Article  PubMed  CAS  Google Scholar 

  17. Maharashtra Pomegranate Growers Association, Pune, Maharashtra, India. http://www.pomegranateindia.org Accessed 10 Mar 2012

  18. Rangaswami G (2000) Diseases of crop plants of India, 4th edn. Prentice hall of India, New Delhi, pp 378–379

    Google Scholar 

  19. Sheikh MK (2006) The pomegranate. International Book Distributing Co., Lucknow

    Google Scholar 

  20. Tziros GT, Lagopodi AL, Tzavella-Klonari K (2008) Alternaria alternata fruit rot of pomegranate (Punica granatum) in Greece. Plant Pathol 57:379

    Article  Google Scholar 

  21. Tziros GT, Tzavella-Klonari K (2008) Pomegranate fruit rot caused by Coniella granati confirmed in Greece. Plant Pathol 57:783

    Article  Google Scholar 

  22. Compant S, Duffy B, Nowak J, Clement C (2005) Use of plant growth promoting bacteria for biocontrol of plant diseases: principles, mechanism of action, and future prospects: minireview. Appl Environ Microbiol 71:4951–4959

    Article  PubMed  CAS  Google Scholar 

  23. Whipps JM (2001) Microbial interactions and biocontrol in rhizosphere. J Exp Bot 52:487–511

    Article  PubMed  CAS  Google Scholar 

  24. Suslow TV, Schroth MN, Isaka M (1982) Application of a rapid method for Gram differentiation of plant pathogenic and saprophytic bacteria without staining. Phytopathology 72:917–918

    Article  Google Scholar 

  25. Axelsson L (2004) Lactic acid bacteria: classification and physiology. In: Salminen S, von Wright A, Ouwehand A (eds) Lactic acid bacteria, microbiology and functional aspects. Marcel Dekker Inc., New York, pp 1–66

    Google Scholar 

  26. Nawani NN, Kapadnis BP, Das AD, Rao AS, Mahajan SK (2002) Purification and characterization of a thermophilic and acidophilic chitinase from Microbispora sp. V2. J Appl Microbiol 93:965–975

    Article  PubMed  CAS  Google Scholar 

  27. Trias R, Baneras L, Montesinos E, Badosa E (2008) Lactic acid bacteria from fresh fruit and vegetables as biocontrol agents of phytopathogenic bacteria and fungi. Int Microbiol 11:231–236

    PubMed  CAS  Google Scholar 

  28. Ongeng D, Devlieghere F, Debevere J, Coosemans J, Ryckeboer J (2006) The efficacy of electrolysed oxidizing water for inactivating spoilage microorganisms in process water and on minimally processed vegetables. Int J Food Microbiol 109:187–197

    Article  PubMed  CAS  Google Scholar 

  29. Roy U, Batish VK, Grover S, Neelakantan S (1996) Production of antifungal substance by Lactococcus lactis subsp. lactis CHD-28.3. Int J Food Microbiol 32:27–34

    Article  PubMed  CAS  Google Scholar 

  30. Hassan YI, Bullerman LB (2008) Antifungal activity of Lactobacillus paracasei ssp. tolerans isolated from a sourdough bread culture. Int J Food Microbiol 121:112–115

    Article  PubMed  CAS  Google Scholar 

  31. Sjogren J, Magnusson J, Broberg A, Schnurer J, Kenne L (2003) Antifungal 3-hydroxy fatty acids from Lactobacillus plantarum MiLAB 14. Appl Environ Microbiol 69:7554–7557

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Milind Gajbhiye.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gajbhiye, M., Prakash, D., Jagdale, S. et al. Pomegranate Borne Fungicidal Lactic Acid Bacteria and their Biodiversity. Proc. Natl. Acad. Sci., India, Sect. B Biol. Sci. 82, 413–419 (2012). https://doi.org/10.1007/s40011-012-0055-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40011-012-0055-8

Keywords

Navigation