Skip to main content
Log in

Cinchona-Alkaloids Based Isoselenazolones: Synthesis and Their Catalytic Reactivity in Asymmetric Bromolactonization of Alkenoic Acid

  • Research Article
  • Published:
Proceedings of the National Academy of Sciences, India Section A: Physical Sciences Aims and scope Submit manuscript

Abstract

A series of chiral isoselenazolones have been synthesized and characterized by multinuclear (1H, 13C, and 77Se) NMR, mass spectrometry, and single crystal X-ray crystallography. Catalytic reactivity of synthesized chiral isoselenazolones was studied in the enantioselective bromolactonization of alkenoic acids using N-bromosuccinimide as a source of bromine. A series of alkenoic acid underwent bromolactonization successfully in the presence of 10 mol% of chiral isoselenazolone catalyst and excellent yields of bromolactones were obtained with high diastereoselectivity and moderate enantioselectivity. Isoselenazolone catalyst derived from quininamine afforded bromolactones in 82–94 % yield with 1−47 % enantioselectivity while rest of the isoselenazolones derived from simple chiral (S)-phenylethyl, and (S)-naphthylethyl, quinidin, and cinchonidin-amine afforded poor enantioselectivity in the bromolactonization reaction. Furthermore, isoselenazolone having Se–N bond gave best enantioselectivity in the bromolactonization of 5-phenyl-4-pentenoic acid as compared to the isothiazolone having S–N bond. Also isoselenazolone gave best enantioselectivity than the corresponding methyl selenide and diselenide bearing the same quininamine auxiliary in the organoselenium catalyst. Crystal structure and enantioselectivity outcome in bromolactonization on similar isoselenazolone catalysts; quininamine based (intramolecular Se…N distance 3.56 Å, ee 47 %); cinchonidinamine based (Se…N distances 3.80 Å, ee 17 %), and 7-methyl-amide and quininamine based (Se…N distances 3.72 Å, ee 28 %) suggests that intramolecular Se…N interaction could be the crucial parameter for the enantioselectivity outcome of the reaction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Scheme 3
Scheme 4
Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Back TG (1999) Organoselenium chemistry: a practical approach. Oxford University Press, New York

    Google Scholar 

  2. Wirth T (2010) Organoselenium chemistry: modern developments in organic synthesis (topics in current chemistry). Springer, Berlin

    Google Scholar 

  3. Wirth T (2012) Organoselenium chemistry: synthesis and reactions. Wiley, Weinheim

    Google Scholar 

  4. Wirth T, Kulicke KJ, Fragale G (1996) Chiral diselenides in the total synthesis of (+)-Samin. J Org Chem 61:2686–2689. doi:10.1021/jo952093m

    Article  Google Scholar 

  5. Wirth T, Fragale G (1997) Asymmetric addition reactions with optimized selenium electrophiles. Chem Eur J 3:1894–1902. doi:10.1002/chem.19970031123

    Article  Google Scholar 

  6. Wirth T, Fragale G, Spichty M (1998) Mechanistic course of the asymmetric methoxyselenenylation reaction. J Am Chem Soc 120:3376–3381. doi:10.1021/ja974177d

    Article  Google Scholar 

  7. Wirth T (1999) Chiral selenium compounds in organic synthesis. Tetrahedron 55:1–28. doi:10.1016/S0040-4020(98)00946-6

    Article  Google Scholar 

  8. Wang X, Houk KN, Spichty M, Wirth T (1999) Origin of stereoselectivities in asymmetric alkoxyselenenylations. J Am Chem Soc 121:8567–8576. doi:10.1021/ja990473+

    Article  Google Scholar 

  9. Wirth T (2000) Organoselenium chemistry in stereoselective reactions. Angew Chem Int Ed 39:3740–3749. doi:10.1002/1521-3773(20001103)39:21<3740:AID-ANIE3740>3.0.CO;2-N

    Article  Google Scholar 

  10. Uehlin L, Wirth T (2001) Novel polymer-bound chiral selenium electrophiles. Org Lett 3:2931–2933. doi:10.1021/ol0164435

    Article  Google Scholar 

  11. Uehlin L, Fragale G, Wirth T (2002) New and efficient chiral selenium electrophiles. Chem Eur J 8:1125–1133. doi:10.1002/1521-3765(20020301)8:5<1125:AID-CHEM1125>3.0.CO;2-I

    Article  Google Scholar 

  12. Tiecco M, Testaferri L, Santi C, Tomassini C, Marini F, Bagnoli L, Temperini A (2002) Preparation of a new chiral non-racemic sulfur-containing diselenide and applications in asymmetric synthesis. Chem Eur J 8:1118–1124. doi:10.1002/1521-3765(20020301)8:5<1118:AID-CHEM1118>3.0.CO;2-2

    Article  Google Scholar 

  13. Browne DM, Niyomura O, Wirth T (2007) Catalytic use of selenium electrophiles in cyclizations. Org Lett 9:3169–3171. doi:10.1021/ol071223y

    Article  Google Scholar 

  14. Shahzad SA, Wirth T (2009) Fast synthesis of benzofluorenes by selenium-mediated carbocyclizations. Angew Chem Int Ed 48:2588–2591. doi:10.1002/anie.200806148

    Article  Google Scholar 

  15. Freudendahl DM, Santoro S, Shahzad SA, Santi C, Wirth T (2009) Green chemistry with selenium reagents: development of efficient catalytic reactions. Angew Chem Int Ed 48:8409–8411. doi:10.1002/anie.200903893

    Article  Google Scholar 

  16. Shahzad SA, Venin C, Wirth T (2010) Diselenide- and disulfide-mediated synthesis of isocoumarins. Eur J Org Chem. doi:10.1002/ejoc.201000308

    Google Scholar 

  17. Shahzad SA, Vivant C, Wirth T (2010) Selenium-mediated synthesis of biaryls through rearrangement. Org Lett 12:1364–1367. doi:10.1021/ol100274e

    Article  Google Scholar 

  18. Singh FV, Wirth T (2011) Selenium-catalyzed regioselective cyclization of unsaturated carboxylic acids using hypervalent iodine oxidants. Org Lett 13:6504–6507. doi:10.1021/ol202800k

    Article  Google Scholar 

  19. Zhao L, Li Z, Wirth T (2011) Asymmetric methoxyselenenylations with chiral selenium electrophiles. Eur J Org Chem. doi:10.1002/ejoc.201101373

    Google Scholar 

  20. Santi C, Lorenzo RD, Tidei C, Bagnoli L, Wirth T (2012) Stereoselective selenium catalyzed dihydroxylation and hydroxymethoxylation of alkenes. Tetrahedron 68:10530–10535. doi:10.1016/j.tet.2012.08.078

    Article  Google Scholar 

  21. Engman L (1987) Phenylseleniumtrichloride in organic synthesis. reaction with unsaturated compounds preparation of vinylic chlorides via selenoxide elimination. J Org Chem 52:4086–4094. doi:10.1021/jo00227a026

    Article  Google Scholar 

  22. Engman L (1988) Methods for the introduction of a phenylselenium dichloride group into the alpha-position of carbonyl compounds syntheses of enones. J Org Chem 53:4031–4037. doi:10.1021/jo00252a028

    Article  Google Scholar 

  23. Engman L (1989) Acetoxyselenylation of olefins for the preparation of vinylic and allylic acetates. J Org Chem 54:884–890. doi:10.1021/jo00265a031

    Article  Google Scholar 

  24. Engman L (1991) Organoselenium- and proton-mediated cyclization reactions of allylic amides and thioamides syntheses of 2-oxazolines and 2-thiazolines. J Org Chem 56:3425–3430. doi:10.1021/jo00010a045

    Article  Google Scholar 

  25. Engman L (1993) Functional group manipulation via organoselenium- and halogen-induced cyclofunctionalization/hydrolysis of allylic benzimidates, tertiary benzamides, and benzamidines regioflexible synthesis of amino alcohol derivatives. J Org Chem 58:2394–2401. doi:10.1021/jo00061a009

    Article  Google Scholar 

  26. Besev M, Engman L (2000) Pyrrolidines from β-aminoselenides via radical cyclization diastereoselectivity control by the N-substituent. Org Lett 2:1589–1592. doi:10.1021/ol005829x

    Article  Google Scholar 

  27. Vasil’ev A, Engman L (2000) Novel preparation of α, β-unsaturated aldehydes benzeneselenolate promotes elimination of HBr from α-bromoacetals. J Org Chem 65:2151–2162. doi:10.1021/jo9917644

    Article  Google Scholar 

  28. Ericsson C, Engman L (2001) Diastereocontrol by trialkylaluminums in the synthesis of tetrahydrofurans via radical cyclization. Org Lett 3:3459–3462. doi:10.1021/ol016429s

    Article  Google Scholar 

  29. Besev M, Engman L (2002) Diastereocontrol by a hydroxyl auxiliary in the synthesis of pyrrolidines via radical cyclization. Org Lett 4:3023–3025. doi:10.1021/ol026038t

    Article  Google Scholar 

  30. Berlin S, Ericsson C, Engman L (2002) Construction of tetrahydrofuran-3-ones from readily available organochalcogen precursors via radical carbonylation/reductive cyclization. Org Lett 4:3–6. doi:10.1021/ol016127q

    Article  Google Scholar 

  31. Back TG, Muralidharan KR (1991) Formation and electrophilic reactions of benzeneselenenyl p-toluenesulfonate preparation and properties of addition products with acetylenes. J Org Chem 56:2781–2787. doi:10.1021/jo00008a039

    Article  Google Scholar 

  32. Back TG, Krishna MV (1991) Synthesis of castasterone and formal synthesis of brassinolide from stigmasterol via a selenosulfonation approach. J Org Chem 56:454–457. doi:10.1021/jo00001a089

    Article  Google Scholar 

  33. Back TG, Daniel W (1995) Diels-Alder reactions of 1-(phenylseleno)-2-(p-toluenesulfonyl)ethyne—a novel dienophile and ketene equivalent. Synlett 11:1123–1124. doi:10.1055/s-1995-5216

    Article  Google Scholar 

  34. Back TG, Dyck BP, Parvez M (1995) 1,3-Diselenetanes and 1,3-dithietanes derived from camphor formation, structure, stereochemistry, and oxidation to selenoxide and sulfoxide products. J Org Chem 60:703–710. doi:10.1021/jo00108a038

    Article  Google Scholar 

  35. Back TG, Dyck BP (1996) Asymmetric cyclization of unsaturated alcohols and carboxylic acids with camphor-based selenium electrophiles. Chem Commun 22:2567–2568. doi:10.1039/CC9960002567

    Article  Google Scholar 

  36. Back TG, Siqiao N (1998) Asymmetric methoxyselenenylations with camphor-based selenium electrophiles. J Chem Soc Perkin Trans 1:3123–3124. doi:10.1039/A806707D

    Article  Google Scholar 

  37. Back TG, Bethell RJ, Parvez M, Wehrli D (1998) Additions of organocopper reagents and heteroatom nucleophiles to 1-phenylseleno-2-(p-toluenesulfonyl)ethyne preparation of vinyl and allenic sulfones and formation of michael, anti-michael, and rearrangement products. J Org Chem 63:7908–7919. doi:10.1021/jo981224r

    Article  Google Scholar 

  38. Back TG, Bethell RJ, Parvez M, Taylor JA, Wehrli D (1999) Cycloaddition reactions of 1-phenylseleno-2-(p-toluenesulfonyl)ethyne. J Org Chem 64:7426–7432. doi:10.1021/jo990730t

    Article  Google Scholar 

  39. Back TG, Dyck BP, Nan S (1999) Asymmetric electrophilic methoxyselenenylations and cyclizations with 3-camphorseleno derivatives. Tetrahedron 55:3191–3208. doi:10.1016/S0040-4020(98)01133-8

    Article  Google Scholar 

  40. Back TG, Moussa Z (2000) New chiral auxiliaries for highly stereoselective asymmetric methoxyselenenylations. Org Lett 2:3007–3009. doi:10.1021/ol000187z

    Article  Google Scholar 

  41. Back TG, Moussa Z, Parvez M (2002) Asymmetric methoxyselenenylations and cyclizations with 3-camphorseleno electrophiles containing oxime substituents at C-2 formation of an unusual oxaselenazolefrom an oxime-substituted selenenyl bromide. J Org Chem 67:499–509. doi:10.1021/jo016061c

    Article  Google Scholar 

  42. Back TG, Moussa Z, Parvez M (2004) Preparation and X-ray crystal structures of two aliphatic selenenyl bromides stabilized by N–Se coordination. Phosphorus, Sulfur, Silicon 179:2569–2579

    Article  Google Scholar 

  43. Mercier EA, Smith CD, Parvez M, Back TG (2012) Cyclic seleninate esters as catalysts for the oxidation of sulfides to sulfoxides, epoxidation of alkenes, and conversion of enamines to α-hydroxyketones. J Org Chem 77:3508–3517. doi:10.1021/jo300313v

    Article  Google Scholar 

  44. Detty MR, Zhou F, Friedman AE (1996) Positive halogens from halides and hydrogen peroxide with organotellurium catalysts. J Am Chem Soc 118:313–318. doi:10.1021/ja953187g

    Article  Google Scholar 

  45. Francavilla C, Bright FV, Detty MR (1999) Dendrimeric catalysts for the activation of hydrogen peroxide. Increasing activity per catalytic phenylseleno group in successive generations. Org Lett 1:1043–1046. doi:10.1021/ol990836a

    Article  Google Scholar 

  46. Francavilla C, Drake MD, Bright FV, Detty MR (2001) Dendrimericorganochalcogen catalysts for the activation of hydrogen peroxide: improved catalytic activity through statistical effects and cooperativity in successive generations. J Am Chem Soc 123:57–67. doi:10.1021/ja002649+

    Article  Google Scholar 

  47. Takada H, Metzner P, Philouze C (2001) First chiral selenium ylides used for asymmetric conversion of aldehydes into epoxides. Chem Commun. doi:10.1039/B106063P

    Google Scholar 

  48. Drake MD, Bateman MA, Detty MR (2003) Substituent effects in arylseleninic acid-catalyzed bromination of organic substrates with sodium bromide and hydrogen peroxide. Organometallics 22:4158–4162. doi:10.1021/om0340239

    Article  Google Scholar 

  49. Drake MD, Bright FV, Detty MR (2003) Dendrimeric organochalcogen catalysts for the activation of hydrogen peroxide: origins of the “dendrimer effect” with catalysts terminating in phenylseleno groups. J Am Chem Soc 125:12558–12566. doi:10.1021/ja0367593

    Article  Google Scholar 

  50. Goodman MA, Detty MR (2004) Selenoxides as catalysts for the activation of hydrogen peroxide bromination of organic substrates with sodium bromide and hydrogen peroxide. Organometallics 23:3016–3020. doi:10.1021/om049908e

    Article  Google Scholar 

  51. Braddock DC, Cansell G, Hermitage SA (2004) (Diacetoxyiodo)benzene-lithium bromide as a convenient electrophilic Br+ source. Synlett. doi:10.1055/s-2004-815410

    Google Scholar 

  52. Denmark SE, Edwards MG (2006) On the mechanism of the selenolactonization reaction with selenenyl halides. J Org Chem 71:7293–7306. doi:10.1021/jo0610457

    Article  Google Scholar 

  53. Denmark SE, Collins WR (2007) Lewis base activation of lewis acids: development of a lewis base catalyzed selenolactonization. Org Lett 9:3801–3804. doi:10.1021/ol701617d

    Article  Google Scholar 

  54. Denmark SE, Beutner GL (2008) Lewis base catalysis in organic synthesis. Angew Chem Int Ed 47:1560–1638. doi:10.1002/anie.200604943

    Article  Google Scholar 

  55. Bennett SM, Tang Y, McMaster D, Bright FV, Detty MR (2008) A xerogel-sequestered selenoxide catalyst for brominations with hydrogen peroxide and sodium bromide in an aqueous environment. J Org Chem 73:6849–6852. doi:10.1021/jo801234e

    Article  Google Scholar 

  56. Denmark SE, Collins WR, Cullen MD (2009) Observation of direct sulfenium and selenenium group transfer from thiiranium and seleniranium ions to alkenes. J Am Chem Soc 131:3490–3492. doi:10.1021/ja900187y

    Article  Google Scholar 

  57. Denmark SE, Kalyani D, Collins WR (2010) Preparative and mechanistic studies toward the rational development of catalytic, enantioselective selenoetherification reactions. J Am Chem Soc 132:15752–15765. doi:10.1021/ja106837b

    Article  Google Scholar 

  58. Mellegaard SR, Tunge JA (2004) Selenium-catalyzed halolactonization: nucleophilic activation of electrophilic halogenating reagents. J Org Chem 69:8979–8981. doi:10.1021/jo048460o

    Article  Google Scholar 

  59. Wang C, Tunge JA (2004) Selenocatalytic α-halogenation. Chem Commun. doi:10.1039/B410576A

    Google Scholar 

  60. Tunge JA, Mellegaard SR (2004) Selective selenocatalytic allylic chlorination. Org Lett 6:1205–1207. doi:10.1021/ol036525o

    Article  Google Scholar 

  61. Mellegaard SR, Wang C, Tunge JA (2006) Selenium-catalyzed oxidative halogenation. Tetrahedron 62:7191–7198. doi:10.1016/j.tet.2005.12.072

    Article  Google Scholar 

  62. Tay DW, Tsoi IT, Er JC, Leung GYC, Yeung Y-Y (2013) Lewis basic selenium catalyzed chloroamidation of olefins using nitriles as the nucleophiles. Org Lett 15:1310–1313. doi:10.1021/ol400249x

    Article  Google Scholar 

  63. Chen F, Tan CK, Yeung Y-Y (2013) C2-symmetric cyclic selenium-catalyzed enantioselective bromoaminocyclization. J Am Chem Soc 135:1232–1235. doi:10.1021/ja311202e

    Article  Google Scholar 

  64. Yokomatsu T, Iwasawa H, Shibuya S (1992) Enantioselective halolactonisation of bis-γ, δ-unsaturated carboxylic acid derivatives: use of a sultam and oxazolidine-2-ones as chiral auxiliary. J Chem Soc Chem Commun. doi:10.1039/C39920000728

    Google Scholar 

  65. Eissen M, Lenoir D (2008) Electrophilic bromination of alkenes: environmental, health and safety aspects of new alternative methods. Chem Eur J 14:9830–9841. doi:10.1002/chem.200800462

    Article  Google Scholar 

  66. Braddock DC, Cansella G, Hermitage SA (2006) Ortho-substituted iodobenzenes as novel organocatalysts for bromination of alkenes. Chem Commun. doi:10.1039/B604130B

    Google Scholar 

  67. Braddock DC, Cansell G, Hermitage SA, White AJP (2006) Bromoiodinanes with an I(III)–Br bond: preparation, X-ray crystallography and reactivity as electrophilic brominating agents. Chem Commun. doi:10.1039/B600455E

    Google Scholar 

  68. Ahmad SM, Braddock DC, Cansell G, Hermitage SA, Redmond JM, White AJP (2007) Amidines as potent nucleophilic organocatalysts for the transfer of electrophilic bromine from N-bromosuccinimide to alkenes. Tetrahedron Lett 48:5948–5952. doi:10.1016/j.tetlet.2007.06.112

    Article  Google Scholar 

  69. Braddock DC, Hermitage SA, Kwok L, Pouwer R, Redmond JM, White AJP (2009) The generation and trapping of enantiopure bromonium ions. Chem Commun. doi:10.1039/B816914D

    Google Scholar 

  70. Braddock DC, Marklew JS, Thomas AJF (2011) Enantiospecific bromonium ion generation and intramolecular capture: a model system for asymmetric bromonium ion-induced polyene cyclisations. Chem Commun 47:9051–9053. doi:10.1039/C1CC13619D

    Article  Google Scholar 

  71. Bonney KJ, Braddock DC (2012) A unifying stereochemical analysis for the formation of halogenated C15-acetogenin medium-ring ethers from laurencia species via intramolecular bromonium ion assisted epoxide ring-opening and experimental corroboration with a model epoxide. J Org Chem 77:9574–9584. doi:10.1021/jo301580c

    Article  Google Scholar 

  72. Tan CK, Zhou L, Yeung Y-Y (2011) Organocatalytic enantioselective halolactonizations: strategies of halogen activation. Synlett. doi:10.1055/s-0030-1260578

    Google Scholar 

  73. Monaco MR, Bella M (2011) A formidable challenge: catalytic asymmetric dichlorination. Angew Chem Int Ed 50:11044–11046. doi:10.1002/anie.201104843

    Article  Google Scholar 

  74. Denmark SE, Kuester WE, Burk MT (2012) Catalytic, asymmetric halofunctionalization of alkenes—a critical perspective. Angew Chem Int Ed 51:10938–10953. doi:10.1002/anie.201204347

    Article  Google Scholar 

  75. Snyder SA, Treitler DS, Brucks AP (2011) Halonium-induced cyclization reactions. Aldrichimica Acta 44:27

    Google Scholar 

  76. Hennecke U (2012) New catalytic approaches towards the enantioselective halogenation of alkenes. Chem Asian J 7:456–465. doi:10.1002/asia.201100856

    Article  Google Scholar 

  77. Zhou L, Tan CK, Jiang X, Chen F, Yeung Y-Y (2010) Asymmetric bromolactonization using amino-thiocarbamate catalyst. J Am Chem Soc 132:15474–15476. doi:10.1021/ja1048972

    Article  Google Scholar 

  78. Tan CK, Zhou L, Yeung Y-Y (2011) Aminothiocarbamate-catalyzed asymmetric bromolactonization of 1,2-disubstituted olefinic acids. Org Lett 13:2738–2741. doi:10.1021/ol200840e

    Article  Google Scholar 

  79. Zhou L, Chen J, Tan CK, Yeung Y-Y (2011) Enantioselective bromoaminocyclization using amino–thiocarbamate catalysts. J Am Chem Soc 133:9164–9167. doi:10.1021/ja201627h

    Article  Google Scholar 

  80. Jiang X, Tan CK, Zhou L, Yeung Y-Y (2012) Enantioselective bromolactonization using an S-alkyl thiocarbamate catalyst. Angew Chem Int Ed 51:7771. doi:10.1002/anie.201202079

    Article  Google Scholar 

  81. Tan CK, Le C, Yeung Y-Y (2012) Enantioselective bromolactonization of cis-1,2-disubstituted olefinic acids using an amino-thiocarbamate catalyst. Chem Commun 48:5793–5795. doi:10.1039/C2CC31148H

    Article  Google Scholar 

  82. Chen J, Zhou L, Yeung Y-Y (2012) A highly enantioselective approach towards 2-substituted 3-bromopyrrolidines. Org Biomol Chem 10:3808–3811. doi:10.1039/C2OB25327E

    Article  Google Scholar 

  83. Chen J, Zhou L, Tan CK, Yeung Y-Y (2012) An enantioselective approach toward 3,4-dihydroisocoumarin through the bromocyclization of styrene-type carboxylic acids. J Org Chem 77:999–1009. doi:10.1021/jo202221c

    Article  Google Scholar 

  84. Yeung Y-Y, Corey EJ (2007) An efficient process for the bromolactamization of unsaturated acids. Tetrahedron Lett 48:7567–7570. doi:10.1016/j.tetlet.2007.08.113

    Article  Google Scholar 

  85. Chen F, Jiang X, Er JC, Yeung Y-Y (2010) Molecular sieves as an efficient and recyclable catalyst for bromolactonization and bromoacetoxylation reactions. Tetrahedron Lett 51:3433–3435. doi:10.1016/j.tetlet.2010.04.113

    Article  Google Scholar 

  86. Zhou L, Tan CK, Zhou J, Yeung Y-Y (2010) Facile, efficient, and catalyst-free electrophilic aminoalkoxylation of olefins: scope and application. J Am Chem Soc 132:10245–10247. doi:10.1021/ja104168q

    Article  Google Scholar 

  87. Zhou L, Chen J, Zhou J, Yeung Y-Y (2011) N-bromosuccinimide promoted one-pot synthesis of guanidine: scope and mechanism. Org Lett 13:5804–5807. doi:10.1021/ol202402y

    Article  Google Scholar 

  88. Chen J, Cheng S, Zhou L, Yeung Y-Y (2011) Scope and mechanistic studies of electrophilic alkoxyetherification. Org Lett 13:6456–6459. doi:10.1021/ol202751s

    Article  Google Scholar 

  89. Tan CK, Chen F, Yeung Y-Y (2011) Studies toward lewis basic thiocarbamate and thiourea mediated bromolactonization: the effect of a trace amount of water on the reactivity and enantioselectivity. Tetrahedron Lett 52:4892–4895. doi:10.1016/j.tetlet.2011.07.049

    Article  Google Scholar 

  90. Zhou L, Zhou J, Tan CK, Chen J, Yeung Y-Y (2011) N-bromosuccinimide initiated one-pot synthesis of imidazoline. Org Lett 13:2448–2451. doi:10.1021/ol2006902

    Article  Google Scholar 

  91. Zhou J, Zhou L, Yeung Y-Y (2012) Multicomponent approach in the synthesis of 2,2,6-trisubstituted morpholine derivatives. Org Lett 14:5250–5253. doi:10.1021/ol3024105

    Article  Google Scholar 

  92. Cheng YA, Chen T, Tan CK, Heng JJ, Yeung Y-Y (2012) Efficient medium ring size bromolactonization using a sulfur-based zwitterionic organocatalyst. J Am Chem Soc 134:16492–16495. doi:10.1021/ja307210n

    Article  Google Scholar 

  93. Cheng YA, Yu WZ, Yeung Y-Y (2014) Recent advances in asymmetric intra- and intermolecular halofunctionalizations of alkenes. Org Biomol Chem 12:2333–2343. doi:10.1039/C3OB42335B

    Article  ADS  Google Scholar 

  94. Tan CK, Er JC, Yeung Y-Y (2014) Synthesis of chiral butenolides using amino-thiocarbamate-catalyzed asymmetric bromolactonization. Tetrahedron Lett 55:1243–1246. doi:10.1016/j.tetlet.2014.01.009

    Article  Google Scholar 

  95. Haas J, Piguel S, Wirth T (2002) Reagent-controlled stereoselective iodolactonizations. Org Lett 4:297–300. doi:10.1021/ol0171113

    Article  Google Scholar 

  96. Kang SH, Lee SB, Park CM (2003) Catalytic enantioselective iodocyclization of γ-hydroxy-cis-alkenes. J Am Chem Soc 125:15748–15749. doi:10.1021/ja0369921

    Article  Google Scholar 

  97. Wang M, Gao LX, Mai WP, Xia AX, Wang F, Zhang SB (2004) Enantioselective iodolactonization catalyzed by chiral quaternary ammonium salts derived from cinchonidine. J Org Chem 69:2874–2876. doi:10.1021/jo035719e

    Article  Google Scholar 

  98. Sakakura A, Ukai A, Ishihara K (2007) Enantioselective halocyclization of polyprenoids induced by nucleophilic phosphoramidites. Nature 445:900–903. doi:10.1038/nature05553

    Article  ADS  Google Scholar 

  99. Ning Z, Jin R, Ding J, Gao L (2009) Enantioselective iodolactonizations of 4-pentenoic acid derivatives mediated by chiral salen-Co(II) complex. Synlett. doi:10.1055/s-0029-1217806

    Google Scholar 

  100. Chen G, Ma S (2010) Enantioselective halocyclization reactions for the synthesis of chiral cyclic compounds. Angew Chem Int Ed 49:8306–8308. doi:10.1002/anie.201003114

    Article  Google Scholar 

  101. Murai K, Matsushita T, Nakamura A, Fukushima S, Shimura M, Fujioka H (2010) Asymmetric bromolactonization catalyzed by a C3-symmetric chiral trisimidazoline. Angew Chem Int Ed 49:9174–9177. doi:10.1002/anie.201005409

    Article  Google Scholar 

  102. Veitch GE, Jacobsen EN (2010) Tertiary aminourea-catalyzed enantioselective iodolactonization. Angew Chem Int Ed 49:7332–7335. doi:10.1002/anie.201003681

    Article  Google Scholar 

  103. Zhang W, Zheng S, Liu N, Werness JB, Guzei IA, Tang W (2010) Enantioselective bromolactonization of conjugated (Z)-enynes. J Am Chem Soc 132:3664–3665. doi:10.1021/ja100173w

    Article  Google Scholar 

  104. Whitehead DC, Yousefi R, Jaganathan A, Borhan B (2010) An organocatalytic asymmetric chlorolactonization. J Am Chem Soc 132:3298–3300. doi:10.1021/ja100502f

    Article  Google Scholar 

  105. Denmark SE, Burk MT, Hoover AJ (2010) On the absolute configurational stability of bromonium and chloronium ions. J Am Chem Soc 132:1232–1233. doi:10.1021/ja909965h

    Article  Google Scholar 

  106. Denmark SE, Burk MT (2010) Lewis base catalysis of bromo- and iodolactonization, and cycloetherification. Proc Natl Acad Sci USA 107:20655–20660. doi:10.1073/pnas.1005296107

    Article  ADS  Google Scholar 

  107. Huang S-X, Ding K (2011) Asymmetric bromoamination of chalcones with a privileged N, N′-dioxide/scandium(III) catalyst. Angew Chem Int Ed 50:7734–7736. doi:10.1002/anie.201101076

    Article  Google Scholar 

  108. Hennecke U, Mΰller CH, Fröhlich R (2011) Enantioselective haloetherification by asymmetric opening of meso-halonium ions. Org Lett 13:860–863. doi:10.1021/ol1028805

    Article  Google Scholar 

  109. Fang C, Paull DH, Hethcox JC, Shugrue CR, Martin SF (2012) Enantioselective iodolactonization of disubstituted olefinic acids using a bifunctional catalyst. Org Lett 14:6290–6293. doi:10.1021/ol3030555

    Article  Google Scholar 

  110. Tungen JE, Nolsøe JMJ, Hansen TV (2012) Asymmetric iodolactonization utilizing chiral squaramides. Org Lett 14:5884–5887. doi:10.1021/ol302798g

    Article  Google Scholar 

  111. Paull DH, Fang C, Donald JR, Pansick AD, Martin SF (2012) Bifunctional catalyst promotes highly enantioselective bromolactonizations to generate stereogenic C-Br bonds. J Am Chem Soc 134:11128–11131. doi:10.1021/ja305117m

    Article  Google Scholar 

  112. Ikeuchi K, Ido S, Yoshimura S, Asakawa T, Inai M, Hamashima Y, Kan T (2012) Catalytic desymmetrization of cyclohexadienes by asymmetric bromolactonization. Org Lett 14:6016–6019. doi:10.1021/ol302908a

    Article  Google Scholar 

  113. Lee HJ, Kim DY (2012) Catalytic enantioselective bromolactonization of alkenoic acids in the presence of palladium complexes. Tetrahedron Lett 5:6984–6986. doi:10.1016/j.tetlet.2012.10.051

    Article  Google Scholar 

  114. Wang Y-M, Wu J, Hoong C, Rauniyar V, Toste FD (2012) Enantioselective halocyclization using reagents tailored for chiral anion phase-transfer catalysis. J Am Chem Soc 134:12928–12931. doi:10.1021/ja305795x

    Article  Google Scholar 

  115. Denmark SE, Burk MT (2012) Enantioselective bromocycloetherification by lewis base/chiral brønsted acid cooperative catalysis. Org Lett 14:256–259. doi:10.1021/ol203033k

    Article  Google Scholar 

  116. Fang C, Paull DH, Hethcox JC, Shugrue CR, Martin SF (2013) Enantioselective iodolactonization of disubstituted olefinic acids using a bifunctional catalyst. Org Lett 15:972. doi:10.1021/ol400125b

    Article  Google Scholar 

  117. Grossman RB, Trupp RJ (1998) The first reagent-controlled asymmetric halolactonizations dihydroquinidine-halogen complexes as chiral sources of positive halogen ion. Can J Chem 76:1233–1237. doi:10.1139/v98-153

    Article  Google Scholar 

  118. Balkrishna SJ, Bhakuni BS, Chopra D, Kumar S (2010) Cu-catalyzed efficient synthetic methodology for ebselen and related Se–N heterocycles. Org Lett 12:5394–5397. doi:10.1021/ol102027j

    Article  Google Scholar 

  119. Balkrishna SJ, Bhakuni BS, Kumar S (2011) Copper catalyzed/mediated synthetic methodology for ebselen and related isoselenazolones. Tetrahedron 67:9565–9575. doi:10.1016/j.tet.2011.09.141

    Article  Google Scholar 

  120. Bhakuni BS, Balkrishna SJ, Kumar A, Kumar S (2012) An efficient copper mediated synthetic methodology for benzo[d]isothiazol-3(2H)-ones and related sulfur–nitrogen heterocycles. Tetrahedron Lett 53:1354–1357. doi:10.1016/j.tetlet.2012.01.003

    Article  Google Scholar 

  121. Balkrishna SJ, Prasad CD, Panini P, Detty MR, Chopra D, Kumar S (2012) Isoselenazolones as catalysts for the activation of bromine: bromolactonization of alkenoic acids and oxidation of alcohols. J Org Chem 77:9541–9552. doi:10.1021/jo301486c

    Article  Google Scholar 

  122. Prasad CD, Balkrishna SJ, Kumar A, Bhakuni BS, Shrimali K, Biswas S, Kumar S (2013) Transition-metal-free synthesis of unsymmetrical diaryl chalcogenides from arenes and diaryl dichalcogenides. J Org Chem 78:1434–1443. doi:10.1021/jo302480j

    Article  Google Scholar 

  123. Balkrishna SJ, Kumar S, Azad GK, Bhakuni BS, Panini P, Ahalawat N, Tomar RS, Kumar S (2014) An ebselen like catalyst with enhanced GPx activity via a selenol intermediate. Org Biomol Chem 12:1215–1219. doi:10.1039/C4OB00027G

    Article  Google Scholar 

  124. Balkrishna SJ, Hodage A, Kumar S, Panini P, Kumar S (2014) Sensitive and regenerableorganochalcogen probes for the colorimetric detection of thiols. RSC Adv 4:11535–11538. doi:10.1039/C4RA00381

    Article  Google Scholar 

  125. Verma A, Jana S, Prasad CD, Yadav A, Kumar S (2016) Organoselenium and DMAP co-catalysis: regioselective synthesis of medium-sized halolactones and bromooxepanes from unactivated alkenes. Chem Commun 52:4179–4182. doi:10.1039/C5CC10245F

    Article  Google Scholar 

  126. Brunner H, Bugler J, Nuber B (1995) Enantioselective catalysis 98 preparation of 9-amino(9-deoxy)cinchona alkaloids. Tetrahedron Asymmetry 6:1699–1702. doi:10.1016/0957-4166(95)00215-B

    Article  Google Scholar 

  127. Cassani C, Rapún R-M, Arceo E, Bravo F, Melchiorre P (2013) Synthesis of 9-amino(9-deoxy)epi cinchona alkaloids, general chiral organocatalysts for the stereoselective functionalization of carbonyl compounds. Nat Protoc 8:325–344. doi:10.1038/nprot.2012.155

    Article  Google Scholar 

  128. Wang W, Ma X, Wan J, Cao J, Tang Q (2012) Preparation and confinement effect of a heterogeneous 9-amino-9-deoxy-epi-cinchonidine organocatalyst for asymmetric aldol addition in aqueous medium. Dalton Trans 41:5715–5726. doi:10.1039/C2DT12390H

    Article  Google Scholar 

  129. Singh VP, Singh HB, Butcher RJ (2011) Photoluminescentselenospirocyclic and selenotetracyclic derivatives by domino reactions of amines and imines. Chem Commun 47:7221–7223. doi:10.1039/C1CC12152A

    Article  Google Scholar 

  130. Selvakumar K, Shah P, Singh HB, Butcher RJ (2011) Synthesis, structure, and glutathione peroxidase-like activity of amino acid containing ebselen analogues and diaryl diselenides. Chem Eur J 17:12741–12755. doi:10.1002/chem.201100930

    Article  Google Scholar 

  131. Zade SS, Panda S, Tripathi SK, Singh HB, Wolmershäuser G (2004) Convenient synthesis, characterization and GPx-like catalytic activity of novel ebselen derivatives. Eur J Org Chem. doi:10.1002/ejoc.200400326

    Google Scholar 

  132. Selvakumar K, Singh HB, Butcher RJ (2011) Strained dimethyl 2-(bromoselanyl)-5-tert-butylisophthalate: a reactive precursor for the synthesis of ebselen analogs. Tetrahedron Lett 52:6831–6834. doi:10.1016/j.tetlet.2011.10.067

    Article  Google Scholar 

  133. Bhabak KP, Mugesh G (2007) Synthesis, characterization, and antioxidant activity of some ebselen analogues. Chem Eur J 13:4594–4601. doi:10.1002/chem.200601584

    Article  Google Scholar 

  134. Sarma BK, Mugesh G (2008) Antioxidant activity of the anti-inflammatory compound ebselen: a reversible cyclization pathway via selenenic and seleninic acid intermediates. Chem Eur J 14:10603–10614. doi:10.1002/chem.200801258

    Article  Google Scholar 

  135. Bhabak KP, Mugesh G (2009) Amide-based glutathione peroxidase mimics: effect of secondary and tertiary amide substituents on antioxidant activity. Chem Asian J 4:974–983. doi:10.1002/asia.200800483

    Article  Google Scholar 

  136. Sarma BK, Manna D, Minoura M, Mugesh G (2010) Synthesis, structure, spirocyclization mechanism, and glutathione peroxidase-like antioxidant activity of stable spirodiazaselenurane and spirodiazatellurane. J Am Chem Soc 132:5364–5374. doi:10.1021/ja908080u

    Article  Google Scholar 

Download references

Acknowledgments

The authors are thankful to Department of Science and Technology (DST), New Delhi, India, Department of Atomic Energy (DAE-BRNS) Mumbai, and IISER Bhopal for financial support. S.K. is grateful to Dr. Deepak Chopra (IISER Bhopal) for solving the crystal structures.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sangit Kumar.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 8896 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Balkrishna, S.J., Kumar, S., Kumar, A. et al. Cinchona-Alkaloids Based Isoselenazolones: Synthesis and Their Catalytic Reactivity in Asymmetric Bromolactonization of Alkenoic Acid. Proc. Natl. Acad. Sci., India, Sect. A Phys. Sci. 86, 589–600 (2016). https://doi.org/10.1007/s40010-016-0306-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40010-016-0306-9

Keywords

Navigation