Skip to main content

Advertisement

Log in

Palladium(II) Complex of 4-Pyridylselenolate Ligand: An Efficient Catalyst for Aminocarbonylation of Aryl and Hetero Aryl Iodides with Primary Amines

  • Research Article
  • Published:
Proceedings of the National Academy of Sciences, India Section A: Physical Sciences Aims and scope Submit manuscript

Abstract

The present work describes the synthesis of palladium(II) complex with non-chelating 4-pyridylselenolate ligand as [PdCl(4-SeC5H4N)(PPh3)2]. The catalyst was found to be active for aminocarbonylation reaction of aryl and hetero aryl iodides with primary amines using carbon monoxide a simple and efficient C1 source. The catalytic system was optimized with respect to various reaction parameters to give excellent yield of desired products. The milder reaction conditions and wild functional groups tolerance enhance its practical applicability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Beller M (2006) Catalytic carbonylation reaction. Springer-Verlag, Berlin

    Book  Google Scholar 

  2. Wu X-F, Neumann H, Beller M (2013) Synthesis of heterocycles via Palladium-Catalyzed carbonylations. Chem Rev 113:1–35

    Article  Google Scholar 

  3. Zeni G, Larock RC (2004) Synthesis of Heterocycles via Palladium π-Olefin and π-Alkyne chemistry. Chem Rev 104:2285–2309

    Article  Google Scholar 

  4. Khumtaveeporn K, Alper H (1995) Transition metal mediated carbonylative ring expansion of heterocyclic compounds. Acc Chem Res 28:414–422

    Article  Google Scholar 

  5. Gadge ST, Bhanage BM (2014) Recent developments in palladium catalysed carbonylation reactions. RSC Adv 4:10367–10389

    Article  Google Scholar 

  6. Friis SD, Lindhardt AT, Skrydstrup T (2016) The development and application of two-chamber reactors and carbon monoxide precursors for safe carbonylation reactions. Acc Chem Res 49:594–605

    Article  Google Scholar 

  7. Colquhoun HM, Thompson DJ, Twigg MV (1991) Carbonylation, direct synthesis of carbonyl compounds. Plenum Press, New York

    Google Scholar 

  8. Beller M, Wu XF (2013) Transition metal catalyzed carbonylation reactions: carbonylative activation of C–X bonds. Springer, Heidelberg

    Book  Google Scholar 

  9. Wu X-F, Neumann H, Beller M (2011) Palladium-catalyzed carbonylative coupling reactions between Ar-X and carbon nucleophiles. Chem Soc Rev 40:4986–5009

    Article  Google Scholar 

  10. Surry DS, Buchwald SL (2011) Dialkylbiaryl phosphines in Pd-catalyzed amination: a user’s guide. Chem Sci 2:27–50

    Article  Google Scholar 

  11. The role of metals and ligands in organic hydroformylation

  12. Balakrishna MS, Reddy VS, Krishnamurthy SS, Burckette St Laurent JCTR, Nixon JF (1994) Coordination chemistry of diphosphinoamine and cyclodiphosphazane ligands. Coord Chem Rev 129:1–90

    Article  Google Scholar 

  13. Kumar A, Rao GK, Saleem F, Singh AK (2012) Organoselenium ligands in catalysis. Dalton Trans 41:11949–11977

    Article  Google Scholar 

  14. Ritch JS, Charette BJ (2016) An experimental and computational comparison of phosphorus- and selenium-based ligands for catalysis. Can J Chem 94:1–6

    Article  Google Scholar 

  15. Kedarnath G, Jain VK (2013) Pyridyl and pyrimidyl chalcogen (Se and Te) compounds: a family of multi utility molecules. Coord Chem Rev 257:1409–1435

    Article  Google Scholar 

  16. Paluru DK, Dey S, Wadawale A, Maity DK, Bhuvanesh N, Jain VK (2015) Structural variation in [PdX2{RE(CH2)nNMe2}] (E = Se, Te; X = Cl, OAc) complexes: experimental results, computational analysis, and catalytic activity in suzuki coupling reactions. Eur J Inorg Chem 2015:397–407

    Article  Google Scholar 

  17. Sharma KN, Joshi H, Prakash O, Sharma AK, Bhaskar R, Singh AK (2015) Pyrazole–Stabilized Dinuclear Palladium(II) Chalcogenolates Formed by Oxidative Addition of Bis [2-(4-bromopyrazol-1-yl)ethyl] Dichalcogenides to Palladium (II)–Tailoring of Pd–S/Se Nanoparticles. Eur J Inorg Chem 29:4829–4838

    Article  Google Scholar 

  18. Vivekananda KV, Dey S, Adawale A, Bhuvanesh N, Jain VK (2013) Syntheses of Pd(II)/Pt(II) complexes with non-chelatingn 4-pyridylselenolate ligand ranging from mononuclear to macrocyclic structures and their utility as catalysts in Suzuki C–C coupling reaction. Dalton Trans 42:14158–14167

    Article  Google Scholar 

  19. Pattabiraman VR, Bode JW (2011) Rethinking amide bond synthesis. Nature 480:471

    Article  ADS  Google Scholar 

  20. Castanho M, Santos N (2011) Peptide drug discovery and development. Wiley, Weinheim

    Book  Google Scholar 

  21. Larock RC (1999) Comprehensive organic transformations, 2nd edn. Wiley, New York

    Google Scholar 

  22. Chen YH, Zhang YH, Zhang HJ, Liu DZ, Gu M, Li JY, Wu F, Zhu XZ, Li J, Nan FJ (2006) Design, synthesis, and biological evaluation of isoquinoline-1,3,4-trione derivatives as potent caspase-3 inhibitors. J Med Chem 49:1613–1623

    Article  Google Scholar 

  23. Slee DH, Laslo KL, Elder JH, Ollmann IR, Gustchina A, Kervinen J, Zdanov A, Wlodawer A, Wong CH (1995) Selectivity in the inhibition of HIV and FIV Protease: inhibitory and mechanistic studies of pyrrolidine-containing. alpha.-Keto amide and hydroxyethylamine core structures. J Am Chem Soc 117:11867

    Article  Google Scholar 

  24. Allen CL, Williams JM (2011) Metal-catalysed approaches to amide bond formation. J Chem Soc Rev 40:3405–3415

    Article  Google Scholar 

  25. Valeur E, Bradley M (2009) Amide bond formation: beyond the myth of coupling reagents. Chem Soc Rev 38:606–631

    Article  Google Scholar 

  26. Gooben LJ, Huang L, Arndt M, Gooben K, Heydt H (2015) Late transition metal-catalyzed hydroamination and hydroamidation. Chem Rev 115:2596

    Article  Google Scholar 

  27. Yedage SL, D’Silva DS, Bhanage BM (2015) MnO2 catalyzed formylation of amines and transamidation of amides under solvent-free conditions. RSC Adv 5:80441

    Article  Google Scholar 

  28. Sawant DN, Wagh YS, Bhatte KD, Bhanage BM (2011) Palladium-catalyzed carbon-monoxide-free aminocarbonylation of aryl halides using N-substituted formamides as an amide source. J Org Chem 76:5489

    Article  Google Scholar 

  29. Qureshi ZS, Revankar SA, Khedkar MV, Bhanage BM (2012) Aminocarbonylation of aryl iodides with primary and secondary amines in aqueous medium using polymer supported palladium-N-heterocyclic carbine complex as an efficient and heterogeneous recyclable catalyst. Catal Today 198:148–153

    Article  Google Scholar 

  30. Schoenberg A, Heck RF (1974) Palladium-catalyzed amidation of aryl, heterocyclic, and vinylic halides. J Org Chem 39:3327–3330

    Article  Google Scholar 

  31. Martinelli JR, Clark TP, Watson DA, Munday RH, Buchwald SL (2007) Palladium-catalyzed aminocarbonylation of aryl chlorides at atmospheric pressure: the dual role of sodium phenoxide. Angew Chem Int Ed 46:8460–8463

    Article  Google Scholar 

  32. Skoda-Foldes R, Takacs E, Horvath J, Tuba Z, Kollar L (2003) Palladium-catalysed aminocarbonylation of steroidal 17-iodo-androst-16-ene derivatives in N, N′-dialkyl-imidazolium-type ionic liquids. Green Chem 5:643–645

    Article  Google Scholar 

  33. Khedkar MV, Sasaki T, Bhanage BM (2013) Immobilized palladium metal-containing ionic liquid-catalyzed alkoxycarbonylation, phenoxycarbonylation, and aminocarbonylation reactions. ACS Catal 3:287–293

    Article  Google Scholar 

  34. Tambade PJ, Patil YP, Bhanage BM (2009) Palladium bis(2,2,6,6-tetramethyl-3,5-heptanedionate) catalyzed alkoxycarbonylation and aminocarbonylation reactions. Appl Organometal Chem 23:235–240

    Article  Google Scholar 

  35. Mane RS, Bhanage BM (2016) Pd/C-Catalyzed aminocarbonylation of aryl iodides via oxidative C–N bond activation of tertiary amines to tertiary amides. J Org Chem 81:1223–1228

    Article  Google Scholar 

  36. Tambade PJ, Patil YP, Bhanushali MJ, Bhanage BM (2008) Pd(OAc)2-Catalyzed aminocarbonylation of aryl iodides with aromatic or aliphatic amines in water. Synthesis 15:2347–2352

    Google Scholar 

  37. Boduszek B, Gancarz R (1996) Pyridine-4-selenenyl bromides as new reagents for selenenylation of olefins. J Prakt Chem 338:186–189

    Article  Google Scholar 

  38. Dey S, Jain VK, Knodler A, Klein A, Kaim W, Zalis S (2002) Structural basis for unusually long-wavelength charge transfer transitions in complexes [MCl(ECH2CH2NMe2)(PR3)] (E = Te, Se; M = Pt, Pd): experimental results and TD-DFT calculations. Inorg Chem 41:2864–2870

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bhalchandra M. Bhanage.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chavan, S.P., Dey, S., Jain, V.K. et al. Palladium(II) Complex of 4-Pyridylselenolate Ligand: An Efficient Catalyst for Aminocarbonylation of Aryl and Hetero Aryl Iodides with Primary Amines. Proc. Natl. Acad. Sci., India, Sect. A Phys. Sci. 86, 581–587 (2016). https://doi.org/10.1007/s40010-016-0291-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40010-016-0291-z

Keywords

Navigation