Skip to main content
Log in

Unsteady MHD Flow of a Visco-Elastic Fluid Along Vertical Porous Surface with Chemical Reaction

  • Research Article
  • Published:
Proceedings of the National Academy of Sciences, India Section A: Physical Sciences Aims and scope Submit manuscript

Abstract

An unsteady magneto hydrodynamic natural convection flow of a visco-elastic (Walters’ fluid (Model B′)) incompressible electrically conducting fluid along an infinite hot vertical porous surface with fluctuating free stream as well as suction velocity in the presence of chemical reaction has been studied. The solutions of momentum, energy, and species concentration equations under Boussinesq approximation are obtained analytically by employing successive perturbation technique. The expressions for the skin friction, Nusselt number and Sherwood number are also derived. The variations in the fluid velocity, temperature and concentration are shown graphically whereas numerical values of skin-friction, Nusselt number and Sherwood number are presented in a tabular form for various values of pertinent flow parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Soundalgekar VM, Wavre PD (1977) Unsteady free convection flow past an infinite vertical plate with constant suction and mass transfer. J Heat Mass Transf 20:1363–1373

    Article  ADS  MATH  Google Scholar 

  2. Singh KD (1992) Unsteady free convection flow past a hot vertical porous plate with variable temperature. Proc Indian Nat Sci Acad 58:537–544

    MATH  Google Scholar 

  3. Anwar K (1998) MHD unsteady free convection flow past a vertical porous plate. ZAMM 78:255–270

    Article  Google Scholar 

  4. Poonia H, Chaudhary RC (2010) MHD free convection and mass transfer flow over an infinite vertical porous plate with viscous dissipation. Theo Appl Mech 37:263–287

    Article  Google Scholar 

  5. Walters K (1962) Non-Newtonian effects in some elastico-viscous liquids whose behavior at small rates of shear is characterized by a general linear equation of state. Quart J Mech Appl Math 15:63–76

    Article  MathSciNet  MATH  Google Scholar 

  6. Acharya M, Dash GC, Singh LP (2000) Magnetic field effects on the free convection and mass transfer flow through porous medium with constant suction and constant heat flux. Indian J Pure Appl Math 31:1–18

    MATH  Google Scholar 

  7. Kim YJ (2000) Unsteady MHD convective heat transfer past a semi-infinite vertical porous moving plate with variable suction. Int J Engg Sci 38:833–845

    Article  MATH  Google Scholar 

  8. Sharma PR, Pareek D (2001) Free convection effects on steady flow of a non-Newtonian fluid past a porous medium bounded by a vertical porous infinite surface. Ultra Sci Phy Sci 13:215–221

    MATH  Google Scholar 

  9. Singh NP, Gupta SK, Singh AK (2001) Free convection in MHD flow of a rotating viscous liquid in porous medium past a vertical porous plate. Proc Nat Acad Sci India 71A(II):149–157

    Google Scholar 

  10. Israel-Cookey C, Sigalo FB (2003) Unsteady MHD free-convection and mass transfer flow past an infinite heated porous vertical plate with time dependent suction. AMSE Mod Meas Cont B 72:25–38

    Google Scholar 

  11. Singh AK, Singh AK, Singh NP (2003) Heat and mass transfer in MHD flow of a viscous fluid past a vertical plate under oscillatory suction velocity. Ind J Pure Appl Math 34:429–442

    MATH  Google Scholar 

  12. Das SS, Panda JP, Dash GC (2004) Free convection flow and mass transfer of an elastico-viscous fluid past an infinite vertical porous plate in a rotating porous medium. AMSE Mod Meas Cont B 73:37–52

    Google Scholar 

  13. Sharma PR, Sharma S (2005) Unsteady two dimensional flow and heat transfer through an elastico-viscous liquid along an infinite hot vertical porous surface bounded by porous medium. Bull Cal Math Soc 97:477–488

    ADS  MATH  Google Scholar 

  14. Sharma PR, Pareek D (2006) Unsteady flow and heat transfer through an elastico-viscous liquid along an infinite hot vertical porous moving plate with variable free stream and suction. Bull Cal Math Soc 98:97–108

    MATH  Google Scholar 

  15. Panda JP, Panda M, Dash GC (2008) Unsteady Free Convection MHD flow and mass transfer of a Second Order Fluid between two heated plates with source/sink. AMSE Mod Meas Cont B 77:28–43

    Google Scholar 

  16. Das SS, Panda JP (2009) Magnetohydrodynamic steady free convective flow and mass transfer in a rotating elastico-viscous fluid past an infinite vertical porous flat plate with constant suction. AMSE Mod Meas Cont B 78:01–19

    Google Scholar 

  17. Jha AK, Sharma PK, Chaudhury RC (2007) Heat transfer by free convection flow with radiation along a porous hot vertical plate in the presence of transverse magnetic field. South East Asian J Math Math Sci 6:17–26

    MathSciNet  MATH  Google Scholar 

  18. Singh KD, Kumar R (2009) Heat and Mass transfer in MHD flow of a viscous fluid through porous medium with variable suction and heat source. Proc Nat Acad Sci India 75:7–13

    MathSciNet  Google Scholar 

  19. Alharbi SMB, Bajid MAA, Gendy MSEI (2010) Heat and Mass Transfer in MHD visco-elastic fluid flow through a porous medium over a stretching sheet with chemical reaction. Appl Math 1:446–455

    Article  Google Scholar 

  20. Kumar B, Sivaraj R (2011) MHD mixed convective viscoelastic fluid flow in a permeable vertical channel with Dufour, effect and chemical reaction. Int J Appl Math 14:79–96

    Google Scholar 

  21. Damseh RA, Shannak BA (2010) Visco-elastic fluid flow past an infinite vertical porous plate in the presence of first order chemical reaction. Appl Math Mech 31:955–962

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Nayak.

Appendix

Appendix

$$ m_{1} = \frac{{ - P_{r} + \sqrt {P_{r}^{2} + i\omega P_{r} } }}{2}, \quad m_{2} = - \left( {\frac{{P_{r} + \sqrt {P_{r}^{2} + i\omega P_{r} } }}{2}} \right),\quad m_{3} = \frac{{( - S_{c} + \sqrt {S_{c}^{2} + 4K_{c} S_{c} } )}}{2}, \quad m_{4} = - \left( {\frac{{S_{c} + \sqrt {S_{c}^{2} + 4K_{c} S_{c} } }}{2}} \right),\quad m_{5} = \frac{{\left( { - Sc + \sqrt {S_{c}^{2} + 4\left( {K_{c} + i\omega /4} \right)S_{c} } } \right)}}{2},_{{}} \quad m_{6} = - \left( {\frac{{S_{c} + \sqrt {S_{c}^{2} + 4\left( {K_{c} + i\omega /4} \right)S_{c} } }}{2}} \right) ,\quad m_{7} = \frac{{ - 1 + \sqrt {1 + 4\left( {M^{2} + \frac{1}{{k_{p} }}} \right)} }}{2},_{{}} \quad m_{8} = \frac{{ - \left( {1 + \sqrt {1 + 4\left( {M^{2} + \frac{1}{{k_{p} }}} \right)} } \right)}}{2}, \quad A_{1} = \frac{{ - 1 + \sqrt {1 + 4\left( {M^{2} + \frac{1}{{k_{p} }} + \frac{i\omega }{4}} \right)} }}{2},_{{}} A_{2} = \frac{{ - \left( {1 + \sqrt {1 + 4(M^{2} + \frac{1}{{k_{p} }} + \frac{i\omega }{4})} } \right)}}{2},\quad I_{ 1} = P_{r}^{2} - P_{r} - \left( {M^{2} + \frac{1}{{k_{p} }}} \right),\;I_{2} = m_{4}^{2} + m_{4} - \left( {M^{2} + \frac{1}{{k_{p} }}} \right),\;I_{3} = \frac{{G_{r} }}{{I_{1} }},\,I_{4} = \frac{{G_{m} }}{{I_{2} }},\quad I_{5} = 2m_{8} + 1,\;I_{6} = \frac{{ ( 1- I_{ 3} - I_{ 4} ) { }m_{ 8}^{ 3} }}{{I_{5} }},\;I_{7} = \frac{{P_{r}^{ 3} I_{3} }}{{I_{1} }},\;I_{8} = \frac{{m_{ 4}^{ 3} I_{4} }}{{I_{2} }},\;I_{9} = I_{7} - I_{8} ,\,I_{10} = \frac{{G_{r} 4iP_{r} }}{\omega },\quad I_{11} = \frac{{m_{4} 4i}}{\omega },I_{12} = \frac{{I_{10} }}{{I_{1} - \frac{i\omega }{4}}},I_{13} = \frac{{I_{10} }}{{m_{2}^{2} + m_{2} - \left( {M^{2} + \frac{1}{{k_{p} }} + \frac{i\omega }{4}} \right)}},\quad I_{14} = \frac{{ (I_{ 3} + I_{ 4} { - 1)}m_{ 8} }}{{m_{8}^{2} + m_{8} - \left( {M^{2} + \frac{1}{{k_{p} }} + \frac{i\omega }{4}} \right)}},I_{15} = \frac{{{\text{I}}_{ 3} P_{r} }}{{I_{1} - \frac{i\omega }{4}}},I_{16} = \frac{{I_{ 4} m_{4} }}{{I_{2} - \frac{i\omega }{4}}},\quad I_{17} = \frac{{G_{m} I_{11} }}{{m_{6}^{2} + m_{6} - \left( {M^{2} + \frac{1}{{k_{p} }} + \frac{i\omega }{4}} \right)}},I_{18} = \frac{{G_{m} I_{11} }}{{I_{2} - \frac{i\omega }{4}}} ,\quad I_{19} = I_{12} + I_{15} , \quad I_{20} = I_{16} + I_{18} ,\quad I_{21} = I_{19} - I_{13} + I_{14} - I_{20} + I_{17} - 1,\quad I_{22} = - I_{3} P_{r}^{3} - I_{7} P_{r} - I_{19} P_{r}^{3} - I_{19} P_{r}^{2} \frac{i\omega }{4},I_{23} { = (1} - I_{ 3} - I_{ 4} )m_{ 8}^{ 3} - I_{9} m_{8} + I_{14} m_{8}^{3} - I_{14} m_{8}^{2} \frac{i\omega }{4},\quad I_{23} { = (1} - I_{ 3} - I_{ 4} )m_{ 8}^{ 3} - I_{9} m_{8} + I_{14} m_{8}^{3} - I_{14} m_{8}^{2} \frac{i\omega }{4},\quad I_{24} = I_{4} m_{4}^{3} - I_{8} m_{4} - I_{20} m_{4}^{3} + I_{20} m_{4}^{2} \frac{i\omega }{4},I_{25} = \frac{{I_{21} A_{2}^{2} \frac{i\omega }{4}\, - \,I_{21} A_{2}^{3} }}{{2A_{2} + 1}},\quad I_{26} = \frac{{I_{13} m_{2}^{2} \frac{i\omega }{4}\, - \, I_{13} m_{2}^{3} }}{{m_{2}^{2} + m_{2} - \left( {M^{2} + \frac{1}{{k_{p} }} + \frac{i\omega }{4}} \right)}},\;I_{27} = \frac{{I_{17} m_{6}^{3} - I_{17} m_{6}^{2} \frac{i\omega }{4}}}{{m_{6}^{2} + m_{6} - \left( {M^{2} + \frac{1}{{k_{p} }} + \frac{i\omega }{4}} \right)}},\;I_{28} = \frac{{I_{22} }}{{I_{1} - \frac{i\omega }{4}}},\quad I_{29} = \frac{{I_{ 2 3} }}{{m_{8}^{2} + m_{8} - \left( {M^{2} + \frac{1}{{k_{p} }} + \frac{i\omega }{4}} \right)}},\;I_{30} = \frac{{I_{ 2 4} }}{{I_{2} - \frac{i\omega }{4}}},\;I_{31} = - \left( {I_{28} + I_{30} + I_{26} + I_{27} + I_{29} } \right).$$

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nayak, A., Dash, G.C. & Panda, S. Unsteady MHD Flow of a Visco-Elastic Fluid Along Vertical Porous Surface with Chemical Reaction. Proc. Natl. Acad. Sci., India, Sect. A Phys. Sci. 83, 153–161 (2013). https://doi.org/10.1007/s40010-013-0066-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40010-013-0066-8

Keywords

Navigation