Skip to main content

Advertisement

Log in

Pharmaceutical perspectives for the delivery of TNF-α in cancer therapy

  • Review
  • Published:
Journal of Pharmaceutical Investigation Aims and scope Submit manuscript

Abstract

TNF-α is an endogenous signaling protein which controls physiological activities and participates in immune response. It is known to interact with TNF receptors (TNFR), of which have two kinds leading to totally different effects. Binding of TNF-α to TNFR1 can induce either cell proliferation or cell death, i.e., necroptosis, depending on the kinds of protein to which it binds during the signaling cascade. On the contrary, binding of TNF-α to TNFR2 induces only cell death process. TNF-α can also cause antiviral effect by inducing interferon, and can inhibit tumor growth. Moreover, TNF-α helps action of immune cells and it leads to increasement of tumor cell lysis. TNF-α also makes tumor vessels more permeable and induces coagulation and thrombosis in the tumor vessels, which ultimately contribute to antitumor effect. However, TNF-α also has several toxic effects, which include the change in redox status of antioxidant factors, induction of excess inflammation response, and action as pro-inflammatory cytokine of itself. These toxicities need to be considered when developing TNF-α as an anticancer agent. In this review, pharmaceutical approaches to optimize and utilize its antitumor activity of TNF-α as well as to decrease its adverse effect are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Aggarwal BB, Schwarz L, Hogan ME, Rando RF (1996) Triple helix-forming oligodeoxyribonucleotides targeted to the human tumor necrosis factor (TNF) gene inhibit TNF production and block the TNF-dependent growth of human glioblastoma tumor cells. Cancer Res 56:5156–5164

    PubMed  CAS  Google Scholar 

  • Arora A, Su G, Mathiowitz E, Reineke J, Chang AE, Sabel MS (2006) Neoadjuvant intratumoral cytokine-loaded microspheres are superior to postoperative autologous cellular vaccines in generating systemic anti-tumor immunity. J Surg Oncol 94:403–412

    Article  PubMed  CAS  Google Scholar 

  • Baker SJ, Reddy EP (1998) Modulation of life and death by the TNF receptor superfamily. Oncogene 17:3261–3270

    Article  PubMed  Google Scholar 

  • Baldassano R, Braegger CP, Escher JC, DeWoody K, Hendricks DF, Keenan GF, Winter HS (2003) Infliximab (REMICADE) therapy in the treatment of pediatric Crohn’s disease. Am J gastroenterol 98:833–838

    Article  PubMed  CAS  Google Scholar 

  • Bemelmans M, Van Tits L, Buurman W (1996) Tumor necrosis factor: function, release and clearance. Crit Rev Immunol 16:1

    Article  PubMed  CAS  Google Scholar 

  • Blackwell K, Zhang L, Thomas GS, Sun S, Nakano H, Habelhah H (2009) TRAF2 phosphorylation modulates tumor necrosis factor alpha-induced gene expression and cell resistance to apoptosis. Mol Cell Biol 29:303–314

    Article  PubMed  CAS  Google Scholar 

  • Bodmer JL, Schneider P, Tschopp J (2002) The molecular architecture of the TNF superfamily. Trends Biochem Sci 27:19–26

    Article  PubMed  CAS  Google Scholar 

  • Borsi L, Balza E, Carnemolla B, Sassi F, Castellani P, Berndt A, Kosmehl H, Birò A, Siri A, Orecchia P (2003) Selective targeted delivery of TNFα to tumor blood vessels. Blood 102:4384–4392

    Article  PubMed  CAS  Google Scholar 

  • Braun J, McHugh N, Singh A, Wajdula J, Sato R (2007) Improvement in patient-reported outcomes for patients with ankylosing spondylitis treated with etanercept 50 mg once-weekly and 25 mg twice-weekly. Rheumatology (Oxford) 46:999–1004

    Article  CAS  Google Scholar 

  • Cabal-Hierro L, Lazo P (2012) Signal transduction by tumor necrosis factor receptors. Cellular signalling

  • Caliceti P, Veronese FM (2003) Pharmacokinetic and biodistribution properties of poly (ethylene glycol)-protein conjugates. Adv Drug Deliv Rev 55:1261–1277

    Article  PubMed  CAS  Google Scholar 

  • Castellani P, Borsi L, Carnemolla B, Birò A, Dorcaratto A, Viale GL, Neri D, Zardi L (2002) Differentiation between high-and low-grade astrocytoma using a human recombinant antibody to the extra domain-B of fibronectin. Am J Pathol 161:1695

    Article  PubMed  CAS  Google Scholar 

  • Chen NJ, Chio IIC, Lin WJ, Duncan G, Chau H, Katz D, Huang HL, Pike KA, Hao Z, Su YW (2008) Beyond tumor necrosis factor receptor: TRADD signaling in toll-like receptors. Proc Natl Acad Sci 105:12429

    Article  PubMed  CAS  Google Scholar 

  • Cho YS, Challa S, Moquin D, Genga R, Ray TD, Guildford M, Chan FKM (2009) Phosphorylation-driven assembly of the RIP1-RIP3 complex regulates programmed necrosis and virus-induced inflammation. Cell 137:1112–1123

    Article  PubMed  CAS  Google Scholar 

  • Cornillie F, Shealy D, D’haens G, Geboes K, Van Assche G, Ceuppens J, Wagner C, Schaible T, Plevy S, Targan S (2001) Infliximab induces potent anti-inflammatory and local immunomodulatory activity but no systemic immune suppression in patients with Crohn’s disease. Aliment Pharmacol Ther 15:463–473

    Article  PubMed  CAS  Google Scholar 

  • Darnay BG, Singh S, Aggarwal BB (1997) The p80 TNF receptor-associated kinase (p80TRAK) associates with residues 354–397 of the p80 cytoplasmic domain: similarity to casein kinase. FEBS Lett 406:101–105

    Article  PubMed  CAS  Google Scholar 

  • De Benedetti F, Falk LA, Ellingsworth LR, Ruscetti FW, Faltynek CR (1990) Synergy between transforming growth factor-beta and tumor necrosis factor-alpha in the induction of monocytic differentiation of human leukemic cell lines. Blood 75:626–632

    PubMed  Google Scholar 

  • Debs RJ, Fuchs HJ, Philip R, Brunette EN, Düzgüneş N, Shellito JE, Liggitt D, Patton JR (1990) Immunomodulatory and toxic effects of free and liposome-encapsulated tumor necrosis factor α in rats. Cancer Res 50:375

    PubMed  CAS  Google Scholar 

  • Dempsey PW, Doyle SE, He JQ, Cheng G (2003) The signaling adaptors and pathways activated by TNF superfamily. Cytokine Growth Factor Rev 14:193–209

    Article  PubMed  CAS  Google Scholar 

  • Fang C, Shi B, Pei YY (2005) Effect of MePEG molecular weight and particle size on in vitro release of tumor necrosis factor-alpha-loaded nanoparticles. Acta Pharmacol Sin 26:242–249

    Article  PubMed  CAS  Google Scholar 

  • Fang C, Shi B, Pei YY, Hong MH, Wu J, Chen HZ (2006) In vivo tumor targeting of tumor necrosis factor-α-loaded stealth nanoparticles: effect of MePEG molecular weight and particle size. Eur J Pharm Sci 27:27–36

    Article  PubMed  CAS  Google Scholar 

  • Feinberg B, Kurzrock R, Talpaz M, Blick M, Saks S, Gutterman JU (1988) A phase I trial of intravenously-administered recombinant tumor necrosis factor-alpha in cancer patients. J Clin Oncol 6:1328–1334

    PubMed  CAS  Google Scholar 

  • Feldmann M, Maini RN (2003) TNF defined as a therapeutic target for rheumatoid arthritis and other autoimmune diseases. Nat Med 9:1245–1250

    Article  PubMed  CAS  Google Scholar 

  • Feldmann M, Brennan FM, Maini RN (1996) Role of cytokines in rheumatoid arthritis. Annu Rev Immunol 14:397–440

    Article  PubMed  CAS  Google Scholar 

  • Feldmann M, Brennan FM, Paleolog E, Cope A, Taylor P, Williams R, Woody J, Maini RN (2004) Anti-TNFα Therapy of Rheumatoid Arthritis: What Can We Learn about Chronic Disease?, Wiley Online Library

  • Goel R, Shah N, Visaria R, Paciotti GF, Bischof JC (2009) Biodistribution of TNF-alpha-coated gold nanoparticles in an in vivo model system. Nanomedicine (Lond) 4:401–410

    Article  CAS  Google Scholar 

  • Grech AP, Gardam S, Chan T, Quinn R, Gonzales R, Basten A, Brink R (2005) Tumor necrosis factor receptor 2 (TNFR2) signaling is negatively regulated by a novel, carboxyl-terminal TNFR-associated factor 2 (TRAF2)-binding site. J Biol Chem 280:31572–31581

    Article  PubMed  CAS  Google Scholar 

  • Grell M, Douni E, Wajant H, Löhden M, Clauss M, Maxeiner B, Georgopoulos S, Lesslauer W, Kollias G, Pfizenmaier K (1995) The transmembrane form of tumor necrosis factor is the prime activating ligand of the 80 kDa tumor necrosis factor receptor. Cell 83:793–802

    Article  PubMed  CAS  Google Scholar 

  • Hauer J, Puschner S, Ramakrishnan P, Simon U, Bongers M, Federle C, Engelmann H (2005) TNF receptor (TNFR)-associated factor (TRAF) 3 serves as an inhibitor of TRAF2/5-mediated activation of the noncanonical NF-kappaB pathway by TRAF-binding TNFRs. Proc Natl Acad Sci U S A 102:2874–2879

    Article  PubMed  CAS  Google Scholar 

  • Hehlgans T, Pfeffer K (2005) The intriguing biology of the tumour necrosis factor/tumour necrosis factor receptor superfamily: players, rules and the games. Immunology 115:1–20

    Article  PubMed  CAS  Google Scholar 

  • Holler N, Zaru R, Micheau O, Thome M, Attinger A, Valitutti S, Bodmer JL, Schneider P, Seed B, Tschopp J (2000) Fas triggers an alternative, caspase-8–independent cell death pathway using the kinase RIP as effector molecule. Nat Immunol 1:489–495

    Article  PubMed  CAS  Google Scholar 

  • Hotamisligil GS, Spiegelman B (1994) Tumor necrosis factor alpha: a key component of the obesity-diabetes link. Diabetes 43:1271–1278

    Article  PubMed  CAS  Google Scholar 

  • Hsu H, Huang J, Shu HB, Baichwal V, Goeddel DV (1996) TNF-dependent recruitment of the protein kinase RIP to the TNF receptor-1 signaling complex. Immunity 4:387

    Article  PubMed  CAS  Google Scholar 

  • Hsu TC, Nair R, Tulsian P, Camalier CE, Hegamyer GA, Young MR, Colburn NH (2001) Transformation nonresponsive cells owe their resistance to lack of p65/nuclear factor-kappaB activation. Cancer Res 61:4160–4168

    PubMed  CAS  Google Scholar 

  • Huang S, Lee K, Hong K, Friend D, Papahadjopoulos D (1992) Microscopic localization of sterically stabilized liposomes in colon carcinoma-bearing mice. Cancer Res 52:5135

    PubMed  CAS  Google Scholar 

  • Itoh N, Nagata S (1993) A novel protein domain required for apoptosis. Mutational analysis of human Fas antigen. J Biol Chem 268:10932–10937

    PubMed  CAS  Google Scholar 

  • Iwata M, Tanaka T, Nakamura Y, McGinity J (1998) Selection of the solvent system for the preparation of poly (d, l-lactic-co-glycolic acid) microspheres containing tumor necrosis factor-alpha (TNF-α). Int J Pharm 160:145–156

    Article  CAS  Google Scholar 

  • Jain RK (1994) Barriers to drug delivery in solid tumors. Sci Am 271:58–65

    Article  PubMed  CAS  Google Scholar 

  • Johnston DA, Dong B, Hughes CCW (2009) TNF induction of jagged-1 in endothelial cells is NF [kappa] B-dependent. Gene 435:36–44

    Article  PubMed  CAS  Google Scholar 

  • Kamada H, Tsutsumi Y, Tsunoda S, Kihira T, Kaneda Y, Yamamoto Y, Nakagawa S, Horisawa Y, Mayumi T (1999) Molecular design of conjugated tumor necrosis factor-[alpha]: synthesis and characteristics of polyvinyl pyrrolidone modified tumor necrosis factor-[alpha]. Biochem Biophys Res Commun 257:448–453

    Article  PubMed  CAS  Google Scholar 

  • Kamada H, Tsutsumi Y, Yamamoto Y, Kihira T, Kaneda Y, Mu Y, Kodaira H, Tsunoda S, Nakagawa S, Mayumi T (2000) Antitumor activity of tumor necrosis factor-α conjugated with polyvinylpyrrolidone on solid tumors in mice. Cancer Res 60:6416

    PubMed  CAS  Google Scholar 

  • Ka-Ming Chan F, Lenardo MJ (2000) A crucial role for p80 TNF-R2 in amplifying p60 TNF-R1 apoptosis signals in T lymphocytes. Eur J Immunol 30:652–660

    Article  Google Scholar 

  • Kaneda Y, Yamamoto Y, Tsunoda S, Kamada H, Tsutsumi Y, Hirano T, Mayumi T (1997) Bioconjugation of tumor necrosis factor-alpha with the copolymer of divinyl ether and maleic anhydride increasing its antitumor potency. Biochem Biophys Res Commun 239:160–165

    Article  PubMed  CAS  Google Scholar 

  • Kaneda Y, Yamamoto Y, Kamada H, Tsunoda S, Tsutsumi Y, Hirano T, Mayumi T (1998) Antitumor activity of tumor necrosis factor α conjugated with divinyl ether and maleic anhydride copolymer on solid tumors in mice. Cancer Res 58:290

    PubMed  CAS  Google Scholar 

  • Keffer J, Probert L, Cazlaris H, Georgopoulos S, Kaslaris E, Kioussis D, Kollias G (1991) Transgenic mice expressing human tumour necrosis factor: a predictive genetic model of arthritis. EMBO J 10:4025

    PubMed  CAS  Google Scholar 

  • Lee TH, Shank J, Cusson N, Kelliher MA (2004) The kinase activity of Rip1 is not required for tumor necrosis factor-alpha-induced IkappaB kinase or p38 MAP kinase activation or for the ubiquitination of Rip1 by Traf2. J Biol Chem 279:33185–33191

    Article  PubMed  CAS  Google Scholar 

  • Lee LF, Xu B, Michie SA, Beilhack GF, Warganich T, Turley S, McDevitt HO (2005) The role of TNF-α in the pathogenesis of type 1 diabetes in the nonobese diabetic mouse: analysis of dendritic cell maturation. Proc Natl Acad Sci U S A 102:15995

    Article  PubMed  CAS  Google Scholar 

  • Li YP, Pei YY, Zhou ZH, Zhang XY, Gu ZH, Ding J, Zhou JJ, Gao XJ (2001a) PEGylated polycyanoacrylate nanoparticles as tumor necrosis factor-α carriers. J Control Release 71:287–296

    Article  PubMed  Google Scholar 

  • Li YP, Pei YY, Zhou ZH, Zhang XY, Gu ZH, Ding J, Zhou JJ, Gao XJ, Zhu JH (2001b) Stealth polycyanoacrylate nanoparticles as tumor necrosis factor-alpha carriers: pharmacokinetics and anti-tumor effects. Biol Pharm Bull 24:662–665

    Article  PubMed  CAS  Google Scholar 

  • Li L, Soetandyo N, Wang Q, Ye Y (2009) The zinc finger protein A20 targets TRAF2 to the lysosomes for degradation. Biochimica et Biophysica Acta (BBA)-Molecular. Cell Res 1793:346–353

    CAS  Google Scholar 

  • Lukacs NW, Strieter RM, Chensue SW, Widmer M, Kunkel SL (1995) TNF-alpha mediates recruitment of neutrophils and eosinophils during airway inflammation. J Immunol 154:5411

    PubMed  CAS  Google Scholar 

  • Madhusudan S, Muthuramalingam SR, Braybrooke JP, Wilner S, Kaur K, Han C, Hoare S, Balkwill F, Ganesan TS (2005) Study of etanercept, a tumor necrosis factor-alpha inhibitor, in recurrent ovarian cancer. J Clin Oncol 23:5950–5959

    Article  PubMed  CAS  Google Scholar 

  • McGuire SO, Ling ZD, Lipton JW, Sortwell CE, Collier TJ, Carvey PM (2001) Tumor Necrosis Factor [alpha] Is Toxic to Embryonic Mesencephalic Dopamine Neurons. Exp Neurol 169:219–230

    Article  PubMed  CAS  Google Scholar 

  • Mehvar R (2001) Principles of nonlinear pharmacokinetics. Am J Pharm Educ 65:178–184

    Google Scholar 

  • Mestan J, Digel W, Mittnacht S, Hillen H, Blohm D, Moller A, Jacobsen H, Kirchner H (1986) Antiviral effects of recombinant tumour necrosis factor in vitro. Nature 323:816–819

    Article  PubMed  CAS  Google Scholar 

  • Micheau O, Tschopp J (2003) Induction of TNF receptor I-mediated apoptosis via two sequential signaling complexes. Cell 114:181–190

    Article  PubMed  CAS  Google Scholar 

  • Mishima Y, Kuyama A, Tada A, Takahashi K, Ishioka T, Kibata M (2001) Relationship between serum tumor necrosis factor-α and insulin resistance in obese men with type 2 diabetes mellitus. Diabetes Res Clin Pract 52:119–123

    Article  PubMed  CAS  Google Scholar 

  • Mittelman A, Puccio C, Gafney E, Coombe N, Singh B, Wood D, Nadler P, Ahmed T, Arlin Z (1992) A phase I pharmacokinetic study of recombinant human tumor necrosis factor administered by a 5-day continuous infusion. Invest New Drugs 10:183–190

    Article  PubMed  CAS  Google Scholar 

  • Mocellin S, Rossi CR, Pilati P, Nitti D (2005) Tumor necrosis factor, cancer and anticancer therapy. Cytokine Growth Factor Rev 16:35–53

    Article  PubMed  CAS  Google Scholar 

  • Morahan PS, Munson JA, Baird LG, Kaplan AM, Regelson W (1974) Antitumor action of pyran copolymer and tilorone against Lewis lung carcinoma and B-16 melanoma. Cancer Res 34:506–511

    PubMed  CAS  Google Scholar 

  • Mori A, Duda E, Huang L (1996) Recombinant human tumor necrosis factor-α covalently conjugated to long-circulating liposomes. Int J Pharm 131:57–66

    Article  CAS  Google Scholar 

  • Morishige H, Ohkuma T, Kaji A (1993) In vitro cytostatic effect of TNF (Tumor Necrosis Factor) entrapped in immunoliposomes on cells normally to TNF. Biochimica et Biophysica Acta (BBA)-Biomembranes 1151:59–68

    Article  CAS  Google Scholar 

  • Moritz T, Niederle N, Baumann J, May D, Kurschel E, Osieka R, Kempeni J, Schlick E, Schmidt CG (1989) Phase I study of recombinant human tumor necrosis factor alpha in advanced malignant disease. Cancer Immunol Immunother 29:144–150

    Article  PubMed  CAS  Google Scholar 

  • Muppidi JR, Tschopp J, Siegel RM (2004) Life and death decisions: secondary complexes and lipid rafts in TNF receptor family signal transduction. Immunity 21:461–465

    Article  PubMed  CAS  Google Scholar 

  • Nawroth PP, Stern DM (1986) Modulation of endothelial cell hemostatic properties by tumor necrosis factor. J Exp Med 163:740–745

    Article  PubMed  CAS  Google Scholar 

  • Nooijen P, Manusama E, Eggermont A, Schalkwijk L, Stavast J, Marquet R, De Waal R, Ruiter D (1996) Synergistic effects of TNF-alpha and melphalan in an isolated limb perfusion model of rat sarcoma: a histopathological, immunohistochemical and electron microscopical study. Br J Cancer 74:1908

    Article  PubMed  CAS  Google Scholar 

  • Palladino MA, Bahjat FR, Theodorakis EA, Moldawer LL (2003) Anti-TNF-alpha therapies: the next generation. Nat Rev Drug Discovery 2:736–746

    Article  CAS  Google Scholar 

  • Pedro RN, Thekke-Adiyat T, Goel R, Shenoi M, Slaton J, Schmechel S, Bischof J, Anderson JK (2010) Use of tumor necrosis factor–alpha-coated gold nanoparticles to enhance radiofrequency ablation in a translational model of renal tumors. Urology 76:494–498

    Article  PubMed  Google Scholar 

  • Ramesh G, Reeves WB (2002) TNF-alpha mediates chemokine and cytokine expression and renal injury in cisplatin nephrotoxicity. J Clin Invest 110:835–842

    PubMed  CAS  Google Scholar 

  • Renard AJS, Veth RPH, Pruszczynski M, Wobbes T, Lemmens JAM, van Horn JR (1994) Giant cell tumor of bone: oncologic and functional results. J Surg Oncol 57:243–251

    Article  PubMed  CAS  Google Scholar 

  • Rodriguez M, Cabal-Hierro L, Carcedo MT, Iglesias JM, Artime N, Darnay BG, Lazo PS (2011) NF-kappaB signal triggering and termination by tumor necrosis factor receptor 2. J Biol Chem 286:22814–22824

    Article  PubMed  CAS  Google Scholar 

  • Rothe M, Wong SC, Henzel WJ, Goeddel DV (1994) A novel family of putative signal transducers associated with the cytoplasmic domain of the 75 kDa tumor necrosis factor receptor. Cell 78:681

    Article  PubMed  CAS  Google Scholar 

  • Ruby J, Bluethmann H, Peschon JJ (1997) Antiviral activity of tumor necrosis factor (TNF) is mediated via p55 and p75 TNF receptors. J Exp Med 186:1591–1596

    Article  PubMed  CAS  Google Scholar 

  • Sabel MS, Skitzki J, Stoolman L, Egilmez NK, Mathiowitz E, Bailey N, Chang WJ, Chang AE (2004) Intratumoral IL-12 and TNF-alpha-loaded microspheres lead to regression of breast cancer and systemic antitumor immunity. Ann Surg Oncol 11:147–156

    Article  PubMed  Google Scholar 

  • Sabel MS, Arora A, Su G, Mathiowitz E, Reineke JJ, Chang AE (2007) Synergistic effect of intratumoral IL-12 and TNF-[alpha] microspheres: systemic anti-tumor immunity is mediated by both CD8 + CTL and NK cells. Surgery 142:749–760

    Article  PubMed  Google Scholar 

  • Santora L, Kaymakcalan Z, Sakorafas P, Krull I, Grant K (2001) Characterization of noncovalent complexes of recombinant human monoclonal antibody and antigen using cation exchange, size exclusion chromatography, and BIAcore. Anal Biochem 299:119–129

    Article  PubMed  CAS  Google Scholar 

  • Savva M, Duda E, Huang L (1999) A genetically modified recombinant tumor necrosis factor-α conjugated to the distal terminals of liposomal surface grafted polyethyleneglycol chains. Int J Pharm 184:45–51

    Article  PubMed  CAS  Google Scholar 

  • Scallon B, Cai A, Solowski N, Rosenberg A, Song XY, Shealy D, Wagner C (2002) Binding and functional comparisons of two types of tumor necrosis factor antagonists. J Pharmacol Exp Ther 301:418–426

    Article  PubMed  CAS  Google Scholar 

  • Scheringa M, Marquet R (1990) TNF: a brief review with emphasis on its antitumor activity. Biotherapy 2:275–281

    Article  PubMed  CAS  Google Scholar 

  • Schreiber S, Rutgeerts P, Fedorak RN, Khaliq–Kareemi M, Kamm MA, Boivin M, Bernstein CN, Staun M, Thomsen OØ, Innes A (2005) A randomized, placebo-controlled trial of certolizumab pegol (CDP870) for treatment of Crohn’s disease. Gastroenterology 129:807–818

    Article  PubMed  CAS  Google Scholar 

  • Selby P, Hobbs S, Viner C, Jackson E, Jones A, Newell D, Calvert AH, McElwain T, Fearon K, Humphreys J et al (1987) Tumour necrosis factor in man: clinical and biological observations. Br J Cancer 56:803–808

    Article  PubMed  CAS  Google Scholar 

  • Shau H (1991) Effects of tumor-necrosis-factor-activated neutrophils on tumor cell survival. Immunol Res 10:114–121

    Article  PubMed  CAS  Google Scholar 

  • Shealy D, Visvanathan S (2008) Anti-TNF antibodies: lessons from the past, roadmap for the future. Therapeutic Antibodies: 101-129

  • Shenoi MM, Shah NB, Griffin RJ, Vercellotti GM, Bischof JC (2011) Nanoparticle preconditioning for enhanced thermal therapies in cancer. Nanomedicine 6:545–563

    Article  PubMed  CAS  Google Scholar 

  • Shishodia S, Aggarwal BB (2004) Nuclear factor-kappaB: a friend or a foe in cancer? Biochem Pharmacol 68:1071–1080

    Article  PubMed  CAS  Google Scholar 

  • Sidhu RS, Bollon AP (1993) Tumor necrosis factor activities and cancer therapy–a perspective. Pharmacol Ther 57:79–128

    Article  PubMed  CAS  Google Scholar 

  • Smolen JS, Van Der Heijde DMFM, St Clair EW, Emery P, Bathon JM, Keystone E, Maini RN, Kalden JR, Schiff M, Baker D (2006) Predictors of joint damage in patients with early rheumatoid arthritis treated with high-dose methotrexate with or without concomitant infliximab: results from the ASPIRE trial. Arthritis Rheum 54:702–710

    Article  PubMed  CAS  Google Scholar 

  • Spriggs DR, Sherman ML, Frei E 3rd, Kufe DW (1987) Clinical studies with tumour necrosis factor. Ciba Found Symp 131:206–227

    PubMed  CAS  Google Scholar 

  • St Clair EW, van der Heijde DMFM, Smolen JS, Maini RN, Bathon JM, Emery P, Keystone E, Schiff M, Kalden JR, Wang B (2004) Combination of infliximab and methotrexate therapy for early rheumatoid arthritis: a randomized, controlled trial. Arthritis Rheum 50:3432–3443

    Article  PubMed  CAS  Google Scholar 

  • Steinmetz T, Schaadt M, Gahl R, Schenk V, Diehl V, Pfreundschuh M (1988) Phase I study of 24-hour continuous intravenous infusion of recombinant human tumor necrosis factor. J Biol Response Mod 7:417–423

    PubMed  CAS  Google Scholar 

  • Sugita S, Takase H, Taguchi C, Mochizuki M (2007) The role of soluble TNF receptors for TNF-α in uveitis. Invest Ophthalmol Vis Sci 48:3246–3252

    Article  PubMed  Google Scholar 

  • Tabata Y, Noda Y, Matsui Y, Ikada Y (1999) Targeting of tumor necrosis factor to tumor by use of dextran and metal coordination. J Control Release 59:187–196

    Article  PubMed  CAS  Google Scholar 

  • Takakura Y, Takagi A, Hashida M, Sezaki H (1987) Disposition and tumor localization of mitomycin C–dextran conjugates in mice. Pharm Res 4:293–300

    Article  PubMed  CAS  Google Scholar 

  • Tangpong J, Cole MP, Sultana R, Joshi G, Estus S, Vore M, St Clair W, Ratanachaiyavong S, St Clair DK, Butterfield DA (2006) Adriamycin-induced, TNF-alpha-mediated central nervous system toxicity. Neurobiol Dis 23:127–139

    Article  PubMed  CAS  Google Scholar 

  • Tartaglia LA, Ayres TM, Wong G, Goeddel DV (1993) A novel domain within the 55 kd TNF receptor signals cell death. Cell 74:845

    Article  PubMed  CAS  Google Scholar 

  • ten Hagen TLM (2005) Liposomal cytokines in the treatment of infectious diseases and cancer. Methods Enzymol 391:125–145

    Article  PubMed  Google Scholar 

  • ten Hagen TLM, Eggermont AMM (1997) A rat extremity soft tissue sarcoma model for the study of systemic treatment with Stealth® liposome-encapsulated tumor necrosis factor-[alpha] and cytotoxic agents. Adv Drug Deliv Rev 24:245–256

    Article  Google Scholar 

  • ten Hagen TL, Seynhaeve AL, van Tiel ST, Ruiter DJ, Eggermont AM (2002) Pegylated liposomal tumor necrosis factor-alpha results in reduced toxicity and synergistic antitumor activity after systemic administration in combination with liposomal doxorubicin (Doxil) in soft tissue sarcoma-bearing rats. Int J Cancer 97:115–120

    Article  PubMed  Google Scholar 

  • Thamm DH, Kurzman ID, Clark MA, Ehrhart E III, Kraft SL, Gustafson DL, Vail DM (2010) Preclinical investigation of PEGylated tumor necrosis factor α in dogs with spontaneous tumors: phase I evaluation. Clin Cancer Res 16:1498–1508

    Article  PubMed  CAS  Google Scholar 

  • Tobinick E, Gross H, Weinberger A, Cohen H (2006) TNF-alpha modulation for treatment of Alzheimer’s disease: a 6-month pilot study. MedGenMed 8:25

    PubMed  Google Scholar 

  • Tsunoda S, Ishikawa T, Yamamoto Y, Kamada H, Koizumi K, Matsui J, Tsutsumi Y, Hirano T, Mayumi T (1999) Enhanced antitumor potency of polyethylene glycolylated tumor necrosis factor-alpha: a novel polymer-conjugation technique with a reversible amino-protective reagent. J Pharmacol Exp Ther 290:368–372

    PubMed  CAS  Google Scholar 

  • Tsutsumi Y, Kihira T, Tsunoda S, Kubo K, Miyake M, Kanamori T, Nakagawa S, Mayumi T (1994) Intravenous administration of polyethylene glycol-modified tumor necrosis factor-α completely regressed solid tumor in Meth-A murine sarcoma model. Cancer Sci 85:1185–1188

    Article  CAS  Google Scholar 

  • Tsutsumi Y, Kihira T, Tsunoda S, Kamada H, Nakagawa S, Kaneda Y, Kanamori T, Mayumi T (1996a) Molecular design of hybrid tumor necrosis factor-alpha III: polyethylene glycol-modified tumor necrosis factor-alpha has markedly enhanced antitumor potency due to longer plasma half-life and higher tumor accumulation. J Pharmacol Exp Ther 278:1006–1011

    PubMed  CAS  Google Scholar 

  • Tsutsumi Y, Tsunoda S, Kamada H, Kihira T, Nakagawa S, Kaneda Y, Kanamori T, Mayumi T (1996b) Molecular design of hybrid tumour necrosis factor-alpha. II: the molecular size of polyethylene glycol-modified tumour necrosis factor-alpha affects its anti-tumour potency. Br J Cancer 74:1090

    Article  PubMed  CAS  Google Scholar 

  • Utsumi T, Hung MC, Klostergaard J (1991) Preparation and characterization of liposomal-lipophilic tumor necrosis factor. Cancer Res 51:3362

    PubMed  CAS  Google Scholar 

  • van der Veen AH, Eggermont AM, Seynhaeve AL, van T, ten Hagen TL (1998a) Biodistribution and tumor localization of stealth liposomal tumor necrosis factor-alpha in soft tissue sarcoma bearing rats. Int J Cancer 77:901–906

    Article  PubMed  Google Scholar 

  • van der Veen AH, Eggermont AMM, ten Hagen TLM (1998b) Stealth® liposomal tumor necrosis factor-α in solid tumor treatment. Int J Pharm 162:87–94

    Article  Google Scholar 

  • Van Dullemen HM, van Deventer SJH, Hommes DW, Bijl HA, Jansen J, Tytgat GNJ, Woody J (1995) Treatment of Crohn’s disease with anti-tumor necrosis factor chimeric monoclonal antibody (cA2). Gastroenterology 109:129–135

    Article  PubMed  Google Scholar 

  • Van Horssen R, Ten Hagen TLM, Eggermont AMM (2006) TNF-α in cancer treatment: molecular insights, antitumor effects, and clinical utility. Oncologist 11:397–408

    Article  PubMed  Google Scholar 

  • Vandenabeele P, Galluzzi L, Berghe TV, Kroemer G (2010) Molecular mechanisms of necroptosis: an ordered cellular explosion. Nat Rev Mol Cell Biol 11:700–714

    Article  PubMed  CAS  Google Scholar 

  • Varfolomeev EE, Ashkenazi A (2004) Tumor necrosis factor: an apoptosis JuNKie? Cell 116:491–497

    Article  PubMed  CAS  Google Scholar 

  • Varfolomeev E, Goncharov T, Fedorova AV, Dynek JN, Zobel K, Deshayes K, Fairbrother WJ, Vucic D (2008) c-IAP1 and c-IAP2 are critical mediators of tumor necrosis factor alpha (TNFalpha)-induced NF-kappaB activation. J Biol Chem 283:24295–24299

    Article  PubMed  CAS  Google Scholar 

  • Vemuri S, Rhodes C (1995) Preparation and characterization of liposomes as therapeutic delivery systems: a review. Pharm Acta Helv 70:95–111

    Article  PubMed  CAS  Google Scholar 

  • Vercammen D, Brouckaert G, Denecker G, Van de Craen M, Declercq W, Fiers W, Vandenabeele P (1998) Dual signaling of the Fas receptor: initiation of both apoptotic and necrotic cell death pathways. J Exp Med 188:919

    Article  PubMed  CAS  Google Scholar 

  • Visaria RK, Griffin RJ, Williams BW, Ebbini ES, Paciotti GF, Song CW, Bischof JC (2006) Enhancement of tumor thermal therapy using gold nanoparticle–assisted tumor necrosis factor-α delivery. Mol Cancer Ther 5:1014

    Article  PubMed  CAS  Google Scholar 

  • Vujanovic NL (2001) Role of TNF family ligands in antitumor activity of natural killer cells. Int Rev Immunol 20:415–437

    Article  PubMed  CAS  Google Scholar 

  • Wajant H (2011) Increasing complexity in TNFR1 signaling. FEBS J 278:861

    Article  PubMed  CAS  Google Scholar 

  • Wallach D, Varfolomeev E, Malinin N, Goltsev YV, Kovalenko A, Boldin M (1999) Tumor necrosis factor receptor and Fas signaling mechanisms. Annu Rev Immunol 17:331–367

    Article  PubMed  CAS  Google Scholar 

  • Wiens GD, Glenney GW (2011) Origin and Evolution of TNF and TNF Receptor Superfamilies. Developmental & Comparative Immunology

  • Wong GH, Tartaglia LA, Lee MS, Goeddel DV (1992) Antiviral activity of tumor necrosis factor is signaled through the 55-kDa type I TNF receptor [corrected]. J Immunol 149:3350–3353

    PubMed  CAS  Google Scholar 

  • Yamamoto Y, Tsutsumi Y, Yoshioka Y, Nishibata T, Kobayashi K, Okamoto T, Mukai Y, Shimizu T, Nakagawa S, Nagata S (2003) Site-specific PEGylation of a lysine-deficient TNF-α with full bioactivity. Nat Biotechnol 21:546–552

    Article  PubMed  CAS  Google Scholar 

  • Yoshioka Y, Tsutsumi Y, Ikemizu S, Yamamoto Y, Shibata H, Nishibata T, Mukai Y, Okamoto T, Taniai M, Kawamura M (2004) Optimal site-specific PEGylation of mutant TNF-[alpha] improves its antitumor potency. Biochem Biophys Res Commun 315:808–814

    Article  PubMed  CAS  Google Scholar 

  • Zalevsky J, Secher T, Ezhevsky SA, Janot L, Steed PM, O’Brien C, Eivazi A, Kung J, Nguyen DHT, Doberstein SK (2007) Dominant-negative inhibitors of soluble TNF attenuate experimental arthritis without suppressing innate immunity to infection. J Immunol 179:1872–1883

    PubMed  CAS  Google Scholar 

  • Zamkoff KW, Newman NB, Rudolph AR, Young J, Poiesz BJ (1989) A phase I trial of subcutaneously administered recombination tumor necrosis factor to patients with advanced malignancy. J Biol Response Mod 8:539–552

    PubMed  CAS  Google Scholar 

  • Zinman B, Hanley AJG, Harris SB, Kwan J, Fantus IG (1999) Circulating tumor necrosis factor-α concentrations in a native Canadian population with high rates of type 2 diabetes mellitus. J Clin Endocrinol Metab 84:272–278

    Article  PubMed  CAS  Google Scholar 

  • Zwerina J, Hayer S, Tohidast-Akrad M, Bergmeister H, Redlich K, Feige U, Dunstan C, Kollias G, Steiner G, Smolen J (2004) Single and combined inhibition of tumor necrosis factor, interleukin-1, and RANKL pathways in tumor necrosis factor-induced arthritis: effects on synovial inflammation, bone erosion, and cartilage destruction. Arthritis Rheum 50:277–290

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dae-Duk Kim.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Park, J.H., Lee, M.Y., Kang, M.J. et al. Pharmaceutical perspectives for the delivery of TNF-α in cancer therapy. Journal of Pharmaceutical Investigation 42, 293–307 (2012). https://doi.org/10.1007/s40005-012-0044-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40005-012-0044-1

Keywords

Navigation