Skip to main content

Advertisement

Log in

Detection of transrenal DNA for the diagnosis of pulmonary tuberculosis and treatment monitoring

  • Original Paper
  • Published:
Infection Aims and scope Submit manuscript

Abstract

Purpose

Molecular diagnostics of patients with MTB tuberculosis from urine samples.

Methods

We developed a new molecular assay based on the detection of M. tuberculosis-specific transrenal DNA (trDNA) and tested it for the diagnosis of active tuberculosis at the initiation of anti-tuberculosis therapy and during treatment follow-up.

Results

The overall sensitivity of trDNA was 96 and 100% when smear-microscopy and trDNA was combined. In a subset of TB treatment naïve patients (n = 11) sensitivity and specificity of trDNA was 64 and 100%, respectively. For this subset of patients the sensitivity was 91% when smear-microscopy and trDNA diagnosis were combined. After treatment initiation, trDNA showed a significant reduction in concentration over time reaching undetectable trDNA values at week 12 in 9 of 11 accessible patients (82%). Kinetics in treatment-naïve patients showed low base-line trDNA levels, which increased to maximal trDNA levels within one week indicating bactericidal activity of anti-tuberculosis drugs after the initiation of effective therapy. Maximal trDNA levels correlated positively with a radiological score, suggesting that the process of DNA excretion may reflect the extent of pulmonary disease. Matched samples showed an inverse correlation between the time to positivity of solid culture with maximum trDNA levels as well as the expected positive correlation between smear grade and maximum trDNA values.

Conclusion

The detection of M. tuberculosis trDNA from urine specimen is a promising method for the diagnosis tuberculosis. The assay may be a candidate diagnostic tool for patients with paucibacillary and extrapulmonary disease, as method to assess treatment responses and could be helpful to diagnose tuberculosis in children.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. World Health Organisation. WHO Global Tuberculosis Report 2015.

  2. Lonnroth K, Migliori GB, Abubakar I, D’Ambrosio L, de Vries G, Diel R, Douglas P, Falzon D, Ma Gaudreau, Goletti D, Gonzalez Ochoa ER, LoBue P, Matteelli A, Njoo H, Solovic I, Story A, Tayeb T, van der Werf MJ, Weil D, Zellweger JP, Abdel Aziz M, Al Lawati MRM, Aliberti S, Arrazola de Onate W, Barreira D, Bhatia V, Blasi F, Bloom A, Bruchfeld J, Castelli F, Centis R, Chemtob D, Cirillo DM, Colorado A, Dadu A, Dahle UR, De Paoli L, Dias HM, Duarte R, Fattorini L, Gaga M, Getahun H, Glaziou P, Goguadze L, del Granado M, Haas W, Jarvinen A, Kwon GY, Mosca D, Nahid P, et al. Towards tuberculosis elimination: an action framework for low-incidence countries. Eur Respir J. 2015;45:928–52.

    PubMed  PubMed Central  Google Scholar 

  3. Perkins MD, Cunningham J. Facing the crisis: improving the diagnosis of tuberculosis in the HIV era. J Infect Dis. 2007;196(Suppl 1):S15–27.

    Article  PubMed  Google Scholar 

  4. Olaru ID, Heyckendorf J, Grossmann S, Lange C. Time to culture positivity and sputum smear microscopy during tuberculosis therapy. PLoS One. 2014;9:e106075.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Lawn SD, Kerkhoff AD, Vogt M, Wood R. Diagnostic accuracy of a low-cost, urine antigen, point-of-care screening assay for HIV-associated pulmonary tuberculosis before antiretroviral therapy: a descriptive study. Lancet Infect Dis. 2012;12:201–9.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Torrea G. PCR-based detection of the Mycobacterium tuberculosis complex in urine of HIV-infected and uninfected pulmonary and extrapulmonary tuberculosis patients in Burkina Faso. J Med Microbiol. 2005;54:39–44.

    Article  CAS  PubMed  Google Scholar 

  7. Kroidl I, Clowes P, Reither K, Mtafya B, Rojas-Ponce G, Ntinginya EN, Kalomo M, Minja LT, Kowuor D, Saathoff E, Kroidl A, Heinrich N, Maboko L, Bates M, O’Grady J, Zumla A, Hoelscher M, Rachow A. Performance of urine lipoarabinomannan assays for paediatric tuberculosis in Tanzania. Eur Respir J. 2015;46:761–70.

    Article  CAS  PubMed  Google Scholar 

  8. Boehme CC, Nabeta P, Hillemann D. Rapid molecular detection of tuberculosis and rifampin resistance. N Engl J Med. 2010;363:1005–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Luetkemeyer AF, Firnhaber C, Kendall MA, Wu X, Mazurek GH, Benator DA, Arduino R, Fernandez M, Guy E, Johnson P, Metchock B, Sattler F, Telzak E, Wang YF, Weiner M, Swindells S, Sanne IM, Havlir DV, Grinsztejn B, Alland D; AIDS Clinical Trials Group A5295 and Tuberculosis Trials Consortium Study 34 Teams. Evaluation of Xpert MTB/RIF to identify pulmonary tuberculosis in tuberculosis suspects from low and higher prevalence settings compared to acid fast smear and culture. Clin Infect Dis. 2016;62(9):1081–8.

    Article  PubMed  PubMed Central  Google Scholar 

  10. DiNardo AR, Lange C, Mandalakas AM. 1, 2, 3 (Years)  …  and you’re out: the end of a 123-year Historic Era. Clin Infect Dis. 2016;62(9):1089–91.

    Article  PubMed  Google Scholar 

  11. Karinja MN, Esterhuizen TM, Friedrich SO, Diacon AH. Sputum volume predicts sputum mycobacterial load during the first 2 weeks of antituberculosis treatment. J Clin Microbiol. 2015;53:1087–91.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Flores LL, Steingart KR, Dendukuri N, Schiller I, Minion J, Pai M, Ramsay A, Henry M, Laal S. Systematic review and meta-analysis of antigen detection tests for the diagnosis of tuberculosis. Clin Vaccine Immunol. 2011;18:1616–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Peter JG, Zijenah LS, Chanda D, Clowes P, Lesosky M, Gina P, Mehta N, Calligaro G, Lombard CJ, Kadzirange G, Bandason T, Chansa A, Liusha N, Mangu C, Mtafya B, Msila H, Rachow A, Hoelscher M, Mwaba P, Theron G, Dheda K. Effect on mortality of point-of-care, urine-based lipoarabinomannan testing to guide tuberculosis treatment initiation in HIV-positive hospital inpatients: a pragmatic, parallel-group, multicountry, open-label, randomised controlled trial. Lancet. 2016;387(10024):1187–97.

    Article  PubMed  Google Scholar 

  14. Drain PK, Gounder L, Sahid F, Moosa M-YS. Rapid urine lam testing improves diagnosis of expectorated smear-negative pulmonary tuberculosis in an HIV-endemic region. Sci Rep. 2016;6:19992.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Kim SH, Lee NE, Lee JS, Shin JH, Lee JY, Ko J-H, Chang CL, Kim Y-S. Identification of mycobacterial antigens in human urine using immunoglobulin G isolated from sera of patients with active pulmonary tuberculosis. J Clin Microbiol. 2016;54(6):1631–7.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Green C, Huggett JF, Talbot E, Mwaba P, Reither K, Zumla AI. Rapid diagnosis of tuberculosis through the detection of mycobacterial DNA in urine by nucleic acid amplification methods. Lancet Infect Dis. 2009;9:505–11.

    Article  CAS  PubMed  Google Scholar 

  17. Dheda K, Davids V, Lenders L, Roberts T, Meldau R, Ling D, Brunet L, RvZ Smit, Peter J, Green C, Badri M, Sechi L, Sharma S, Hoelscher M, Dawson R, Whitelaw A, Blackburn J, Pai M, Zumla A. Clinical utility of a commercial LAM-ELISA assay for TB diagnosis in HIV-infected patients using urine and sputum samples. PLoS One. 2010;5:e9848.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Su Y-H, Wang M, Brenner DE, Ng A, Melkonyan H, Umansky S, Syngal S, Block TM. Human urine contains small, 150 to 250 nucleotide-sized, soluble DNA derived from the circulation and may be useful in the detection of colorectal cancer. J Mol Diagn. 2004;6:101–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Bjerrum S, Kenu E, Lartey M, Newman MJ, Addo KK, Andersen AB, Johansen IS. Diagnostic accuracy of the rapid urine lipoarabinomannan test for pulmonary tuberculosis among HIV-infected adults in Ghana–findings from the DETECT HIV-TB study. BMC Infect Dis. 2015;15:407.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Marangu D, Devine B, John-Stewart G. Diagnostic accuracy of nucleic acid amplification tests in urine for pulmonary tuberculosis: a meta-analysis. Int J Tuberc Lung Dis. 2015;19:1339–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Kafwabulula M, Ahmed K, Nagatake T, Gotoh J, Mitarai S, Oizumi K, Zumla A. Evaluation of PCR-based methods for the diagnosis of tuberculosis by identification of mycobacterial DNA in urine samples. Int J Tuberc Lung Dis. 2002;6:732–7.

    CAS  PubMed  Google Scholar 

  22. Aceti A, Zanetti S, Mura MS, La Sechi, Turrini F, Saba F, Babudieri S, Mannu F, Fadda G. Identification of HIV patients with active pulmonary tuberculosis using urine based polymerase chain reaction assay. Thorax. 1999;54:145–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Peter JG, Theron G, Muchinga TE, Govender U, Dheda K. The diagnostic accuracy of urine-based Xpert MTB/RIF in HIV-infected hospitalized patients who are smear-negative or sputum scarce. PLoS One. 2012;7:e39966.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Cannas A, Goletti D, Girardi E, Chiacchio T, Calvo L, Cuzzi G, Piacentini M, Melkonyan H, Umansky SR, Lauria FN, et al. Mycobacterium tuberculosis DNA detection in soluble fraction of urine from pulmonary tuberculosis patients. Int J Tuberc Lung Dis. 2008;12:146–51.

    CAS  PubMed  Google Scholar 

  25. Gopinath K, Singh S. Urine as an adjunct specimen for the diagnosis of active pulmonary tuberculosis. Int J Infect Dis. 2009;13(3):374–9.

    Article  PubMed  Google Scholar 

  26. Ralph AP, Ardian M, Wiguna A, Maguire GP, Becker NG, Drogumuller G, Wilks MJ, Waramori G, Tjitra E, Sandjaja Kenagalem E, Pontororing GJ, Anstey NM, Kelly PM. A simple, valid, numerical score for grading chest x-ray severity in adult smear-positive pulmonary tuberculosis. Thorax. 2010;65:863–9. doi:10.1136/thx.2010.136242.

    Article  PubMed  Google Scholar 

  27. Newcombe RG. Two-sided confidence intervals for the single proportion: comparison of seven methods. Stat Med. 1998;17(8):857–72.

    Article  CAS  PubMed  Google Scholar 

  28. Heyckendorf J, Olaru ID, Ruhwald M, Lange C. Getting personal perspectives on individualized treatment duration in multidrug-resistant and extensively drug-resistant tuberculosis. Am J Respir Crit Care Med. 2014;190:374–83.

    Article  CAS  PubMed  Google Scholar 

  29. Olaru ID, von Groote-Bidlingmaier F, Heyckendorf J, Yew WW, Lange C, Chang KC. Novel drugs against tuberculosis: a clinician’s perspective. Eur Respir J. 2014;45:1119–31.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank Kerstin Reumann (Heinrich-Pette-Institut, Hamburg) for excellent help and advice regarding NGS library preparation as well as Matilde Nagel (Alere Technologies GmbH) for her outstanding technical support and helpful discussion. CL and JH are funded by the German Ministry of Education and Research (Bundesministerium für Bildung und Wissenschaft, BMBF) for the German Center of Infection Research (DZIF) Clinical Tuberculosis Unit. CH reports personal fees from Abbvie, Janssen, Genzyme outside the submitted work. TAK reports funding by the European Union PathoNgenTrace project (FP7- 278864-2). CL reports personal fees from Abbvie, MSD, Becton–Dickinson, Chiesi, Gilead, and Janssen outside the submitted work. JH reports personal fees from Gilead, Janssen, Chiesi, and Hain outside the submitted work. Parts of the study were performed and financed by Alere Technologies GmbH, Jena, Germany.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jan Heyckendorf.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

I. Labugger and J. Heyckendorf contributed equally.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 468 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Labugger, I., Heyckendorf, J., Dees, S. et al. Detection of transrenal DNA for the diagnosis of pulmonary tuberculosis and treatment monitoring. Infection 45, 269–276 (2017). https://doi.org/10.1007/s15010-016-0955-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s15010-016-0955-2

Keywords

Navigation